Time Series Lecture Module 3

- Topics in this lecture
 - Stationarity and Unit Roots
 - Spurious Regressions
 - Cointegration
 - Error-Correction Models

Stationarity and Unit Roots

- We need a precise test to distinguish between stationarity and non-stationarity
 - Mean is unknown and variance explodes for non-stationary time series
- Graphical techniques were not based on any precise statistical test
- In this set of slides, we'll discuss the "unit root", and how to identify it
 - Though a unit root has a precise definition, it basically summarizes when a autoregressive relationship is non-stationary
 - Generally, we take differences, or differences of differences, or differences of differences of....of differences of differences to purge an autoregressive relationship of non-stationary properties.

What is a unit-root?

Consider the following AR(1) model

$$y_t = \phi_1 y_{t-1} + u_t$$

- Three possible cases for this AR(1) model:
 - $|\phi_1| < 1$, and the series is stationary
 - $\phi_1 = 1$, and the series has a unit root and is non-stationary
 - $\phi_1 = -1$, and the series is non-stationary without a unit root
 - $|\phi_1| > 1$, and the series is explosive
- To test for unit root, first subtract y_{t-1} from both sides.

$$y_t - y_{t-1} = (\phi_1 - 1)y_{t-1} + u_t$$

$$\Delta y_t = \gamma y_{t-1} + u_t$$

- H_0 : $\gamma = 0$ indicates a unit root.
 - For stationarity, we reject in favor of γ < 0. (note this is a one-sided test)
 - In this simple form, this test is known as the "Dickey-Fuller Test".
 - Test statistics are not based on a t-distribution Table in book, correct p-values given in R.

What is a unit-root? (graphically)

• Create 3 different AR(1) time series, at or near a unit root.

```
Nobs<-100
x<-AR1 (Nobs, 0.25)
y<-AR1 (Nobs, 1)
z<-AR1 (Nobs, 1.02)
```

• Plot the time series

```
par(mfrow=c(1,3))
plot(x,type='l',main="phi=0.25",xlab='t',ylab="Y")
plot(y,type='l',main="phi=1",xlab='t',ylab="Y")
plot(z,type='l',main="phi=1.02",xlab='t',ylab="Y")
```

• What are the features of these three plots?

Integrated series

• From the previous series...

$$\Delta y_t = \gamma y_{t-1} + u_t$$

- Again, this is stationary when $\gamma < 0$.
 - This type of series is called "integrated of order 0": I(0)
- If not stationary, take differences and test again. If Δy_t is stationary, this type of series is called "integrated of order 1"
- In general, a series is integrated order *d* if *d* differences are required to make stationary.
- In R, for our previous series, take differences and plot:

```
plot(diff(x,lag=1),type='l',main="phi=0.25",xlab='t',ylab="Y")
plot(diff(y,lag=1),type='l',main="phi=1",xlab='t',ylab="Y")
plot(diff(z,lag=1),type='l',main="phi=1.02",xlab='t',ylab="Y")
```

• Do the differenced series look more stationary?

Testing for unit roots manually

- In R, we need to regress the differences of a time series on initial values and test the coefficient.
- Using our original time series x:

```
summary (lm(diff(x, lag=1) \sim x[1:(N-1)]))
```

- x[1:(N-1)] is the vector of matched initial time periods.
- Do the same for the other series

```
summary (lm (diff (y, lag=1) \simy[1: (N-1)])) summary (lm (diff (z, lag=1) \simz[1: (N-1)]))
```

• These regressions are only suggestive in significance. Must use the DF significance table from the book, or the R code that I will present in a few slides.

Testing for unit roots manually

- When series appear to be non-stationary, we need find out how many differences we need to take for it to be stationary.
- To begin, test for stationarity in the differenced data
- Formally, we are testing where ϕ lies relative to 1 in the following

$$\Delta y_t = \phi \Delta y_{t-1} + u_t$$

• Subtracting Δy_{t-1} from both sides

$$\Delta y_t - \Delta y_{t-1} = \phi \Delta y_{t-1} - \Delta y_{t-1} + u_t$$

$$\Delta^2 y_t = \gamma \Delta y_{t-1} + u_t$$

• In R, for some series *z*:

```
d1 < -z[2:(N-1)] - z[1:(N-2)]

d2 < -z[3:N] - z[2:(N-1)]

summary (lm(I(d2-d1)~d1))
```

