Time Series Econometrics

- Typical data that has been covered up to this point:
 - Cross-sectional data many individuals at one point in time
 - Panel data many individuals sampled repeatedly
- Time series data consists of one individual observed in multiple periods
- Why would we step back from panel data to study time series data?
 - Some "individuals" are singular (eg. global temperatures)
 - Decomposing an individual time-series can be helpful for analyses
- One way to look at time-series is the following
 - There are a variety of models that can explain the data. We wish to find the model of best fit without going overboard.
 - For example: Are observables correlated over time, or are unobservables correlated over time (or both)?

ARIMA models

- ARIMA models are a general form of time-series model that incorporate three features:
- **AR:** Autoregressive
 - Outcomes are explicitly correlated over-time
 - GDP this year depends on GDP last year
- I: Integrated
 - Not stationary series drift in average of the outcome
- MA: Moving Average
 - The average of an outcome in a current period is a weighted sum of past noise.

Stationarity

- A time series is considered *covariance stationary* if
 - mean reversion around a constant long-run mean
 - finite variance that is time invariant
 - a theoretical correlogram that decreases in lag length (will explain this later)
- A key idea here is that shocks to a stationary system will only be temporary.
 - Without these assumptions, it's very hard to characterize the properties of a variable, as we'll see.
- For these slides the key assumption for our derivations is that all unobserved shocks are Gaussian white noise
 - Normally distributed with mean zero and constant variance.

The AR(1) process

• The basic AR(1) process is written as follows:

$$Y_t = \phi Y_{t-1} + u_t$$

- Y_t is the observed time-series variable at time t
- u_t is the unobserved shock at time t gaussian white noise
- ϕ determines how much of Y_t is based on past values
- The key (necessary) condition for stationarity is $|\phi| < 1$. To see this, solve for the variance of Y_t and simplify:

$$Var(Y_t) = Var(\phi Y_{t-1}) + Var(u_t)$$

$$= \phi^2 Var(Y_{t-1}) + Var(u_t)$$

$$= \phi^2 Var(Y_t) + Var(u_t)$$

$$\Rightarrow Var(Y_t) = \frac{Var(u_t)}{(1 - \phi^2)}$$

• Variance of Y_t explodes as ϕ^2 approaches 1.

Code to generate an AR(1) process

• First, create a function to generate an AR1 process

```
AR1<-function(n,phi) {
    es<-rnorm(n)
    Y<-rep(0,n)
    for(i in 2:length(Y)) {
        Y[i]<-phi*Y[i-1]+es[i]
    }
    return(Y)
}</pre>
```

• Plot different time series of length 100 with different ϕ parameters.

```
par(mfrow=c(2,3))
plot(AR1(100,0.1),type='l',main="phi=0.1",xlab='t',ylab="Y")
plot(AR1(100,0.5),type='l',main="phi=0.5",xlab='t',ylab="Y")
plot(AR1(100,0.9),type='l',main="phi=0.9",xlab='t',ylab="Y")
plot(AR1(100,1),type='l',main="phi=1",xlab='t',ylab="Y")
plot(AR1(100,1.5),type='l',main="phi=1.5",xlab='t',ylab="Y")
plot(AR1(100,2),type='l',main="phi=2",xlab='t',ylab="Y")
```

Try this repeatedly and see what happens to the non stationary plots

The AR(1) process and its properties

• For the stationary AR(1) process with Gaussian white noise for u_t it is straightforward to show that:

$$E(Y_t) = 0$$

• A key property is how the correlation between period t and t-k values decay as k increases. The correlation that we seek is the following:

$$ACF = Cor(Y_t, Y_{t-k}) = \frac{Cov(Y_t, Y_{t-k})}{\sqrt{Var(Y_t)}\sqrt{Var(Y_{t-k})}}$$

- This metric is often called a "correlogram" when plotted against *k*.
- How do we refine the denominator?
- Since process is stationary, $Var(Y_t) = Var(Y_{t-k})$. So, we have:

$$ACF = \frac{Cov(Y_t, Y_{t-k})}{Var(Y_t)}$$

The AR(1) process and its properties (cont.)

