
Time Series Econometrics

Typical data that has been covered up to this point:

Cross-sectional data - many individuals at one point in time

Panel data - many individuals sampled repeatedly

Time series data consists of one individual observed in multiple periods

Why would we step back from panel data to study time series data?

Some "individuals" are singular (eg. global temperatures)

Decomposing an individual time-series can be helpful for analyses

One way to look at time-series is the following

There are a variety of models that can explain the data. We wish to find the
model of best fit without going overboard.

For example: Are observables correlated over time, or are unobservables
correlated over time (or both)?

ARIMA models

ARIMA models are a general form of time-series model that incorporate three
features:

AR: Autoregressive

Outcomes are explicitly correlated over-time

GDP this year depends on GDP last year

I: Integrated

Not stationary series - drift in average of the outcome

MA: Moving Average

The average of an outcome in a current period is a weighted sum of past noise.

Stationarity

A time series is considered covariance stationary if

mean reversion around a constant long-run mean

finite variance that is time invariant

a theoretical correlogram that decreases in lag length (will explain this later)

A key idea here is that shocks to a stationary system will only be temporary.

Without these assumptions, it’s very hard to characterize the properties of a
variable, as we’ll see.

For these slides the key assumption for our derivations is that all unobserved
shocks are Gaussian white noise

Normally distributed with mean zero and constant variance.

The AR(1) process

The basic AR(1) process is written as follows:

Yt = φYt−1 + ut

Yt is the observed time-series variable at time t

ut is the unobserved shock at time t - gaussian white noise

φ determines how much of Yt is based on past values

The key (necessary) condition for stationarity is |φ|< 1. To see this, solve for
the variance of Yt and simplify:

Var (Yt) = Var (φYt−1) + Var (ut)
= φ2Var (Yt−1) + Var (ut)
= φ2Var (Yt) + Var (ut)

⇒ Var (Yt) =
Var (ut)
(1−φ2)

Variance of Yt explodes as φ2 approaches 1.

Code to generate an AR(1) process

First, create a function to generate an AR1 process

AR1<-function(n,phi){

es<-rnorm(n)

Y<-rep(0,n)

for(i in 2:length(Y)){

Y[i]<-phi*Y[i-1]+es[i]

}

return(Y)

}

Plot different time series of length 100 with different φ parameters.

par(mfrow=c(2,3))

plot(AR1(100,0.1),type=’l’,main="phi=0.1",xlab=’t’,ylab="Y")

plot(AR1(100,0.5),type=’l’,main="phi=0.5",xlab=’t’,ylab="Y")

plot(AR1(100,0.9),type=’l’,main="phi=0.9",xlab=’t’,ylab="Y")

plot(AR1(100,1),type=’l’,main="phi=1",xlab=’t’,ylab="Y")

plot(AR1(100,1.5),type=’l’,main="phi=1.5",xlab=’t’,ylab="Y")

plot(AR1(100,2),type=’l’,main="phi=2",xlab=’t’,ylab="Y")

Try this repeatedly and see what happens to the non stationary plots

The AR(1) process and its properties

For the stationary AR(1) process with Gaussian white noise for ut it is
straightforward to show that:

E (Yt) = 0

A key property is how the correlation between period t and t− k values decay
as k increases. The correlation that we seek is the following:

ACF = Cor (Yt, Yt−k) =
Cov (Yt, Yt−k)

p

Var (Yt)
p

Var (Yt−k)

This metric is often called a "correlogram" when plotted against k.

How do we refine the denominator?

Since process is stationary, Var (Yt) = Var (Yt−k). So, we have:

ACF =
Cov (Yt, Yt−k)

Var (Yt)

The AR(1) process and its properties (cont.)