Stationarity tests in R

• In the package "tseries", adf.test(x,k=0) runs the standard DF test.

```
library(tseries)
adf.test(x, k=0)
adf.test(y, k=0)
adf.test(z, k=0)
```

- The null hypothesis is that there is a unit root, and the alternative is "stationary".
- The augmented DF test runs the following regression

$$\Delta y_t = \beta_0 + \alpha t + \gamma y_{t-1} + \sum_{i=1}^k \beta_k \Delta y_{t-k} + e_t$$

• *k* adjusts the lag length in the regression.

```
adf.test(z, k=0)
adf.test(z, k=1)
adf.test(z, k=2)
```

Again, the null is that there is a unit root.

Why we care - Spurious Regressions

• Recall from our earlier example that when $\phi = 1$

$$y_t = y_{t-1} + u_{yt}$$

- If we run this process enough times what do we notice?
 - The series usually trends somewhere.
- Suppose we have an independently constructed series of the same from:

$$x_t = x_{t-1} + u_{xt}$$

- If we regress y_t on x_t , what happens?
- Since both series have a tendency to trend somewhere, there will appear to be a relationship between the two series most of the time.
- This is called a **spurious relationship**. We must therefore identify unit roots when regressing time series on one another to prevent this issue.

Why we care - Spurious Regressions

- Regressing two independently created series should not show a systematic relationship
- But, when there is a unit root in both series, there may be a spurious relationship.
 - This is bad for macro data, since as we know aggregate variables usually trend somewhere.
- Run this code repeatedly and see how many times you get an insignificant relationship between the two series

```
x1<-AR1(N,1)
x2<-AR1(N,1)
summary(lm(x2~x1))
```

• Along with there clearly being no mechanical relationship between the series (since they are random), the standard errors are incorrect for classic OLS

Spurious Regressions (cont.)

- Why are standard errors incorrect?
- Suppose we wish to regress y_t on x_t using

$$y_t = \beta_0 + \beta_1 x_t + u_t$$

• Rearranging for u_t , we have:

$$u_t = y_t - \beta_0 - \beta_1 x_t$$

• Back-substituting for $y_t = y_{t-1} + u_{yt-1}$ and $x_t = x_{t-1} + u_{xt-1}$, we have:

$$u_t = (y_{t-1} + u_{yt-1}) - \beta_0 - \beta_1 (x_{t-1} + u_{xt-1})$$

• Doing so repeatedly for back to period 1, we get:

$$u_t = y_1 + \sum_{i=1}^{t-1} u_{yi} + \beta_0 - \beta_1 x_1 - \beta_1 \sum_{i=1}^{t-1} u_{xi}$$

• Note that because of the $\sum_{i=1}^{t-1} u_{yi}$ and $\beta_1 \sum_{i=1}^{t-1} u_{xi}$ the variance explodes as t gets large relative to the initial state.

Cointegration and Error-Correction

- Trending time series cause problems due to the spurious regression
 - This tends to be a problem with any macro data
- Differencing helps, but there are drawbacks
 - Cannot speak to long-run changes, only short-run (since identifying variation is based on first differences or higher order differences)
- Cointegration provides a framework for identifying and estimating time series regressions

Definition of Cointegration

Suppose we have the following time-series model

$$Y_t = \beta_0 + \beta_1 X_t + u_t$$

• Estimate the model to get $\widehat{\beta}_0$ and $\widehat{\beta}_1$. Constructing the residuals:

$$\widehat{u}_t = Y_t - \widehat{\beta}_0 - \widehat{\beta}_1 X_t$$

- If $\widehat{u}_t \sim I(0)$, then Y_t and X_t are **cointegrated**
- This is trivial if Y_t and X_t are both I(0)
- This more interesting when Y_t and X_t are both I(1)
- How often does this occur given random time series generated by a process with a unit-root?

