Time Series Lecture Module 3

@ Topics in this lecture

e Stationarity and Unit Roots
e Spurious Regressions
e Cointegration

@ Error-Correction Models



Stationarity and Unit Roots

@ We need a precise test to distinguish between stationarity and
non-stationarity

e Mean is unknown and variance explodes for non-stationary time series

@ Graphical techniques were not based on any precise statistical test

@ In this set of slides, we’ll discuss the "unit root", and how to identify it

e Though a unit root has a precise definition, it basically summarizes when a
autoregressive relationship is non-stationary

e Generally, we take differences, or differences of differences, or differences of
differences of....of differences of differences to purge an autoregressive
relationship of non-stationary properties.



What is a unit-root?

@ Consider the following AR(1) model

Ye = ¢yt
@ Three possible cases for this AR(1) model:

Q |¢,| <1, and the series is stationary

@ ¢, =1, and the series has a unit root and is non-stationary
@ ¢, =—1, and the series is non-stationary without a unit root
@ |¢9,| > 1, and the series is explosive

@ To test for unit root, first subtract y,_; from both sides.

Ye—=Yem1 = (@1 — 1Dy t+u,
Ay, = YVt
@ H, :y =0 indicates a unit root.

e For stationarity, we reject in favor of y < 0. (note this is a one-sided test)
e In this simple form, this test is known as the "Dickey-Fuller Test".

e Test statistics are not based on a t-distribution - Table in book, correct p-values
given in R.



What is a unit-root? (graphically)

@ Create 3 different AR(1) time series, at or near a unit root.

Nobs<-100

x<—-AR1 (Nobs, 0.25)
y<—AR1 (Nobs, 1)
z<—-AR1 (Nobs, 1.02)

@ Plot the time series

par (mfrow=c (1, 3))

plot (x,type="1",main="phi=0.25",xlab="t’,ylab="Y")
plot (y,type="1",main="phi=1",xlab="t’,ylab="Y")
plot (z,type="1",main="phi=1.02",xlab="t’,ylab="Y")

@ What are the features of these three plots?



Integrated series

@ From the previous series...

Ay, = YY1 T U

@ Again, this is stationary when y < 0.

e This type of series is called "integrated of order 0": 1(0)

@ If not stationary, take differences and test again. If Ay, is stationary, this type
of series is called "integrated of order 1"

@ In general, a series is integrated order d if d differences are required to make
stationary.

@ In R, for our previous series, take differences and plot:

plot (diff (x,lag=1),type="1’,main="phi=0.25",xlab="t’,ylab="Y")
plot (diff (y,lag=1l),type="1’,main="phi=1",xlab="t’,ylab="Y")
plot (diff (z,lag=1),type="1’,main="phi=1.02",xlab="t’,ylab="Y")

@ Do the differenced series look more stationary?



Testing for unit roots manually

@ In R, we need to regress the differences of a time series on initial values and
test the coefficient.

@ Using our original time series X:

summary (Im(diff (x, lag=1l)~x[1: (N=-1)1))
@ x[1:(N-1)] is the vector of matched initial time periods.

@ Do the same for the other series

summary (Im(diff(y, lag=l)~y[1l: (N-1)1]))
summary (Ilm(diff(z, lag=1l)~z[1: (N-1)1]))
@ These regressions are only suggestive in significance. Must use the DF

significance table from the book, or the R code that I will present in a few
slides.



Testing for unit roots manually

@ When series appear to be non-stationary, we need find out how many
differences we need to take for it to be stationary.

@ To begin, test for stationarity in the differenced data

@ Formally, we are testing where ¢ lies relative to 1 in the following

Ay, = QAYy.+u,

@ Subtracting Ay,_; from both sides

Ay, — Ay, 1 = QAY. 1 — Ay, 1t U,
A2}’t = YAy tu

@ In R, for some series z:
dl<-z[2: (N=-1)]-z[1l: (N-2) ]
d2<-z[3:N]—-z[2: (N-1) ]
summary (1lm (I (d2-d1)~dl))



Stationarity tests in R

@ In the package "tseries", adf.test(x,k=0) runs the standard DF test.

library(tseries)
adf.test (x, k=0)
adf.test (y, k=0)
adf.test (z, k=0)

@ The null hypothesis is that there is a unit root, and the alternative is
"stationary'".

@ The augmented DF test runs the following regression

k
Ay, = ﬁ0+at+Y}/t—1+ZﬁkA}’t—k+et
=1

@ k adjusts the lag length in the regression.
adf.test (z, k=0)
adf.test (z, k=1)

adf.test (z, k=2)

@ Again, the null is that there is a unit root.



Why we care - Spurious Regressions

@ Recall from our earlier example that when ¢ =1

Ye = Y1t Uy,

@ If we run this process enough times what do we notice?
@ The series usually trends somewhere.
@ Suppose we have an independently constructed series of the same from:
Xe = X T Uy

@ If we regress y, on x,, what happens?

@ Since both series have a tendency to trend somewhere, there will appear to
be a relationship between the two series most of the time.

@ This is called a spurious relationship. We must therefore identify unit roots
when regressing time series on one another to prevent this issue.



Why we care - Spurious Regressions

@ Regressing two independently created series should not show a systematic
relationship

@ But, when there is a unit root in both series, there may be a spurious
relationship.

e This is bad for macro data, since as we know aggregate variables usually trend
somewhere.