To simplify the numerator, note that:

Cov (Yt, Yt−k) = E
�

(Yt − E(Yt)) (Yt−k − E(Yt−k))
�

Expanding:

Cov (Yt, Yt−k) = E
�

YtYt−k − E(Yt)Yt−k − E(Yt)E(Yt−k) + YtE(Yt−k)
�

Noting that E(Yt) = E(Yt−1) = 0, we have:

Cov (Yt, Yt−k) = E
�

YtYt−k

�

Now, we need to solve for Yt precisely determine the covariance. Recursively
using the AR(1) equation k times, we have:

Yt = φYt−1 + ut

= φ (φYt−2 + ut−1) + ut

= φ (φ (φYt−3 + ut−2) + ut−1) + ut

...

= φkYt−k + ut +φut−1 + · · ·+φk−2ut−k+2 +φ
k−1ut−k+1

The AR(1) process and its properties (cont.)

Plugging in to Cov (Yt, Yt−k):

Cov (Yt, Yt−k) = φkE
�

Yt−kYt−k

�

+E
�

utYt−k

�

+φE
�

ut−1Yt−k

�

...

+φk−2E
�

ut−k+2Yt−k

�

+φk−1E
�

ut−k+1Yt−k

�

Since future shocks do not determine past Y ’s, we are left with:

Cov (Yt, Yt−k) = φkE
�

Yt−kYt−k

�

Finally, since E
�

Yt−k

�

= 0, we have:

Cov (Yt, Yt−k) = φkE
�

(Yt−k − E[Yt−k]) (Yt−k − E[Yt−k])
�

= φkVar (Yt)

The AR(1) process and its properties (cont.)

Overall, we have:

ACF =
φkVar (Yt)

Var (Yt)
= φk

Since φ is between zero and one, ACF asymptotes to zero with higher k.

Let’s now construct some AR(1) processes in R that are stationary and
otherwise and construct their correlogram.

ACF of AR(1) processes in R

The ’acf’ function in R simply constructs and plots ACF functions
acf(series,lag.max=10,type="correlation")

"series" is your data

"lag.max=10" is the number of lags you want on the plot

"type="correlation"" indicates that you want a correllogram

Use our AR1 function from the previous example within this plotting function:

par(mfrow=c(2,3))

acf(AR1(100,0.1),lag.max=10,type="correlation")

acf(AR1(100,0.5),lag.max=10,type="correlation")

acf(AR1(100,0.9),lag.max=10,type="correlation")

acf(AR1(100,1),lag.max=10,type="correlation")

acf(AR1(100,1.5),lag.max=10,type="correlation")

acf(AR1(100,2),lag.max=10,type="correlation")

This plotting function will also indicate 2 standard deviation confidence
intervals for a simple test of significant lags.

The AR(p) process

The basic AR(p) process is simply an expanded AR(1) to include p lags of the
dependent variable

Yt = φ1Yt−1 +φ2Yt−2 + · · ·+φp−1Yt−p+1 +φpYt−p + ut

We can program an AR(p) process in R quite easily

ARp<-function(n,phi){

p<-length(phi)

es<-rnorm(n+p)

Y<-rep(0,n+p)

for(i in (p+1):length(Y)){

Y[i]<-t(phi)%*%Y[(i-p):(i-1)]+es[i]

}

Y<-Y[-(1:p)]

return(Y)

}

The Moving Average Models

MA(1): Current values are a function of current white noise and some
function of the last period’s white noise

Yt = ut + θut−1

MA(q): Current values are a function of current white noise and some
function prior period noise

Yt = ut + θ1ut−1 + θ2ut−2 + · · ·+ θq−1ut−q+1 + θqut−q

= ut +
q
∑

j=1

θjut−j

MA(1) and AR(p) models are similar in the limit, which is a complication for
estimation. We now take a look at this.

AR or MA? Theoretical identification issues

Rearrange MA(1) for ut.

ut = Yt − θut−1

For ut−1 this is:

ut−1 = Yt−1 − θut−2

Substitute repeatedly into Yt = ut + θut−1 for the lag error:

Yt = ut + θ (Yt−1 − θut−2)
= ut + θ (Yt−1 − θ (Yt−2 − θut−3))

...

