Time Series Econometrics

@ Typical data that has been covered up to this point:
e Cross-sectional data - many individuals at one point in time
e Panel data - many individuals sampled repeatedly
@ Time series data consists of one individual observed in multiple periods
@ Why would we step back from panel data to study time series data?
e Some "individuals" are singular (eg. global temperatures)
e Decomposing an individual time-series can be helpful for analyses
@ One way to look at time-series is the following

e There are a variety of models that can explain the data. We wish to find the
model of best fit without going overboard.

e For example: Are observables correlated over time, or are unobservables
correlated over time (or both)?



ARIMA models

@ ARIMA models are a general form of time-series model that incorporate three
features:

@ AR: Autoregressive

e Outcomes are explicitly correlated over-time

e GDP this year depends on GDP last year
@ I: Integrated

e Not stationary series - drift in average of the outcome
@ MA: Moving Average

e The average of an outcome in a current period is a weighted sum of past noise.



Stationarity

@ A time series is considered covariance stationary if

e mean reversion around a constant long-run mean
e finite variance that is time invariant

e a theoretical correlogram that decreases in lag length (will explain this later)

@ A key idea here is that shocks to a stationary system will only be temporary.

e Without these assumptions, it’s very hard to characterize the properties of a
variable, as we’ll see.

@ For these slides the key assumption for our derivations is that all unobserved
shocks are Gaussian white noise

e Normally distributed with mean zero and constant variance.



The AR(1) process

@ The basic AR(1) process is written as follows:

Y,=¢Y 1 +u,

e Y, is the observed time-series variable at time t
e u, is the unobserved shock at time t - gaussian white noise

e ¢ determines how much of Y, is based on past values

@ The key (necessary) condition for stationarity is |¢| < 1. To see this, solve for
the variance of Y, and simplify:

Var(Y,) = Var(¢Y,_;)+ Var(u,)
= ¢*Var(Y,_,)+ Var(u,)
= ¢*Var(Y,) + Var(u,)

= Var(Y,) = (Zai(;tz))

@ Variance of Y, explodes as ¢? approaches 1.



Code to generate an AR(1) process

@ First, create a function to generate an AR1 process

ARl1<—-function (n,phi) {
es<—-rnorm(n)
Y<-rep (0, n)
for(i in 2:1length(Y)) {
Y[i]<-phixY[i-1]+es[i]
}

return (Y)

}
@ Plot different time series of length 100 with different ¢ parameters.
par (mfrow=c (2

3))
plot (AR1(100,0.1),type="1",main="phi=0.1",xlab="t’,ylab="Y")
plot (AR1(100,0.5)

)

( (
plot (AR1(100,0.9),type="1",main="phi=0.9",xlab="t’,ylab="Y")
plot (AR1(100,1),type="1’,main="phi=1",xlab="t’,ylab="Y")
plot (AR1(100,1.5),type="1",main="phi=1.5",xlab="t’,ylab="Y")
plot (AR1 (100, 2),type="1’ ,main="phi=2",xlab="t’,ylab="Y")

@ Try this repeatedly and see what happens to the non stationary plots

,type='1’,main="phi=0.5",xlab="t’,ylab="Y")



The AR(1) process and its properties

@ For the stationary AR(1) process with Gaussian white noise for u, it is
straightforward to show that:

E(Y,)=0

@ A key property is how the correlation between period t and t — k values decay
as k increases. The correlation that we seek is the following:

Cov(Y,,Y,_;)
\/Var (Y,) \/VQT (V)

@ This metric is often called a "correlogram" when plotted against k.

ACF = Cor (Y,,Y,_;) =

@ How do we refine the denominator?

@ Since process is stationary, Var(Y,) = Var(Y,_.). So, we have:

. Cov (Yt: Yt—k)

ACF
Var (Y,)




The AR(1) process and its properties (cont.)