To simplify the numerator, note that:

$$Cov(Y_t, Y_{t-k}) = E[(Y_t - E(Y_t))(Y_{t-k} - E(Y_{t-k}))]$$

• Expanding:

$$Cov(Y_t, Y_{t-k}) = E[Y_tY_{t-k} - E(Y_t)Y_{t-k} - E(Y_t)E(Y_{t-k}) + Y_tE(Y_{t-k})]$$

• Noting that $E(Y_t) = E(Y_{t-1}) = 0$, we have:

$$Cov(Y_t, Y_{t-k}) = E[Y_t Y_{t-k}]$$

• Now, we need to solve for Y_t precisely determine the covariance. Recursively using the AR(1) equation k times, we have:

$$Y_{t} = \phi Y_{t-1} + u_{t}$$

$$= \phi (\phi Y_{t-2} + u_{t-1}) + u_{t}$$

$$= \phi (\phi (\phi Y_{t-3} + u_{t-2}) + u_{t-1}) + u_{t}$$

$$\vdots$$

$$= \phi^{k} Y_{t-k} + u_{t} + \phi u_{t-1} + \dots + \phi^{k-2} u_{t-k+2} + \phi^{k-1} u_{t-k+1}$$

The AR(1) process and its properties (cont.)

• Plugging in to $Cov(Y_t, Y_{t-k})$:

$$Cov(Y_{t}, Y_{t-k}) = \phi^{k} E[Y_{t-k} Y_{t-k}] + E[u_{t} Y_{t-k}] + \phi E[u_{t-1} Y_{t-k}] + \phi E[u_{t-1} Y_{t-k}] + \phi^{k-2} E[u_{t-k+2} Y_{t-k}] + \phi^{k-1} E[u_{t-k+1} Y_{t-k}]$$

• Since future shocks do not determine past *Y*'s, we are left with:

$$Cov(Y_t, Y_{t-k}) = \phi^k E[Y_{t-k}Y_{t-k}]$$

• Finally, since $E[Y_{t-k}] = 0$, we have:

$$Cov(Y_t, Y_{t-k}) = \phi^k E[(Y_{t-k} - E[Y_{t-k}])(Y_{t-k} - E[Y_{t-k}])]$$
$$= \phi^k Var(Y_t)$$

The AR(1) process and its properties (cont.)

Overall, we have:

$$ACF = \frac{\phi^k Var(Y_t)}{Var(Y_t)} = \phi^k$$

- Since ϕ is between zero and one, ACF asymptotes to zero with higher k.
- Let's now construct some AR(1) processes in R that are stationary and otherwise and construct their correlogram.

ACF of AR(1) processes in R

• The 'acf' function in R simply constructs and plots ACF functions

```
acf(series, lag.max=10, type="correlation")
```

- "series" is your data
- "lag.max=10" is the number of lags you want on the plot
- "type="correlation"" indicates that you want a correllogram
- Use our AR1 function from the previous example within this plotting function:

```
par (mfrow=c(2,3))
acf (AR1(100,0.1),lag.max=10,type="correlation")
acf (AR1(100,0.5),lag.max=10,type="correlation")
acf (AR1(100,0.9),lag.max=10,type="correlation")
acf (AR1(100,1),lag.max=10,type="correlation")
acf (AR1(100,1.5),lag.max=10,type="correlation")
acf (AR1(100,2),lag.max=10,type="correlation")
```

• This plotting function will also indicate 2 standard deviation confidence intervals for a simple test of significant lags.

The AR(p) process

• The basic AR(p) process is simply an expanded AR(1) to include *p* lags of the dependent variable

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_{p-1} Y_{t-p+1} + \phi_p Y_{t-p} + u_t$$

• We can program an AR(p) process in R quite easily

```
ARp<-function(n,phi) {
    p<-length(phi)
    es<-rnorm(n+p)
    Y<-rep(0,n+p)

    for(i in (p+1):length(Y)) {
        Y[i]<-t(phi)%*%Y[(i-p):(i-1)]+es[i]
    }
    Y<-Y[-(1:p)]
    return(Y)
}</pre>
```

The Moving Average Models

• MA(1): Current values are a function of current white noise and some function of the last period's white noise

$$Y_t = u_t + \theta u_{t-1}$$

 MA(q): Current values are a function of current white noise and some function prior period noise

$$Y_{t} = u_{t} + \theta_{1}u_{t-1} + \theta_{2}u_{t-2} + \dots + \theta_{q-1}u_{t-q+1} + \theta_{q}u_{t-q}$$

$$= u_{t} + \sum_{j=1}^{q} \theta_{j}u_{t-j}$$

• MA(1) and AR(p) models are similar in the limit, which is a complication for estimation. We now take a look at this.