= ut + θYt−1 − θ 2Yt−2 + · · ·+ θ qYt−q − · · ·

But, an AR(p) looks like

Yt = ut +φ1Yt−1 +φ2Yt−2 + · · ·+φp−1Yt−p+1 +φpYt−p

Understanding the subtle differences is central to identification.

MA(1) correlogram

We once again turn to evaluating the correlation of the observed value in
time t with the observed value at time t− k.

For AR(1), the decay of this correlation was log-linear with lag length k: φk

To derive for MA(1), we note that:

ACF =
Cov (Yt, Yt−k)

Var (Yt)

The variance of Yt is straightforward

Var (Yt) = Var (ut) + Var (θut−1)
= Var (ut) + θ

2Var (ut)
= Var (ut)

�

1+ θ 2
�

Cov (Yt, Yt−k) depends on the length of the lag.

MA(1) correlogram (cont.)

For k= 1

Cov (Yt, Yt−1) = E
�

(Yt − E(Yt)) (Yt−1 − E(Yt−1))
�

Since our white noise processes are mean zero, so are E(Yt)’s

Cov (Yt, Yt−1) = E
�

YtYt−1

�

Substituting using the MA(1) equation

Cov (Yt, Yt−1) = E
�

(ut + θut−1) (ut−1 + θut−2)
�

= E
�

utut−1 + θut−1ut−1 + θutut−2 + θ
2ut−1ut−2

�

Distributing the expectation, E[utut−k] = 0 ∀ k 6= 0 since shocks are not
serially correlated. Hence:

Cov (Yt, Yt−1) = E
�

θut−1ut−1

�

= θE
�

ut−1ut−1

�

= θVar (ut)

MA(1) correlogram (cont.)

For k> 1

Cov (Yt, Yt−k) = E
�

(Yt − E(Yt)) (Yt−k − E(Yt−k))
�

= E
�

YtYt−k

�

Substituting using the MA(1) equation

Cov (Yt, Yt−k) = E
�

(ut + θut−1) (ut−k + θut−k−1)
�

= E
�

utut−k + θut−1ut−k + θutut−k−1 + θ
2ut−1ut−k−1

�

Since E[utut−k] = 0 ∀ k 6= 0 , we have that

Cov (Yt, Yt−k) = 0

Overall, the ACF for the MA(1) process is written as:

ACF =
θ

(1+ θ 2)
if k= 1

= 0 if k> 1

For AR processes, the correlations persist. For MA they vanish sharply after
some period determined by the lag length of errors.

MA(p) process in R

MA(p) process is similar in coding to the AR(p) process.

MAp<-function(n,theta){

d<-length(theta)

es<-rnorm(n+d)

Y<-rep(0,n+d)

for(i in (d+1):length(Y)){

Y[i]<-es[i]+t(theta)%*%es[(i-d):(i-1)]

}

Y<-Y[-(1:d)]

return(Y)
}

Then, generate a 3X2 correlograms similar to before

par(mfrow=c(2,3))

acf(MAp(100,0.1),lag.max=10,type="correlation")

acf(MAp(100,0.5),lag.max=10,type="correlation")

acf(MAp(100,0.9),lag.max=10,type="correlation")

acf(MAp(100,1),lag.max=10,type="correlation")

acf(MAp(100,1.5),lag.max=10,type="correlation")

acf(MAp(100,2),lag.max=10,type="correlation")

ARMA(p,q) and ARIMA(p,d,q)

Not surprisingly, the ARMA model is the combination of AR(p) and MA(q)
models

Yt = ut +
q
∑

j=1

θjut−j +
p
∑

j=1

φjYt−j

ARIMA(p,d,q) models incorporate an "integrated" term, which is a trend in
the average over time.

Assuming δ is constant, the following model is integrated of order 1:

Yt = δ+ ut +
q
∑

j=1

θjut−j +
p
∑

j=1

φjYt−j

To make stationary, take differences (using the ∆ operator).

