
VARs and Granger Causality

Economic theories usually consist of a set of endogenous variables that are
determined, in equilibrium, by exogenous parameters

We are almost always interested in these endogenous outcomes, though
sometimes we are interested in fundamental parameters.

Eg. Demand and supply elasticities, capacity constraints.

However, it is extremely difficult to determine causality

You know this already since 216 was focused on much of these identification
problems

Time series has a number of techniques that side-step or re-cast issues of
causation

VAR: Vector autoregression

Granger Causality



Vector autoregression (VAR)

VARs are basically systems of equations with outcome variables that depend
on other outcome variables

Consider the following simply time series model

yt = β10 − β12xt + γ11yt−1 + γ12xt−1 + uyt

xt = β20 − β21yt + γ21yt−1 + γ22xt−1 + uxt

VARs are meant to get around the obvious concerns in the above system of
equations. What causes what?

Instead, we again focus on predicting endogenous variables as a function of
lags. The goal is exploiting useful information and making predictions.



Vector autoregression (VAR)

VARs treat the x’s and y’s the same, and view the problem was one of
forecasting as opposed to empirical identification.

Again, consider the model:

yt = β10 − β12xt + γ11yt−1 + γ12xt−1 + uyt

xt = β20 − β21yt + γ21yt−1 + γ22xt−1 + uxt

Solve for yt and xt on the LHS:

yt + β12xt = β10 + γ11yt−1 + γ12xt−1 + uyt

β21yt + xt = β20 + γ21yt−1 + γ22xt−1 + uxt

Arranging the system of equations in matrix notation:
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Vector autoregression (VAR)

Define the vector of constants as

B0 =
�
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β20

�

Define the matrix of lag coefficients as:
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�
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Solving for
�
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xt
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, we have the "Reduced form VAR":
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Current observables, yt and xt, are functions of lagged observables.

Some points about this VAR:

For purposes of forecasting, this is as convenient as anything we’ve done thus far.

This VAR cannot recover the original parameters.



Estimating a VAR in R

Estimating a VAR in R is as simple as running a linear regression, but there
are also handy packages to do this:

First, let’s download the data we need

library(quantmod)

getSymbols(’GOOG’,from=’2014-11-12’,to=’2015-11-12’)

vol<-GOOG$GOOG.Volume

price<-GOOG$GOOG.Open

Question: Do prices drive volume or volume drive prices?

We first run a reduced for VAR by directly programming into OLS

n<-length(price)

regPrice<-lm(price[2:n]~price[1:(n-1)]+vol[1:(n-1)])

regVol<-lm(vol[2:n]~price[1:(n-1)]+vol[1:(n-1)])

summary(regPrice)

summary(regVol)

Make sure the indexing is correct!



Estimating a VAR in R

The package MSBVAR has a load of functions that help in time-series analysis
and forecasting

First, load the required library

library(MSBVAR)

Initiate the data as a time-series object

y2<-ts(data.frame(price,volume))

Run the VAR in reduced form

pricevol_var<-reduced.form.var(y2,p=1)

p= 1 specifies one period lag. Increase for bigger lag lengths.

Summarize like our earlier versions

summary(pricevol_var)



Causality Tests

Causality in time series is defined differently from applied micro (as in 216)

In applied micro "style", we would usually approach a problem as follows:

Find an "instrument" for xt

Use IV to find the precise estimate for β12.

Other techniques could also be used (randomly allocate xt’s, use discontinuities if
they exist, etc..)

"Causality" in time series usually refers to the "information" contained within
a time series for some variable.

"Granger Causality"

Controling for the history of y’s, the history of x′s help predict y.

x "Granger Causes" y.

This is not the same as casual inference - omitted variables could still affect this
conclusion.



Granger Causality Test

Granger Causality Test is performed by the following three-step procedure
(which is essentially a F-test)

Step 1: Regress y on y lags without x lags (restricted model)

yt = a1 +
m
∑

j=1

γjyt−j + et

Step 2: Add in x lags and regress again (unrestricted model)

yt = a1 +
n
∑

i=1

βixt−i +
m
∑

j=1

γjyt−j + et

Step 3: Test null hypothesis that βi = 0 ∀i using a F-test



Granger Causality Test in R

Running a Granger test in R is quite simple

Using the same time series object as in the previous example:

granger.test(y2,p=2)

If p= 1, we only have one lag. Do we need a Granger testing this case?



Sims Causality Test

"Sims Causality"

Controling for lag y’s and x′s, do future x′s predict current y’s?

Sims Causality tests for the effect of "leading terms”

Step 1: Regress y on y lags and x lags (restricted model)

yt = a1 +
n
∑

i=1

βixt−i +
m
∑

j=1

γjyt−j + e1t

Step 2: Add in x leading terms (t+ρ) and regress again (unrestricted model)

yt = a1 +
n
∑

i=1

βixt−i +
m
∑

j=1

γjyt−j +
m
∑

ρ=1

ξjxt+ρ + e1t

Step 3: Test null hypothesis that ξj = 0 ∀i using a F-test

If we reject this null hypothesis, then y causes x since the future cannot
predict the present.