@ Run this code repeatedly and see how many times you get an insignificant
relationship between the two series

x1<-AR1 (N, 1)
x2<-AR1 (N, 1)

summary (1lm(x2~x1))

@ Along with there clearly being no mechanical relationship between the series
(since they are random), the standard errors are incorrect for classic OLS



Spurious Regressions (cont.)

@ Why are standard errors incorrect?

@ Suppose we wish to regress y, on x, using

Ye = Po+ Prxe+u,
@ Rearranging for u,, we have:

ur =Yy — Bo — P12

® Back-substituting for y, =y, ; + u,_; and x, = x,_; + u,,_;, we have:

Ug = (.Vt—l + uyt—l) — Bo— B1 (1 + 1)
@ Doing so repeatedly for back to period 1, we get:

t—1

—1
U =Y1 +Zuyi + o — Prxy _ﬁ1zuxi
i=1

=1

-1 -1 :
@ Note that because of the 2;1 u,; and 54 2;1 u,,; the variance explodes as t
gets large relative to the initial state.



Cointegration and Error-Correction

@ Trending time series cause problems due to the spurious regression
e This tends to be a problem with any macro data
@ Differencing helps, but there are drawbacks

e Cannot speak to long-run changes, only short-run (since identifying variation is
based on first differences or higher order differences)

@ Cointegration provides a framework for identifying and estimating time
series regressions



Definition of Cointegration

@ Suppose we have the following time-series model
Y, = Po+ X+

@ Estimate the model to get B\o and 31- Constructing the residuals:
u = Y, — //3\0 - B1Xt

@ If u, ~I(0), then Y, and X, are cointegrated

@ This is trivial if Y, and X, are both I(0)

@ This more interesting when Y, and X, are both I(1)

@ How often does this occur given random time series generated by a process
with a unit-root?



Cointegrated series - Monte Carlo examples

@ Run a Monte Carlo to see...

for(i in 1:1000) {
x<-AR1 (N, 1)
y<—-ARI1 (N, 1)
errors<-resid(lm(y~x))
adftest<—-adf.test (errors)
p<—-adftestS$p.value
1f(1i==1) {res<-data.frame (p) }
1f(1>1) {res<-rbind(res,data.frame(p))}

}

@ Calculate how many reject a unit root in favor of stationarity

mean (res$p<0.1,na.rm=TRUE)



Error Correction Model

@ If Y, and X, are I(1), but u, ~ I(0), then we can estimate using OLS the
following "Error correction model"

AYt — aO + b1 AXt + ’nil\t_l + et

@ This regression is not spurious because 1, _;, AY, and AX, are all I(0)

@ Since, Y, and X, are also I(0), we can obtain consistent estimates for b; using
standard regression

@ We can also obtain long-run equilibrium dynamics by focusing on .
e U, ; # 0 indicates disequilibrium between Y and X in Y,_; = B, + B, X,_; + u,_;
e 1 = —1 equilibrium is reached immediately
e 71 € (—1,0] equilibrium is reached gradually

e 71T < —1 suggests an over-correction



Error Correction Model to ARDIL model

@ The ECM model is equivalent to a ARDL model (Autoregressive Distributed
Lag), which we presented a few lectures ago when talking about VARs. To see
this, note that:

AY, = ay+bAX, +mu,_,+e,
e Expanding AY,, AX,, and u,_;, we have:
Yi=Y ., = ag+bi (Xi—X)+ 1Yoy — Bo— P1Xe—1) +e
@ Bringing all lags to the RHS:
Y, = ay+Y_+7nY.{+b X, —b X, —7Py— X1 +e
@ Collecting terms
Y, = ap—nPy+(1+n)Y,_;+bX,+(—b;—7PB)X,_1+e

@ Thus, we have an ARDL model.



Engel-Granger Technique

@ Engel and Granger have proposed a technique for evaluating data that may
be spurious.

@ Step 1: Determine whether X, and Y, are cointegrated.

o If X, and Y, are I(0), then use classic regression
e If only one of X, and Y, are I(1), and the other I(0), then need a new techinque

o If X, and Y, are I(1), then run
Yo = fot+pX+u,

and collect residuals. Go to step 2.
@ Step 2: Check whether u, is I(0)

e If u, is I(0), move to step 3.

o Ifu,isI(1), find a new model

@ Step 3: Estimate and interpret:



Example - Co-integration of investment funds

@ Download a year of daily opening prices for SPY and VOO
getSymbols (' SPY’, from="2014-11-12",to="2015-11-12")
getSymbols (' VOO’ , from=’'"2014-11-12" ,to="2015-11-12")
prices.spy <- SPYS$SPY.Open

prices.voo <— VOOS$VOO.Open

@ Step 1: Determine whether SPY and VOO have unit root.

adf.test (prices.spy)

adf.test (prices.voo)



Example - Co-integration of investment funds

@ Step 2: Regress
SPYt — ao + b1VOOt + ut
and test whether u, is I(0)

coint <- Im(prices.spy~prices.voo)

summary (coint)

beta<-cointS$Scoef

resid <- prices.spy - (betal[l] + beta[2]*prices.voo)

adf.test (resid)

@ Step 3: Estimate and interpret:

ASPY, = a,+b;AVOO,+ ntu,_ | +e,
lag.resid<-lag(resid, 1)
dSPY<-prices.spy—-lag(prices.spy, 1)
dVOO<-prices.voo—-lag(prices.voo, 1)
ecm <—-1m(dSPY~dVOO+lag.resid)

summary (ecm)