AR or MA? Theoretical identification issues

• Rearrange MA(1) for u_t .

$$u_t = Y_t - \theta u_{t-1}$$

• For u_{t-1} this is:

$$u_{t-1} = Y_{t-1} - \theta u_{t-2}$$

• Substitute repeatedly into $Y_t = u_t + \theta u_{t-1}$ for the lag error:

$$Y_{t} = u_{t} + \theta (Y_{t-1} - \theta u_{t-2})$$

$$= u_{t} + \theta (Y_{t-1} - \theta (Y_{t-2} - \theta u_{t-3}))$$

$$\vdots$$

$$= u_{t} + \theta Y_{t-1} - \theta^{2} Y_{t-2} + \dots + \theta^{q} Y_{t-q} - \dots$$

But, an AR(p) looks like

$$Y_t = u_t + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_{p-1} Y_{t-p+1} + \phi_p Y_{t-p}$$

• Understanding the subtle differences is central to identification.

MA(1) correlogram

- We once again turn to evaluating the correlation of the observed value in time t with the observed value at time t k.
- For AR(1), the decay of this correlation was log-linear with lag length k: ϕ^k
- To derive for MA(1), we note that:

$$ACF = \frac{Cov(Y_t, Y_{t-k})}{Var(Y_t)}$$

• The variance of Y_t is straightforward

$$Var(Y_t) = Var(u_t) + Var(\theta u_{t-1})$$

$$= Var(u_t) + \theta^2 Var(u_t)$$

$$= Var(u_t) (1 + \theta^2)$$

• $Cov(Y_t, Y_{t-k})$ depends on the length of the lag.

MA(1) correlogram (cont.)

• For k=1

$$Cov(Y_t, Y_{t-1}) = E[(Y_t - E(Y_t))(Y_{t-1} - E(Y_{t-1}))]$$

• Since our white noise processes are mean zero, so are $E(Y_t)$'s

$$Cov(Y_t, Y_{t-1}) = E[Y_t Y_{t-1}]$$

• Substituting using the MA(1) equation

$$Cov(Y_t, Y_{t-1}) = E[(u_t + \theta u_{t-1})(u_{t-1} + \theta u_{t-2})]$$

= $E[u_t u_{t-1} + \theta u_{t-1} u_{t-1} + \theta u_t u_{t-2} + \theta^2 u_{t-1} u_{t-2}]$

• Distributing the expectation, $E[u_t u_{t-k}] = 0 \ \forall \ k \neq 0$ since shocks are not serially correlated. Hence:

$$Cov(Y_t, Y_{t-1}) = E[\theta u_{t-1} u_{t-1}]$$

$$= \theta E[u_{t-1} u_{t-1}]$$

$$= \theta Var(u_t)$$

MA(1) correlogram (cont.)

• For k > 1

$$Cov(Y_t, Y_{t-k}) = E[(Y_t - E(Y_t))(Y_{t-k} - E(Y_{t-k}))] = E[Y_t Y_{t-k}]$$

• Substituting using the MA(1) equation

$$Cov(Y_t, Y_{t-k}) = E[(u_t + \theta u_{t-1})(u_{t-k} + \theta u_{t-k-1})]$$

= $E[u_t u_{t-k} + \theta u_{t-1} u_{t-k} + \theta u_t u_{t-k-1} + \theta^2 u_{t-1} u_{t-k-1}]$

• Since $E[u_t u_{t-k}] = 0 \ \forall \ k \neq 0$, we have that

$$Cov(Y_t, Y_{t-k}) = 0$$

Overall, the ACF for the MA(1) process is written as:

$$ACF = \frac{\theta}{(1+\theta^2)} \quad if \quad k=1$$
$$= 0 \quad if \quad k>1$$

• For AR processes, the correlations persist. For MA they vanish sharply after some period determined by the lag length of errors.

MA(p) process in R

MA(p) process is similar in coding to the AR(p) process.

```
MAp<-function(n,theta) {
    d<-length(theta)
    es<-rnorm(n+d)
    Y<-rep(0,n+d)
    for(i in (d+1):length(Y)) {
        Y[i]<-es[i]+t(theta)%*%es[(i-d):(i-1)]
    }
    Y<-Y[-(1:d)]
    return(Y)
}</pre>
```

• Then, generate a 3X2 correlograms similar to before

```
par (mfrow=c(2,3))
acf (MAp(100,0.1),lag.max=10,type="correlation")
acf (MAp(100,0.5),lag.max=10,type="correlation")
acf (MAp(100,0.9),lag.max=10,type="correlation")
acf (MAp(100,1),lag.max=10,type="correlation")
acf (MAp(100,1.5),lag.max=10,type="correlation")
acf (MAp(100,2),lag.max=10,type="correlation")
```

ARMA(p,q) and ARIMA(p,d,q)