∆Yt = ∆ut +
q
∑

j=1

θj∆ut−j +
p
∑

j=1

φj∆Yt−j

the ’d’ in ARIMA(p,d,q) is the number of times the data must be differenced
to make stationary.

Estimating ARIMA models in R

To estimate ARIMA(p,d,q) models in R, let’s first load data with the
"quantmod" package

install.packages("quantmod")

library(quantmod)

With quantmod, you can download stock price information from Yahoo
finance.

For example, downloading 7 years of data for google (before the stock split)

getSymbols("GOOG",from="2007-01-01",to="2014-01-01")

prices<-GOOG$GOOG.Open

rets <- dailyReturn(GOOG)

Use str(GOOG) too see all the information after using getSymbols

Estimating ARIMA models in R

Use the package "forecast" to provide the optimal ARIMA model

install.packages("forecast")

library(forecast)

The function "auto.arima" gives us the optimal ARIMA model

Tries to find the best fit without over parameterizing (eg. Penalized
log-likelihood)

Syntax is simple:

auto.arima(prices)

auto.arima(rets)

The function "forecast" provides predictions with forecast errors.

google.arima<-auto.arima(prices)

forecast(google.arima,40,level=c(80,95))

plot(google.forecast)

Modeling Variance - ARCH and GARCH

Volatility is a key concept in finance

Calm vs. Turbulent periods of returns

Crucial for modeling and accounting for risk over a particular investing time
horizon.

Heteroskedastic errors are crucial for accounting for volatility.

Unlike the first lecture, the variance of white noise will not be constant over time

Obviously complicates many of our derivations.

ARCH models

ARCH stands for "Autoregressive Conditional Heteroskedasticity"

Consider the following simply time series model

Yt = β0 +Xtβ + ut

outcome variable Yt

vector of explanatory variables Xt.

ut again is the error term.

For a ARCH(1), process, we assume that

ut

�

�Ωt ∼ N(0, ht)

where ht = γ0 + γ1u2
t−1

For ARCH(1), the variance of the error term depends on a constant, γ0, and a
function of the past squared error, γ1u2

t−1.

ARCH (p) and testing

The ARCH(p) model can be characterized as:

Yt = β0 +Xtβ + ut

where ut

�

�Ωt ∼ N(0, ht)

ht = γ0 +
p
∑

j=1

γju
2
t−j

Testing these models is potentially very simple:

Yt = β0 +Xtβ + ut

Collect residuals, square them

Estimate u2
t = γ0 +

∑p
j=1 γju

2
t−j +wt

Evaluate parameters, conduct exclusion test

GARCH(p,q)

The ARCH(p) in many ways is more of a moving average than autoregressive

There is no explicit persistence in ht - just some lagged function of past
observables.

"Generalized Autoregressive Conditional Heteroskedasticity" allows for
dependences on past unobservables, as well as persistence in the variance

The GARCH(p,q) model is written as:

Yt = β0 +Xtβ + ut

where ut

�

�Ωt ∼ N(0, ht)

ht = γ0 +
p
∑

j=1

δjht−j +
q
∑

j=1

γju
2
t−j

Xt could include lags of Yt, or residuals like in the ARIMA framework.

Estimating ARCH(p) and GARCH(p,q) models

In R, there are many functions to estimate ARCH and GARCH models.

Unsurprisingly, the package "tseries" is one that contains many functions for
time series analysis

To demonstrate, download S&P500 data for 2001 to 2015
library(quantmod)

getSymbols(’^GSPC’,from=’2001-01-01’,to=’2015-01-01’)

rets = dailyReturn(GSPC)

plot(rets)

To make ourselves sick, let’s plot the price series and daily returns.
par(mfrow=c(2,1))

plot(GSPC$GSPC.Open)

plot(rets)

Install and load the package "tseries"
install.packages("tseries")

library(tseries)

Estimating ARCH(p) and GARCH(p,q) models

The function "garch" estimates both ARCH and GARCH models, assuming no
covariates in the regression equation

