
Economics 217 - Data Science and Time Series

Topics covered in this lecture

Pattern matching

Anomaly Detection

Optimal clusters with the "Gap Statistic"

Textual Analysis

General Question: How do we find similar and dissimilar time series?

Time Series and Clustering

Our previous treatment of clustering tried to group geo-coordinates by their
proximity

Each observation was paired with a latitude and longitude

One can, of course, define observations by their time series

Financial data or macroeconomic data

Textual data (a ordering of alpha-numeric characters, or words)

Medical data (eg. EKG, etc..)

Technique is similar - define a distance, and clustering method

Distance

Numeric: Similar to before (Euclidean distance, other metric)

Textual: Measures of similarity (eg. intersection of words/characters)

Data: US Housing Prices by MSA

Like your first exam, a housing price index by metropolitan statistical area

Housing prices normalized the 1990

Only complete series are included (no missing prices)

Objectives

Find similar series

Detect "outliers" or anomalous series

Find optimal housing clusters

Data Processing

Load Data
x<-read.csv("/Users/acspearot/Documents/HPI_AT_metro.csv",
header=TRUE,na="-")

Restrict years to 1990 and onward
x<-subset(x,Year>=1990)

Create a Year-Quarter dummy
x$YearQuarter<-paste(x$Year,x$Quarter,sep="-")

Create a list of MSAs
MSAs<-sort(unique(as.character(x$MSA)))

Create a matrix
y<-matrix(nrow=length(MSAs),ncol=nrow(subset(x,MSA==MSAs[1])))

for(i in 1:length(MSAs)){

sx<-subset(x,MSA==MSAs[i])

y[i,]<-sx$Index/sx$Index[grep("2000-1",sx$YearQuarter)]
}

Keep observations with a complete time series since 1990
completeseries<-grep(0,rowSums(is.na(y)))

y2<-y[completeseries,]

MSAs<-MSAs[completeseries]

Use hclust to find housing clusters

Use the hierarchical clustering procedure to find similiar housing time series

Define distance matrix between series:

distmat<-dist(y2)

Run the full hierarchical clustering procedure:

results.complete<-hclust(distmat,method="complete")

"Cut the tree" at 10 clusters:

cluster.complete10 <- cutree(results.complete, 10)

Create data frame to view the results:

res<-data.frame(MSAs,cluster.complete10)

Do these clusters look sensible? Where are the metro areas you’ve heard of?

Try with 50 clusters:

cluster.complete50 <- cutree(results.complete, 50)

res<-data.frame(MSAs,cluster.complete50)

Outlier Detection with DBSCAN

DBSCAN groups observations into high density areas, with outliers
considered noise. Density determined by:

eps is the radius to determine density.

MinPoints determines a minimum number of points within a radius

Three types of points:

Core: The interior. A point is a core point if there are at least MinPoints within a
distance of eps.

Border: A border point is not a core point, but falls within eps of a core point.

Noise: Neither a core point nor a border point.

For our purposes, we wish to use these parameters to iteratively find the most
dissimilar observations (or anomalous time series). To do this, we will:

Start with a very high value of eps, such that there is only 1 cluster.

Sequentially reduce eps until outliers are identified

Outlier Detection with DBSCAN (cont.)

Load dbscan library
library(dbscan)

Loop through different values of eps to find the first outlier,
for(i in seq(10,1,by=-0.1)){

results.dbscan<-dbscan(distmat,eps=i)

count<-sum(results.dbscan$cluster==0,na.rm=TRUE)

if(count>0)break

}

Collect the results
res$dbscan1<-results.dbscan$cluster

Loop through different values of eps to find the 10 first outliers
for(i in seq(10,1,by=-0.1)){

results.dbscan<-dbscan(distmat,eps=i)

count<-sum(results.dbscan$cluster==0,na.rm=TRUE)

if(count>10)break

}

res$dbscan2<-results.dbscan$cluster

Optimal Clustering - the "Gap Statistic"

There are a number of methods to evaluate the optimal number of clusters

Compare clusters to existing classifications.

Use a modified cross-validation, other ad-hoc techniques

One particular method, the "Gap Statistic", is more theoretically motivated

Tibshirani, Walther, and Hastie (2001), Journal of the Royal Statistical Society

The Gap Statistic is based on the idea that a clustering algorithm will find
clusters from random data

Random points can be arranged in clusters, by chance

Compare how a clustering procedure on real data compares to a clustering
procedure on random data

Choose the smallest number of clusters such that the algorithm maximizes the
"tightness" of clusters on the real data compared to fake data. (there is a specific
metric for this)

The Gap statistic can be used with any clustering technique that requires the
choice of number of clusters to begin with.

Calculating the Gap Statistic

Define:

xij, i= 1, 2, .., n, j= 1,2, ...p, where i are observations and j are characteristics

dii′ is the distance between i and i′

Cr is defined as a set of observations in a cluster, r.

nr is the number of observations in a cluster, r.

The Gap statistic is defined as:

Gapn(k) = E∗n (log (Wk))− log (Wk)

where

E∗n (log (Wk)): the null within-cluster average distance with k clusters

log (Wk): the model within-cluster average distance with k clusters

To calculate using the model:

Wk =
k
∑

r=1

1
2nr

∑

i,i′∈CR

dii′

The Idea Behind the Gap Statistic

For the null, use a bootstrap with B replications.