 Not surprisingly, the ARMA model is the combination of AR(p) and MA(q) models

$$Y_t = u_t + \sum_{j=1}^{q} \theta_j u_{t-j} + \sum_{j=1}^{p} \phi_j Y_{t-j}$$

- ARIMA(p,d,q) models incorporate an "integrated" term, which is a trend in the average over time.
- Assuming δ is constant, the following model is integrated of order 1:

$$Y_t = \delta + u_t + \sum_{j=1}^{q} \theta_j u_{t-j} + \sum_{j=1}^{p} \phi_j Y_{t-j}$$

• To make stationary, take differences (using the Δ operator).

$$\Delta Y_t = \Delta u_t + \sum_{j=1}^q \theta_j \Delta u_{t-j} + \sum_{j=1}^p \phi_j \Delta Y_{t-j}$$

• the 'd' in ARIMA(p,d,q) is the number of times the data must be differenced to make stationary.

Estimating ARIMA models in R

• To estimate ARIMA(p,d,q) models in R, let's first load data with the "quantmod" package

```
install.packages("quantmod")
library(quantmod)
```

- With quantmod, you can download stock price information from Yahoo finance.
- For example, downloading 7 years of data for google (before the stock split)

```
getSymbols("GOOG", from="2007-01-01", to="2014-01-01")
prices<-GOOG$GOOG.Open
rets <- dailyReturn(GOOG)</pre>
```

• Use str(GOOG) too see all the information after using getSymbols

Estimating ARIMA models in R

Use the package "forecast" to provide the optimal ARIMA model

```
install.packages("forecast")
library(forecast)
```

- The function "auto.arima" gives us the optimal ARIMA model
 - Tries to find the best fit without over parameterizing (eg. Penalized log-likelihood)
- Syntax is simple:

```
auto.arima(prices)
auto.arima(rets)
```

The function "forecast" provides predictions with forecast errors.

```
google.arima<-auto.arima(prices)
forecast(google.arima, 40, level=c(80, 95))
plot(google.forecast)</pre>
```

Modeling Variance - ARCH and GARCH

- Volatility is a key concept in finance
 - Calm vs. Turbulent periods of returns
 - Crucial for modeling and accounting for risk over a particular investing time horizon.
- Heteroskedastic errors are crucial for accounting for volatility.
 - Unlike the first lecture, the variance of white noise will not be constant over time
 - Obviously complicates many of our derivations.

ARCH models

- ARCH stands for "Autoregressive Conditional Heteroskedasticity"
- Consider the following simply time series model

$$Y_t = \beta_0 + \mathbf{X_t}\beta + u_t$$

- outcome variable Y_t
- vector of explanatory variables X_t.
- u_t again is the error term.
- For a ARCH(1), process, we assume that

$$u_t | \Omega_t \sim N(0, h_t)$$

where $h_t = \gamma_0 + \gamma_1 u_{t-1}^2$

• For ARCH(1), the variance of the error term depends on a constant, γ_0 , and a function of the past squared error, $\gamma_1 u_{t-1}^2$.

ARCH (p) and testing

• The ARCH(p) model can be characterized as:

$$Y_{t} = \beta_{0} + X_{t}\beta + u_{t}$$
where $u_{t}|\Omega_{t} \sim N(0, h_{t})$

$$h_{t} = \gamma_{0} + \sum_{j=1}^{p} \gamma_{j} u_{t-j}^{2}$$

Testing these models is potentially very simple:

$$Y_t = \beta_0 + X_t \beta + u_t$$

- Collect residuals, square them
- Estimate $u_t^2 = \gamma_0 + \sum_{j=1}^p \gamma_j u_{t-j}^2 + w_t$
- Evaluate parameters, conduct exclusion test

GARCH(p,q)

- The ARCH(p) in many ways is more of a moving average than autoregressive
 - There is no explicit persistence in h_t just some lagged function of past observables.
- "Generalized Autoregressive Conditional Heteroskedasticity" allows for dependences on past unobservables, as well as persistence in the variance
- The GARCH(p,q) model is written as:

$$Y_{t} = \beta_{0} + \mathbf{X}_{t}\beta + u_{t}$$

$$where \ u_{t} | \Omega_{t} \sim N(0, h_{t})$$

$$h_{t} = \gamma_{0} + \sum_{j=1}^{p} \delta_{j} h_{t-j} + \sum_{j=1}^{q} \gamma_{j} u_{t-j}^{2}$$

• X_t could include lags of Y_t , or residuals like in the ARIMA framework.

