Economics 217 - Clustering

- Topics covered in this lecture
 - K-Means
 - Hierarchical Clustering
 - DBScan
- Tons of resources exist on these topics, but I've used sample chapters from this book:

https://www-users.cs.umn.edu/kumar001/dmbook/index.php

Clustering

- Clustering is a method for arranging objects into like groups
 - Unsupervised Machine Learning
- Clustering can be used to uncover the nature of the data
 - Eg. Correlations in price, neighborhoods of villages
- Can also be used to summarize the data
 - Eg. Mean of similar objects
- Can also be used to speed up other techniques
 - Eg. Applying KNN within clusters

Types of clustering and clusters

- Clustering
 - Partitioned: objects assigned to non-overlapping groups
 - Hierarchical: clusters defined within larger clusters
- Prototype-based clusters
 - A "prototype" defines the cluster this is often the centroid of a group of points (or some other central tendency)
 - Objects within a cluster are closer to its prototype than a different prototype.
- Graph-based clusters
 - Objects are defined as connections to one another
 - The type of connection defines the shape of the clusters
- Density-based clusters
 - Regions of high density are surrounded by regions of low density
 - Not all points will be within a cluster

Three techniques

K-Means

- Prototype-based, partitional clustering
- User-specified number of clusters (K), with clusters represented by their centroids
- Agglomerative Hierarchical Clustering
 - Starts with each point as a singleton cluster and then iteratively merging the two closest clusters until a single exhaustive cluster remains.
 - Can be represented with a "Dendrogram", which is an illustration of how clusters are merged. Solution easily determined after choosing the number of clusters.

DBSCAN

- Density-based partitioned clustering with noise.
- Number of clusters is automatically determined by the algorithm parameters and the structure of the data.
- Points in low-density regions are classified as noise and omitted.

Data: Village locations in Kilimanjaro, TZ

- How could village clustering matter?
 - Administrative governence
 - Market catchment areas
 - Agro-climactic variation
- Data is from a service that provides GPS locations of cities, towns, and villages
 - Anonymized version on the website
 - For now, we will use the clustering algorithms to evaluate clusters in space
- Questions:
 - How to clusters change with each method?
 - What happens when we use an optimal cluster size algorithm?

Villages in Kilimanjaro, TZ

K-Means: The approach

- K-Means
 - Partition clusters based on their proximity to an iterative set of centroids
- Basic algorithm
 - Choose number of clusters, K
 - Start with random cluster centroids
 - Assign points to closest centroid
 - Re-calculate centroids
 - Repeat until convergence
- Upside: Very quick, straightforward
- Downside: May be sensitive to starting values, number of clusters

K-Means: Code

Load Data

```
sx<-read.csv("https://people.ucsc.edu/~aspearot/Econ_217/TZ.csv")</pre>
```

• Create a color pallete to use in all examples

Create an empty plot with a title

```
plot(sx,pch=3,cex=0.5,col="white",main="K-Means Clusters")
```

• Calculate the K-means clusters, assuming K=10

```
results10<-kmeans(sx,10)
```

• Illustrate the results, using different colors for clusters, on a plot

```
sx2<-sx
sx2$res<-results10$cluster
for(i in 1:10) {
    sx3<-subset(sx2, res==i)[,c("longitude", "latitude")]
    points(sx3, pch=19, col=color[i])
    points(results10$centers[i,],pch=19,col=color[i])
}</pre>
```

K-Means Clusters

Hierarchical Clustering: The approach(es)

- Start with all points as singleton clusters, and join observations based on proximity of existing clusters
- Joining methods:
 - Complete: Smallest maximum pairwise distance between clusters. Tends to create agglomerative clusters
 - Single: Smallest minimum pairwise distance between clusters. Tends to create long, connected clusters
- Basic algorithm
 - Choose number of clusters, K
 - Compute a distance matrix between points
 - Merge the two closest clusters
 - Update the distance matrix according to method and repeat
 - Stop when there is only one cluster
- As with K-Means, results will depend on the number of clusters.

Hierarchical Clustering: Code

Create a distance matrix between villages

```
distmat<-dist(sx)</pre>
```

Run HC using complete and single linkages

```
results.complete<-hclust(distmat, method="complete")
results.single<-hclust(distmat, method="single")
```

- Results can be represented as a dendrogram
 - Essentially like a tree diagram, starting from singleton clusters, aggregated to one cluster
- Sample of a Dendrogram for the complete linkage

```
plot(results.complete)
```

Cluster Dendrogram

distmat hclust (*, "complete")

Hierarchical Clustering: Code (cont.)

• Illustrate the "complete" results, using different colors for clusters, on a plot

```
plot(sx,pch=3,cex=0.5,col="white",main="Hierarchical
Clustering - Complete Linkage")
sx2<-sx
sx2$res<-as.numeric(cluster.complete)
for(i in 1:10) {
    sx3<-subset(sx2,res==i)[,c("longitude","latitude")]
    points(sx3,pch=19,col=color[i])
}</pre>
```

• Illustrate the "single" results, using different colors for clusters, on a plot

```
plot(sx,pch=3,cex=0.5,col="white",main="Hierarchical
Clustering - Single Linkage")
sx2<-sx
sx2$res<-as.numeric(cluster.single)
for(i in 1:10) {
    sx3<-subset(sx2,res==i)[,c("longitude","latitude")]
    points(sx3,pch=19,col=color[i])
}</pre>
```

Hierarchical Clustering – Complete Linkage

Hierarchical Clustering – Single Linkage

DBSCAN: The approach

- Group observations into high density areas, with outliers considered noise.
 Density determined by:
 - *eps* is the radius to determine density.
 - MinPoints determines a minimum number of points within a radius
- Three types of points:
 - Core: The interior. A point is a core point if there are at least *MinPoints* within a distance of *eps*.
 - Border: A border point is not a core point, but falls within *eps* of a core point.
 - Noise: Neither a core point nor a border point.
- Basic algorithm
 - Eliminate noise points.
 - Group of connected core points into a separate cluster.
 - Assign each border point to one of the clusters of its associated core points.

DBSCAN: Code

Load dbscan library

```
install.packages("dbscan")
library(dbscan)
```

• Calculate distance matrix

```
distmat<-dist(sx)</pre>
```

Create plot with all points

```
plot(sx,pch=3,cex=0.5,main="DBSCAN Clustering")
```

- Some of these points will not be assigned to a cluster
- Illustrate the results, using different colors for clusters, on a plot

```
sx2<-sx
sx2$res<-results.dbscan$cluster
for(i in 1:10) {
    sx3<-subset(sx2, res==i)[,c("longitude", "latitude")]
    points(sx3,pch=19,col=color[i])
}</pre>
```

DBSCAN Clustering