@ To simplify the numerator, note that:

Cov(Y,, Y, )= E[ (Y, —E(Y)) (Y —E(Y,—)) :I

@ Expanding:

Cov (Y, Y y) = E[Yth—k —E(Y)Y,_ —E(Y,)E(Y—) + YtE(Yt—k)]
@ Noting that E(Y,) = E(Y,_;) = 0, we have:

@ Now, we need to solve for Y, precisely determine the covariance. Recursively

Cov (Y, Y ) = E[Yth—k]

using the AR(1) equation k times, we have:

Y,

¢Y,_1 +u,
¢ (PYp+u_q)+u,
¢ (P (PY,_3+tuy)tu_)+uy

k k—2 k—1
PV tu+Qu g+t QY U T PN U g



The AR(1) process and its properties (cont.)

@ Plugging in to Cov(Y,,Y,_;):

Cov(Y,Yer) = ¢ E[YYi]
+E| u Y, ]
+¢E|:ut_1 Y. —k]

k—
+¢ E[ Uy 142Y, 4|
k—
+¢ 1E[ut—k+1Yt—k:|
@ Since future shocks do not determine past Y’s, we are left with:
Cov(Y,Y,) = ¢kE[Yt—kY—k]
@ Finally, since E[Yt_k] = 0, we have:

Cov(Yp,Yi) = E[(Yi—E[Yi]) (Yo —E[Y, D) ]
= ¢ Var(Y,)



The AR(1) process and its properties (cont.)

@ Overall, we have:

@ Since ¢ is between zero and one, ACF asymptotes to zero with higher k.

@ Let’s now construct some AR(1) processes in R that are stationary and
otherwise and construct their correlogram.



ACF of AR(1) processes in R

@ The ’acf’ function in R simply constructs and plots ACF functions

acf (series, lag.max=10, type="correlation")

e "series" is your data

e "lag.max=10" is the number of lags you want on the plot

nm

o "type="correlation"" indicates that you want a correllogram

Use our AR1 function from the previous example within this plotting function:

)

par (mfrow=c (2

( 3)
acf (AR1 (100, O 1),lag.max=10, type="correlation")
acf (AR1(100,0.5),lag.max=10, type="correlation")
acf (AR1(100,0.9),lag.max=10, type="correlation")
acf (AR1(100,1),lag.max=10, type="correlation")
acf (AR1(100,1.5),lag.max=10,type="correlation")
acf (AR1(100,2),lag.max=10, type="correlation")

@ This plotting function will also indicate 2 standard deviation confidence

intervals for a simple test of significant lags.



The AR(p) process

@ The basic AR(p) process is simply an expanded AR(1) to include p lags of the
dependent variable

Yi=¢1Y 1+ Yot + ¢, 1Yy T,V 1

@ We can program an AR(p) process in R quite easily
ARp<-function (n, phi) {

p<-length (phi)
es<-rnorm(n+p)

Y<-rep (0, n+p)

for(i in (pt+l) :length(Y)) {

Y[1]<-t (phl)%*%Y[(1-p):(1i-1)]+tes[1i]
}
Y<-Y[-(1l:p) ]

return(Y)



The Moving Average Models

@ MA(1): Current values are a function of current white noise and some
function of the last period’s white noise

Y,=u,+0u,_,

@ MA(q): Current values are a function of current white noise and some
function prior period noise

Y, = u+6iu+06u_y+---+6,_qu g1+ 65u,,
q
= u+ Z Ou,_
j=1

@ MA(1) and AR(p) models are similar in the limit, which is a complication for
estimation. We now take a look at this.



AR or MA? Theoretical identification issues

@ Rearrange MA(1) for u,.
u =Y, —0u,_,
@ For u,_; this is:
u_,=Y,_1—0u,_,
@ Substitute repeatedly into Y, = u, + Ou,_; for the lag error:

Yt = ut + 9 (Yt—l - 0ut—2)
= u,+0(Y,_;—0(Y,_,—0u,_s))

= u+60Y, ,—0%Y, o+ --+0%_,—--
@ But, an AR(p) looks like

Yi=u+P1Y g+ oY o+ + ¢p—1Yt—p+1 + ¢th—p

@ Understanding the subtle differences is central to identification.



