
Time Series Lecture Module 3

Topics in this lecture

Stationarity and Unit Roots

Spurious Regressions

Cointegration

Error-Correction Models



Stationarity and Unit Roots

We need a precise test to distinguish between stationarity and
non-stationarity

Mean is unknown and variance explodes for non-stationary time series

Graphical techniques were not based on any precise statistical test

In this set of slides, we’ll discuss the "unit root", and how to identify it

Though a unit root has a precise definition, it basically summarizes when a
autoregressive relationship is non-stationary

Generally, we take differences, or differences of differences, or differences of
differences of....of differences of differences to purge an autoregressive
relationship of non-stationary properties.



What is a unit-root?

Consider the following AR(1) model

yt = φ1yt−1 + ut

Three possible cases for this AR(1) model:

1 |φ1|< 1, and the series is stationary
2 φ1 = 1, and the series has a unit root and is non-stationary
3 φ1 = −1, and the series is non-stationary without a unit root
4 |φ1|> 1, and the series is explosive

To test for unit root, first subtract yt−1 from both sides.

yt − yt−1 = (φ1 − 1)yt−1 + ut

∆yt = γyt−1 + ut

H0 : γ= 0 indicates a unit root.

For stationarity, we reject in favor of γ < 0. (note this is a one-sided test)

In this simple form, this test is known as the "Dickey-Fuller Test".

Test statistics are not based on a t-distribution - Table in book, correct p-values
given in R.



What is a unit-root? (graphically)

Create 3 different AR(1) time series, at or near a unit root.

Nobs<-100

x<-AR1(Nobs,0.25)

y<-AR1(Nobs,1)

z<-AR1(Nobs,1.02)

Plot the time series

par(mfrow=c(1,3))

plot(x,type=’l’,main="phi=0.25",xlab=’t’,ylab="Y")

plot(y,type=’l’,main="phi=1",xlab=’t’,ylab="Y")

plot(z,type=’l’,main="phi=1.02",xlab=’t’,ylab="Y")

What are the features of these three plots?



Integrated series

From the previous series...

∆yt = γyt−1 + ut

Again, this is stationary when γ < 0.

This type of series is called "integrated of order 0": I(0)

If not stationary, take differences and test again. If ∆yt is stationary, this type
of series is called "integrated of order 1"

In general, a series is integrated order d if d differences are required to make
stationary.

In R, for our previous series, take differences and plot:

plot(diff(x,lag=1),type=’l’,main="phi=0.25",xlab=’t’,ylab="Y")

plot(diff(y,lag=1),type=’l’,main="phi=1",xlab=’t’,ylab="Y")

plot(diff(z,lag=1),type=’l’,main="phi=1.02",xlab=’t’,ylab="Y")

Do the differenced series look more stationary?



Testing for unit roots manually

In R, we need to regress the differences of a time series on initial values and
test the coefficient.

Using our original time series x:

summary(lm(diff(x,lag=1)~x[1:(N-1)]))

x[1:(N-1)] is the vector of matched initial time periods.

Do the same for the other series

summary(lm(diff(y,lag=1)~y[1:(N-1)]))

summary(lm(diff(z,lag=1)~z[1:(N-1)]))

These regressions are only suggestive in significance. Must use the DF
significance table from the book, or the R code that I will present in a few
slides.



Testing for unit roots manually

When series appear to be non-stationary, we need find out how many
differences we need to take for it to be stationary.

To begin, test for stationarity in the differenced data

Formally, we are testing where φ lies relative to 1 in the following

∆yt = φ∆yt−1 + ut

Subtracting ∆yt−1 from both sides

∆yt −∆yt−1 = φ∆yt−1 −∆yt−1 + ut

∆2yt = γ∆yt−1 + ut

In R, for some series z:

d1<-z[2:(N-1)]-z[1:(N-2)]

d2<-z[3:N]-z[2:(N-1)]

summary(lm(I(d2-d1)~d1))



Stationarity tests in R

In the package "tseries", adf.test(x,k=0) runs the standard DF test.

library(tseries)

adf.test(x,k=0)

adf.test(y,k=0)

adf.test(z,k=0)

The null hypothesis is that there is a unit root, and the alternative is
"stationary".

The augmented DF test runs the following regression

∆yt = β0 +αt+ γyt−1 +
k
∑

i=1

βk∆yt−k + et

k adjusts the lag length in the regression.

adf.test(z,k=0)

adf.test(z,k=1)

adf.test(z,k=2)

Again, the null is that there is a unit root.



Why we care - Spurious Regressions

Recall from our earlier example that when φ = 1

yt = yt−1 + uyt

If we run this process enough times what do we notice?

The series usually trends somewhere.

Suppose we have an independently constructed series of the same from:

xt = xt−1 + uxt

If we regress yt on xt, what happens?

Since both series have a tendency to trend somewhere, there will appear to
be a relationship between the two series most of the time.

This is called a spurious relationship. We must therefore identify unit roots
when regressing time series on one another to prevent this issue.



Why we care - Spurious Regressions

Regressing two independently created series should not show a systematic
relationship

But, when there is a unit root in both series, there may be a spurious
relationship.

This is bad for macro data, since as we know aggregate variables usually trend
somewhere.

Run this code repeatedly and see how many times you get an insignificant
relationship between the two series

x1<-AR1(N,1)

x2<-AR1(N,1)

summary(lm(x2~x1))

Along with there clearly being no mechanical relationship between the series
(since they are random), the standard errors are incorrect for classic OLS



Spurious Regressions (cont.)