Thus, this is pure variance estimation

Syntax is as follows

garch(data,order=c(p,q))

p is the GARCH component, and q is the ARCH component

Using the data we downloaded, estimate a ARCH(1) model and summarize

sp500.g=garch(rets,order=c(0,1))

summary(sp500.g)

Can predict bounds on values using the predict function

u=predict(sp500.g)

This vector has two elements - upper and lower bounds

Estimating ARCH(p) and GARCH(p,q) models

Can plot the data and estimated bounds using the following code

rets_upper<-rets

rets_upper$daily.returns<-u[,1]

rets_lower<-rets

rets_lower$daily.returns<-u[,2]

par(mfrow=c(2,1))

plot(rets, type="l", xlab="time", ylab="daily change",
main="SP500 index 2001-2015")

lines(rets_upper,col="red", lty="dashed",lwd=1.5)

lines(rets_lower,col="red", lty="dashed",lwd=1.5)

What do you notice about this plot, and how might a GARCH model improve
the simple ARCH framework?

Estimating ARCH(p) and GARCH(p,q) models

Can plot the data and estimated bounds using the following code

sp500.g2=garch(rets,order=c(1,1))

u2=predict(sp500.g2)

rets_upper2<-rets

rets_upper2$daily.returns<-u2[,1]

rets_lower2<-rets

rets_lower2$daily.returns<-u2[,2]

Finally, plot the old bounds (in black) against the new bounds (blue)

plot(rets_upper, type="l", xlab="time", ylab="daily change",
main="SP500 index 2001-2015",ylim=c(-.07,.07))

lines(rets_lower)

lines(rets_upper2,col="blue", lty="dashed",lwd=1)

lines(rets_lower2,col="blue", lty="dashed",lwd=1)

Estimating ARCH(p) and GARCH(p,q) models

The package fGarch contains more bells and whistles

GARCH error estimation as above

ARMA effects in the original regression equation

Install the package and load the library

install.packages("fGarch")

library(fGarch)

Syntax for GARCH estimation with ARMA components

garchFit(~arma(ar,ma)+garch(p,q),data,trace=FALSE)

Let’s run four different models to see how they look

garch1<-garchFit(~garch(1,1),data=rets,trace=FALSE)

garch2<-garchFit(~arma(1,1)+garch(2,1),data=rets,trace=FALSE)

garch3<-garchFit(~arma(2,1)+garch(2,1),data=rets,trace=FALSE)

garch4<-garchFit(~arma(2,2)+garch(2,2),data=rets,trace=FALSE)

Estimating ARCH(p) and GARCH(p,q) models

Summarize works similarly to other regressions

summary(garch4)

Predict generates predictions in ’n.ahead’ future periods, as well as plots the
last ’nx’ observations

par(mfrow=c(2,2))

predict(garch1,n.ahead=10,plot=TRUE,nx=20)

predict(garch2,n.ahead=10,plot=TRUE,nx=20)

predict(garch3,n.ahead=10,plot=TRUE,nx=20)

predict(garch4,n.ahead=10,plot=TRUE,nx=20)

Estimating ARCH(p) and GARCH(p,q) models

fGarch also has some cool ploting functions. The main feature is interactive

plot(garch4)

Or, you can choose the different elements using "which"

par(mfrow=c(2,2))

plot(garch4,which=1)

plot(garch4,which=3)

plot(garch4,which=4)

plot(garch4,which=10)

GARCH-M Models

In many models of finance, the expect return of an asset is some function of
characteristics and then risk.

Risk is often viewed through the lens of standard deviation

The GARCH-M Model allows for this explicit dependence:

Yt = β0 +Xtβ + θ
Æ

ht + ut

where ut

�

�Ωt ∼ N(0, ht)

ht = γ0 +
q
∑

j=1

δjh
2
t−q +

p
∑

j=1

γju
2
t−j

Though
p

ht may look weird, I like it since it is on the same scale as the
dependent variable.

Some prefer including variance ht instead, so it’s best to know the results from
both.

Finally, one can also add a set of regressors into the error equation as needed.