MA(1) correlogram

@ We once again turn to evaluating the correlation of the observed value in
time t with the observed value at time t —k.

@ For AR(1), the decay of this correlation was log-linear with lag length k: ¢*

@ To derive for MA(1), we note that:

_ Cov (Y,Y, ;)

ACF
Var (Y,)

@ The variance of Y, is straightforward

var(Y,) = Var(u,)+ Var(6u,_,)
= Var(u,) + 0%Var (u,)
= Var(u,) (1 + 92)

@ Cov(Y,,Y, ) depends on the length of the lag.



MA(1) correlogram (cont.)

@ Fork=1

Cov(Y,, Y, ;)= E[ (Y, —E(Y,)) (Y —E(Y,—1)) :|

@ Since our white noise processes are mean zero, so are E(Y,)’s

Cov (Y, Y1) = E[Yth—l ]

@ Substituting using the MA(1) equation

Cov(Y,Y,_ ;) = E[ (ue + Oupq) (e + Oue ) ]

_ 2
= E[utut_l + 0u,_u,_, +0uu,_,+06 ut—lut—Z]

@ Distributing the expectation, E[u,u, ] =0 V k # 0 since shocks are not

serially correlated. Hence:

Cov (YD Yt—l) —

E[ Qut—lut—l]
GE[ut—lut—l]
OVvar (u,)



MA(1) correlogram (cont.)

@ Fork>1

Cov (Y, Y ) = E[ (Y, —E(Y,)) (Y —E(Y,—)) ] — E[Yth—k]
@ Substituting using the MA(1) equation

Cov(Y, Y, ;) = E[ (u + Oupq) (U + Oy ye—q) ]

= E[utut—k +0u,_qu g + Oy + 92ut_1ut_k_1]
@ Since E[u,u, ]=0 V k# 0, we have that
Cov (Y, Y, ) =0

@ Overall, the ACF for the MA(1) process is written as:

0
ACF = f k=1
(1+062) ¥
= 0 if k>1

@ For AR processes, the correlations persist. For MA they vanish sharply after
some period determined by the lag length of errors.



MA(p) process in R

@ MA(p) process is similar in coding to the AR(p) process.

MAp<—-function (n, theta) {

d<-length (theta)
es<—-rnorm(n+d)
Y<-rep (0, n+d)

for(i in (d+1) :length (Y

Y
}

{

) )
i1]<—-es[i]+t (theta)%*%es[(1-d) :(1-1)]

Y<=Y[-(1:d)]
return (Y)

}

@ Then, generate a 3X2 correlograms similar to before

par (mfrow=c (2, 3))

acftf (MAp (100, 0. 1),lag.max=10,type="correlation")
actf (MAp(100,0.5),lag.max=10, type="correlation")
actf (MAp(100,0.9),lag.max=10,type="correlation")
actf (MAp(100,1),lag.max=10, type="correlation")
actf (MAp(100,1.5),lag.max=10,type="correlation")
acf (MAp (100,2),lag.max=10, type="correlation")



ARMA(p,q) and ARIMA(p,d,q)

Not surprisingly, the ARMA model is the combination of AR(p) and MA(q)
models

ARIMA(p,d,q) models incorporate an "integrated" term, which is a trend in
the average over time.

Assuming 6 is constant, the following model is integrated of order 1:

the ’d’ in ARIMA(p,d,q) is the number of times the data must be differenced
to make stationary.



Estimating ARIMA models in R

@ To estimate ARIMA(p,d,q) models in R, let’s first load data with the
"quantmod" package

install.packages ("quantmod")

library (quantmod)

@ With quantmod, you can download stock price information from Yahoo
finance.