Why are standard errors incorrect?

Suppose we wish to regress yt on xt using

yt = β0 + β1xt + ut

Rearranging for ut, we have:

ut = yt − β0 − β1xt

Back-substituting for yt = yt−1 + uyt−1 and xt = xt−1 + uxt−1, we have:

ut =
�

yt−1 + uyt−1

�

− β0 − β1 (xt−1 + uxt−1)

Doing so repeatedly for back to period 1, we get:

ut = y1 +
t−1
∑

i=1

uyi + β0 − β1x1 − β1

t−1
∑

i=1

uxi

Note that because of the
∑t−1

i=1 uyi and β1

∑t−1
i=1 uxi the variance explodes as t

gets large relative to the initial state.



Cointegration and Error-Correction

Trending time series cause problems due to the spurious regression

This tends to be a problem with any macro data

Differencing helps, but there are drawbacks

Cannot speak to long-run changes, only short-run (since identifying variation is
based on first differences or higher order differences)

Cointegration provides a framework for identifying and estimating time
series regressions



Definition of Cointegration

Suppose we have the following time-series model

Yt = β0 + β1Xt + ut

Estimate the model to get bβ0 and bβ1. Constructing the residuals:

but = Yt − bβ0 − bβ1Xt

If but ∼ I(0), then Yt and Xt are cointegrated

This is trivial if Yt and Xt are both I(0)

This more interesting when Yt and Xt are both I(1)

How often does this occur given random time series generated by a process
with a unit-root?



Cointegrated series - Monte Carlo examples

Run a Monte Carlo to see...

for(i in 1:1000){

x<-AR1(N,1)

y<-AR1(N,1)

errors<-resid(lm(y~x))

adftest<-adf.test(errors)

p<-adftest$p.value

if(i==1){res<-data.frame(p)}

if(i>1){res<-rbind(res,data.frame(p))}

}

Calculate how many reject a unit root in favor of stationarity

mean(res$p<0.1,na.rm=TRUE)



Error Correction Model

If Yt and Xt are I(1), but but ∼ I(0), then we can estimate using OLS the
following "Error correction model"

∆Yt = a0 + b1∆Xt +πbut−1 + et

This regression is not spurious because but−1, ∆Yt and ∆Xt are all I(0)

Since, Yt and Xt are also I(0), we can obtain consistent estimates for b1 using
standard regression

We can also obtain long-run equilibrium dynamics by focusing on π.

but−1 6= 0 indicates disequilibrium between Y and X in Yt−1 = β0 + β1Xt−1 + ut−1

π= −1 equilibrium is reached immediately

π ∈ (−1,0] equilibrium is reached gradually

π < −1 suggests an over-correction



Error Correction Model to ARDL model

The ECM model is equivalent to a ARDL model (Autoregressive Distributed
Lag), which we presented a few lectures ago when talking about VARs. To see
this, note that:

∆Yt = a0 + b1∆Xt +πbut−1 + et

Expanding ∆Yt, ∆Xt, and but−1, we have:

Yt − Yt−1 = a0 + b1 (Xt − Xt−1) +π (Yt−1 − β0 − β1Xt−1) + et

Bringing all lags to the RHS:

Yt = a0 + Yt−1 +πYt−1 + b1Xt − b1Xt−1 −πβ0 −πβ1Xt−1 + et

Collecting terms

Yt = a0 −πβ0 + (1+π)Yt−1 + b1Xt + (−b1 −πβ1)Xt−1 + et

Thus, we have an ARDL model.



Engel-Granger Technique

Engel and Granger have proposed a technique for evaluating data that may
be spurious.

Step 1: Determine whether Xt and Yt are cointegrated.

If Xt and Yt are I(0), then use classic regression

If only one of Xt and Yt are I(1), and the other I(0), then need a new techinque

If Xt and Yt are I(1), then run

Yt = β0 + β1Xt + ut

and collect residuals. Go to step 2.

Step 2: Check whether ut is I(0)

If ut is I(0), move to step 3.

If ut is I(1), find a new model

Step 3: Estimate and interpret:

∆Yt = a0 + b1∆Xt +πbut−1 + et



Example - Co-integration of investment funds

Download a year of daily opening prices for SPY and VOO

getSymbols(’SPY’,from=’2014-11-12’,to=’2015-11-12’)

getSymbols(’VOO’,from=’2014-11-12’,to=’2015-11-12’)

prices.spy <- SPY$SPY.Open

prices.voo <- VOO$VOO.Open

Step 1: Determine whether SPY and VOO have unit root.

adf.test(prices.spy)

adf.test(prices.voo)



Example - Co-integration of investment funds

Step 2: Regress

SPYt = a0 + b1VOOt + ut

and test whether ut is I(0)

coint <- lm(prices.spy~prices.voo)

summary(coint)

beta<-coint$coef

resid <- prices.spy - (beta[1] + beta[2]*prices.voo)

adf.test(resid)

Step 3: Estimate and interpret:

∆SPYt = a0 + b1∆VOOt +πbut−1 + et

lag.resid<-lag(resid,1)

dSPY<-prices.spy-lag(prices.spy,1)

dVOO<-prices.voo-lag(prices.voo,1)

ecm <-lm(dSPY~dVOO+lag.resid)

summary(ecm)