Draw random data from a distribution similar to each j (eg. from the same range
of data for each j)

Then calculate the "null" log within-cluster average distance:

E∗n (log (Wk)) =
1
B

B
∑

b=1

log





k
∑

r=1

1
2nb

r

∑

i,i′∈Cb
R

db
ii′





where sdk is the standard deviation of the null statistic at k.

Optimal Cluster Rule: Use smallest k such that:

Gap(k)> Gap(k+ 1)− sdk+1

Intuition:

We want the tight clusters relative to the null: larger Gap(k)

If we are to accept more clusters, we need the new Gap(k+ 1) to be sufficiently
higher than Gap(k)

If there exist multiple k such that this condition is satisfied, choose parsimony
(fewer clusters)

An Example with the Gap Statistic

The library NbClust has techniques to test for cluster performance

Load NbClust library

library(NbClust)

Assign row names to the data matrix:

row.names(y2)<-MSAs

Run a hierarchical clustering procedure (with the complete linkage), and
determine optimal clustering via the gap statistic

GapComplete<-NbClust(y2,index="gap",method="complete")

Report number of clusters

GapComplete$Best.nc

Report clusters

as.matrix(GapComplete$Best.partition)

Report smallest cluster

SmallCluster<-GapComplete$Best.partition==2

as.matrix(GapComplete$Best.partition[SmallCluster])

Textual Distance

In the course of your data science career, you may be increasingly asked to
engage on textual data to compare objects or extract information

Edit-based distances

Distance is represented by the number of edits to turn one string into another

Eg. Insertions, substitutions, deletion, etc..

Q-grams

Comparison of q-character sequences between strings

Eg. (q-gram), Jaccard, and cosine

Hueristics - practical rules

We’ll given some examples for each using the "stringdist" library

install.packages("stringdist")

library(stringdist)

Edit Distances

The basic types of edits:

Substitution: ’foo’→ ’boo’

Deletion: ’foo’→ ’oo’

Insertion: ’foo’→ ’floo’

Transposition: ’foo’→ ’ofo’

Generalized Levenshtein Distance:

Weighted number of insertions, deletions, and substitutions to turn one string
into another

Damerau-Levenshtein Distance:

Allows for adjacent characters to be transposed

Levenshtein distance comparing "alan" and "allen"

stringdist(’alan’, ’allen’, method=’lv’)

Q-Grams

Q-gram based distances deal with matching strings of q consecutive
characters

Jaccard Distance is a simple comparison of the intersection and union of all
unique q-length sequences

Distance= 1−
|Q (s; q)∩Q (t; q) |
|Q (s; q)∪Q (t; q) |

where Q (s; q) is the set of q-length sequences in s

Q-gram distance calculates the number of non-shared q-grams between the
two strings

In both Jaccard and Q-gram, you can use the functions "intersect" and "union"
after vectorizing text strings, but there are packages that do this automatically

Example with "alan" and "allen"
stringdist(’alan’, ’allen’, method=’jac’,1)

stringdist(’alan’, ’allen’, method=’qgram’,1)

stringdist(’alan’, ’allen’, method=’jac’,2)

stringdist(’alan’, ’allen’, method=’qgram’,2)

Q-Grams (cosine)

Cosine distance: measures one minus the cosine of the angle between two
vectors

Translate text into vectors using "term frequency"

Eg: "alan" vs. "allen", q=1

Vector space: (a, e, l, n)

v(′alan′, q= 1) = (2,0, 1,1)

v(′allen′, q= 1) = (1, 1,2, 1)

Eg, "alan" vs. "allen", q=2

Vector space: (al, la, an, ll, le, en)

v(′alan′, q= 2) = (1,1, 1,0, 0,0)

v(′allen′, q= 2) = (1, 0,0, 1,1,1)

Formula:

CosDistance= 1−

∑n
i=1 AiBi

q

∑n
i=1 A2

i

q

∑n
i=1 B2

i

where Ai and Bi are vectors for two strings based on term frequency

Application: Textual Analysis of Fed Statements

Textual Analysis is used in economics and business

Analyzing fed minutes/transcripts

Analyzing corporate earnings calls

An unsurprisingly, your posts on any social media

On the website, I have compile 6 opening paragraphs of fed statements from
2013

x<-read.delim("/Users/acspearot/Documents/Classes/Econ 217/Fed
Statement", sep="\t")

x$Date<-as.character(x$Date)

x$Text<-as.character(x$Text)

As a basic command, you can search for phrases using "grep"

grep("economic activity has been expanding",x$Text[1])

grep("economic activity has been expanding",x$Text[2])

grep("economic activity has been expanding",x$Text[3])

grep("economic activity has been expanding",x$Text[4])

grep("economic activity has been expanding",x$Text[5])

grep("economic activity has been expanding",x$Text[6])

Application: Textual Analysis of Fed Statements

There are countless ways of analyzing textual data for economic information,
but let’s just measure their distance

The Fed is careful with their language - analyzing deviations could indicate
changes in economic conditions.

Compare fed minutes with a 20 character cosine distance

stringdist(x$Text[1],x$Text[2], method=’cosine’,q=20)

stringdist(x$Text[1],x$Text[3], method=’cosine’,q=20)

stringdist(x$Text[1],x$Text[4], method=’cosine’,q=20)

stringdist(x$Text[1],x$Text[5], method=’cosine’,q=20)

stringdist(x$Text[1],x$Text[6], method=’cosine’,q=20)

Obviously this is overly simplistic, but can imagine enriching this in a number
of dimensions.