@ For example, downloading 7 years of data for google (before the stock split)

getSymbols ("GOOG", from="2007-01-01", to="2014-01-01")
Prices<-GOOGSGOOG. Open
rets <- dailyReturn (GOOG)

@ Use str(GOOG) too see all the information after using getSymbols



Estimating ARIMA models in R

@ Use the package "forecast" to provide the optimal ARIMA model

install.packages ("forecast")

library (forecast)

@ The function "auto.arima" gives us the optimal ARIMA model

e Tries to find the best fit without over parameterizing (eg. Penalized
log-likelihood)

@ Syntax is simple:
auto.arima (prices)

auto.arima (rets)

@ The function "forecast" provides predictions with forecast errors.

google.arima<—auto.arima (prices)
forecast (google.arima, 40, level=c (80, 95))

plot (google.forecast)



Modeling Variance - ARCH and GARCH

@ Volatility is a key concept in finance

e Calm vs. Turbulent periods of returns

e Crucial for modeling and accounting for risk over a particular investing time
horizon.

@ Heteroskedastic errors are crucial for accounting for volatility.

e Unlike the first lecture, the variance of white noise will not be constant over time

e Obviously complicates many of our derivations.



ARCH models

@ ARCH stands for "Autoregressive Conditional Heteroskedasticity"

@ Consider the following simply time series model

Y. = Pot+Xf+u

e outcome variable Y,
e vector of explanatory variables X..

@ u, again is the error term.
@ For a ARCH(1), process, we assume that

u |, ~ N(O,h,)

where h, = yo—i—yluf_l

@ For ARCH(1), the variance of the error term depends on a constant, y,, and a

: 2
function of the past squared error, yqu, ;.



ARCH (p) and testing

@ The ARCH(p) model can be characterized as:

Y, = [o+Xb+u,
where utlﬂlt ~ N(O,h,)
p

he = yo+ DTl
j=1

@ Testing these models is potentially very simple:

o Y, = [ +Xb +u,
e Collect residuals, square them

. 2 p 2
o Estimate u? =1y, + >, vju; +w,

e Evaluate parameters, conduct exclusion test



GARCH(p,q)

@ The ARCH(p) in many ways is more of a moving average than autoregressive

e There is no explicit persistence in h, - just some lagged function of past
observables.

@ "Generalized Autoregressive Conditional Heteroskedasticity" allows for
dependences on past unobservables, as well as persistence in the variance

@ The GARCH(p,q) model is written as:

Y, = [Bo+Xb+u,
where ut|ﬂt ~ N(0,h,)

P q
ht — YO + Z 5]ht—] + Z Y]utz_J
j=1 j=1

@ X, could include lags of Y;, or residuals like in the ARIMA framework.



Estimating ARCH(p) and GARCH(p,q) models

@ In R, there are many functions to estimate ARCH and GARCH models.

@ Unsurprisingly, the package "tseries" is one that contains many functions for
time series analysis

@ To demonstrate, download S&P500 data for 2001 to 2015
library (quantmod)
getSymbols (! “"GSPC’ , from=’'2001-01-01",to="2015-01-01")
rets = dailyReturn (GSPC)
plot (rets)

@ To make ourselves sick, let’s plot the price series and daily returns.
par (mfrow=c (2,1))
plot (GSPCSGSPC.Open)
plot (rets)

@ Install and load the package "tseries"
install.packages ("tseries")

library(tseries)



Estimating ARCH(p) and GARCH(p,q) models

@ The function "garch" estimates both ARCH and GARCH models, assuming no
covariates in the regression equation

e Thus, this is pure variance estimation

@ Syntax is as follows

garch (data, order=c (p, q))

@ p is the GARCH component, and q is the ARCH component

@ Using the data we downloaded, estimate a ARCH(1) model and summarize

spb500.g=garch (rets, order=c (0, 1))
summary (sp500.q9g)