- In R, there are many functions to estimate ARCH and GARCH models.
- Unsurprisingly, the package "tseries" is one that contains many functions for time series analysis
- To demonstrate, download S&P500 data for 2001 to 2015

```
library(quantmod)
getSymbols('^GSPC',from='2001-01-01',to='2015-01-01')
rets = dailyReturn(GSPC)
plot(rets)
```

• To make ourselves sick, let's plot the price series and daily returns.

```
par(mfrow=c(2,1))
plot(GSPC$GSPC.Open)
plot(rets)
```

Install and load the package "tseries"

```
install.packages("tseries")
library(tseries)
```

- The function "garch" estimates both ARCH and GARCH models, assuming no covariates in the regression equation
 - Thus, this is pure variance estimation
- Syntax is as follows

```
garch (data, order=c (p, q))
```

- *p* is the GARCH component, and *q* is the ARCH component
- Using the data we downloaded, estimate a ARCH(1) model and summarize

```
sp500.g=garch(rets, order=c(0,1))
summary(sp500.g)
```

• Can predict bounds on values using the predict function

```
u=predict(sp500.g)
```

This vector has two elements - upper and lower bounds

• Can plot the data and estimated bounds using the following code

```
rets_upper<-rets
rets_upper$daily.returns<-u[,1]
rets_lower<-rets
rets_lower$daily.returns<-u[,2]
par(mfrow=c(2,1))
plot(rets, type="l", xlab="time", ylab="daily change", main="SP500 index 2001-2015")
lines(rets_upper,col="red", lty="dashed",lwd=1.5)
lines(rets_lower,col="red", lty="dashed",lwd=1.5)</pre>
```

• What do you notice about this plot, and how might a GARCH model improve the simple ARCH framework?

Can plot the data and estimated bounds using the following code

```
sp500.g2=garch(rets, order=c(1,1))
u2=predict(sp500.g2)
rets_upper2<-rets
rets_upper2$daily.returns<-u2[,1]
rets_lower2<-rets
rets_lower2$daily.returns<-u2[,2]</pre>
```

• Finally, plot the old bounds (in black) against the new bounds (blue)

```
plot(rets_upper, type="l", xlab="time", ylab="daily change",
main="SP500 index 2001-2015",ylim=c(-.07,.07))
lines(rets_lower)
lines(rets_upper2,col="blue", lty="dashed",lwd=1)
lines(rets_lower2,col="blue", lty="dashed",lwd=1)
```

- The package fGarch contains more bells and whistles
 - GARCH error estimation as above
 - ARMA effects in the original regression equation
- Install the package and load the library

```
install.packages("fGarch")
library(fGarch)
```

Syntax for GARCH estimation with ARMA components

```
garchFit(~arma(ar,ma)+garch(p,q),data,trace=FALSE)
```

• Let's run four different models to see how they look

```
garch1<-garchFit (~garch(1,1), data=rets, trace=FALSE)
garch2<-garchFit (~arma(1,1)+garch(2,1), data=rets, trace=FALSE)
garch3<-garchFit (~arma(2,1)+garch(2,1), data=rets, trace=FALSE)
garch4<-garchFit (~arma(2,2)+garch(2,2), data=rets, trace=FALSE)</pre>
```

Summarize works similarly to other regressions

```
summary(garch4)
```

• Predict generates predictions in 'n.ahead' future periods, as well as plots the last 'nx' observations

```
par(mfrow=c(2,2))
predict(garch1, n.ahead=10, plot=TRUE, nx=20)
predict(garch2, n.ahead=10, plot=TRUE, nx=20)
predict(garch3, n.ahead=10, plot=TRUE, nx=20)
predict(garch4, n.ahead=10, plot=TRUE, nx=20)
```

- fGarch also has some cool ploting functions. The main feature is interactive plot (garch4)
- Or, you can choose the different elements using "which"

```
par (mfrow=c(2,2))
plot (garch4, which=1)
plot (garch4, which=3)
plot (garch4, which=4)
plot (garch4, which=10)
```

GARCH-M Models

- In many models of finance, the expect return of an asset is some function of characteristics and then risk.
 - Risk is often viewed through the lens of standard deviation
- The GARCH-M Model allows for this explicit dependence:

$$Y_{t} = \beta_{0} + \mathbf{X}_{t}\beta + \theta \sqrt{h_{t}} + u_{t}$$
where $u_{t}|\Omega_{t} \sim N(0, h_{t})$

$$h_{t} = \gamma_{0} + \sum_{j=1}^{q} \delta_{j} h_{t-q}^{2} + \sum_{j=1}^{p} \gamma_{j} u_{t-j}^{2}$$

- Though $\sqrt{h_t}$ may look weird, I like it since it is on the same scale as the dependent variable.
 - Some prefer including variance h_t instead, so it's best to know the results from both.
- Finally, one can also add a set of regressors into the error equation as needed.