Cointegrated series - Monte Carlo examples

• Run a Monte Carlo to see...

```
for(i in 1:1000) {
    x<-AR1(N,1)
    y<-AR1(N,1)
    errors<-resid(lm(y~x))
    adftest<-adf.test(errors)
    p<-adftest$p.value
    if(i==1) {res<-data.frame(p)}
    if(i>1) {res<-rbind(res,data.frame(p))}
}</pre>
```

• Calculate how many reject a unit root in favor of stationarity

```
mean(res$p<0.1,na.rm=TRUE)</pre>
```

Error Correction Model

• If Y_t and X_t are I(1), but $\widehat{u}_t \sim I(0)$, then we can estimate using OLS the following "Error correction model"

$$\Delta Y_t = a_0 + b_1 \Delta X_t + \pi \widehat{u}_{t-1} + e_t$$

- This regression is **not** spurious because \widehat{u}_{t-1} , ΔY_t and ΔX_t are all I(0)
- Since, Y_t and X_t are also I(0), we can obtain consistent estimates for b_1 using standard regression
- We can also obtain long-run equilibrium dynamics by focusing on π .
 - $\hat{u}_{t-1} \neq 0$ indicates disequilibrium between Y and X in $Y_{t-1} = \beta_0 + \beta_1 X_{t-1} + u_{t-1}$
 - $\pi = -1$ equilibrium is reached immediately
 - $\pi \in (-1,0]$ equilibrium is reached gradually
 - $\pi < -1$ suggests an over-correction

Error Correction Model to ARDL model

 The ECM model is equivalent to a ARDL model (Autoregressive Distributed Lag), which we presented a few lectures ago when talking about VARs. To see this, note that:

$$\Delta Y_t = a_0 + b_1 \Delta X_t + \pi \widehat{u}_{t-1} + e_t$$

• Expanding ΔY_t , ΔX_t , and \widehat{u}_{t-1} , we have:

$$Y_t - Y_{t-1} = a_0 + b_1 (X_t - X_{t-1}) + \pi (Y_{t-1} - \beta_0 - \beta_1 X_{t-1}) + e_t$$

Bringing all lags to the RHS:

$$Y_{t} = a_{0} + Y_{t-1} + \pi Y_{t-1} + b_{1}X_{t} - b_{1}X_{t-1} - \pi \beta_{0} - \pi \beta_{1}X_{t-1} + e_{t}$$

Collecting terms

$$Y_{t} = a_{0} - \pi \beta_{0} + (1 + \pi) Y_{t-1} + b_{1} X_{t} + (-b_{1} - \pi \beta_{1}) X_{t-1} + e_{t}$$

Thus, we have an ARDL model.

Engel-Granger Technique

- Engel and Granger have proposed a technique for evaluating data that may be spurious.
- Step 1: Determine whether X_t and Y_t are cointegrated.
 - If X_t and Y_t are I(0), then use classic regression
 - If only one of X_t and Y_t are I(1), and the other I(0), then need a new techinque
 - If X_t and Y_t are I(1), then run

$$Y_t = \beta_0 + \beta_1 X_t + u_t$$

and collect residuals. Go to step 2.

- Step 2: Check whether u_t is I(0)
 - If u_t is I(0), move to step 3.
 - If u_t is I(1), find a new model
- **Step 3:** Estimate and interpret:

$$\Delta Y_t = a_0 + b_1 \Delta X_t + \pi \widehat{u}_{t-1} + e_t$$

Example - Co-integration of investment funds

Download a year of daily opening prices for SPY and VOO

```
getSymbols('SPY', from='2014-11-12', to='2015-11-12')
getSymbols('VOO', from='2014-11-12', to='2015-11-12')
prices.spy <- SPY$SPY.Open
prices.voo <- VOO$VOO.Open</pre>
```

• **Step 1:** Determine whether *SPY* and *VOO* have unit root.

```
adf.test(prices.spy)
adf.test(prices.voo)
```

Example - Co-integration of investment funds

• Step 2: Regress

$$SPY_t = a_0 + b_1 VOO_t + u_t$$

and test whether u_t is I(0)

```
coint <- lm(prices.spy~prices.voo)
summary(coint)
beta<-coint$coef
resid <- prices.spy - (beta[1] + beta[2]*prices.voo)
adf.test(resid)</pre>
```

• **Step 3:** Estimate and interpret:

$$\Delta SPY_t = a_0 + b_1 \Delta VOO_t + \pi \widehat{u}_{t-1} + e_t$$
 lag.resid<-lag(resid,1)
$$\text{dSPY} < -\text{prices.spy-lag(prices.spy,1)}$$

$$\text{dVOO} < -\text{prices.voo-lag(prices.voo,1)}$$
 ecm
$$< -\text{lm(dSPY} \sim \text{dVOO} + \text{lag.resid)}$$
 summary (ecm)