@ Can predict bounds on values using the predict function

u=predict (sp500.9g)

@ This vector has two elements - upper and lower bounds



Estimating ARCH(p) and GARCH(p,q) models

@ Can plot the data and estimated bounds using the following code

rets_upper<—-rets
rets_uppersdaily.returns<-ul[, 1]
rets_lower<-rets
rets_lowerSdaily.returns<-ul[, 2]
par (mfrow=c (2,1))

plot (rets, type="1", xlab="time", ylab="daily change",
main="SP500 index 2001-2015")

lines (rets_upper,col="red", 1lty="dashed",lwd=1.5)

lines (rets_lower,col="red", 1lty="dashed",lwd=1.5)

@ What do you notice about this plot, and how might a GARCH model improve
the simple ARCH framework?



Estimating ARCH(p) and GARCH(p,q) models

@ Can plot the data and estimated bounds using the following code
spb500.g2=garch (rets, order=c(1,1))
uZ2=predict (spb500.g2)
rets_upper2<-rets
rets_upper2$daily.returns<-u2[, 1]
rets_lower2<-rets

rets_lower2$daily.returns<-u2[, 2]

@ Finally, plot the old bounds (in black) against the new bounds (blue)

plot (rets_upper, type="1", xlab="time", ylab="daily change",
main="SP500 index 2001-2015",ylim=c(-.07,.07))

lines (rets_lower)
lines (rets_upper2,col="blue", lty="dashed", lwd=1)
lines(rets_lower2,col="blue", lty="dashed", lwd=1)



Estimating ARCH(p) and GARCH(p,q) models

@ The package fGarch contains more bells and whistles

@ GARCH error estimation as above

e ARMA effects in the original regression equation

@ Install the package and load the library
install.packages ("fGarch")

library (fGarch)

@ Syntax for GARCH estimation with ARMA components

garchFit (~arma (ar,ma) +garch (p, q),data, trace=FALSE)

@ Let’s run four different models to see how they look

garchl<-garchFit (~garch(1l,1),data=rets, trace=FALSE)
garch2<-garchFit (~arma (1, 1) tgarch(2,1),data=rets, trace=FALSE)
garch3<-garchFit (~arma (2, 1) tgarch(2,1),data=rets, trace=FALSE)

garchd4<-garchFit (~arma (2, 2) tgarch (2, 2),data=rets, trace=FALSE)



Estimating ARCH(p) and GARCH(p,q) models

@ Summarize works similarly to other regressions

summary (garch4)

@ Predict generates predictions in 'n.ahead’ future periods, as well as plots the
last 'nx’ observations

par (mfrow=c (2, 2))

predict (garchl,n.ahead=10,plot=TRUE, nx=20)
predict (garchZ2,n.ahead=10,plot=TRUE, nx=20)
predict (garch3,n.ahead=10,plot=TRUE, nx=20)

predict (garch4,n.ahead=10,plot=TRUE, nx=20)



Estimating ARCH(p) and GARCH(p,q) models

e fGarch also has some cool ploting functions. The main feature is interactive

plot (garchd)

@ Or, you can choose the different elements using "which"
par (mfrow=c (2, 2))
plot (garch4,which=1)
plot (garch4,which=3)
plot (garch4,which=4)

plot (garch4, which=10)



GARCH-M Models

e In many models of finance, the expect return of an asset is some function of
characteristics and then risk.

e Risk is often viewed through the lens of standard deviation

@ The GARCH-M Model allows for this explicit dependence:

Y, = Bo+XB+0yVh+u
where ut|Qt ~ N(O,h,)

q p
—_ 2 2
he = yo+ 2 G+ Dyl
j=1 j=1

e Though +/h, may look weird, I like it since it is on the same scale as the
dependent variable.

e Some prefer including variance h, instead, so it’s best to know the results from
both.

@ Finally, one can also add a set of regressors into the error equation as needed.



