Economics 217 - Clustering

- Topics covered in this lecture
- K-Means
- Hierarchical Clustering
- DBScan
- Tons of resources exist on these topics, but l've used sample chapters from this book:
https://www-users.cs.umn.edu/ kumar001/dmbook/index.php

Clustering

- Clustering is a method for arranging objects into like groups
- Unsupervised Machine Learning
- Clustering can be used to uncover the nature of the data
- Eg. Correlations in price, neighborhoods of villages
- Can also be used to summarize the data
- Eg. Mean of similar objects
- Can also be used to speed up other techniques
- Eg. Applying KNN within clusters

Types of clustering and clusters

- Clustering
- Partitioned: objects assigned to non-overlapping groups
- Hierarchical: clusters defined within larger clusters
- Prototype-based clusters
- A "prototype" defines the cluster - this is often the centroid of a group of points (or some other central tendency)
- Objects within a cluster are closer to its prototype than a different prototype.
- Graph-based clusters
- Objects are defined as connections to one another
- The type of connection defines the shape of the clusters
- Density-based clusters
- Regions of high density are surrounded by regions of low density
- Not all points will be within a cluster

Three techniques

- K-Means
- Prototype-based, partitional clustering
- User-specified number of clusters (K), with clusters represented by their centroids
- Agglomerative Hierarchical Clustering
- Starts with each point as a singleton cluster and then iteratively merging the two closest clusters until a single exhaustive cluster remains.
- Can be represented with a "Dendrogram", which is an illustration of how clusters are merged. Solution easily determined after choosing the number of clusters.
- DBSCAN
- Density-based partitioned clustering with noise.
- Number of clusters is automatically determined by the algorithm parameters and the structure of the data.
- Points in low-density regions are classified as noise and omitted.

Data: Village locations in Kilimanjaro, TZ

- How could village clustering matter?
- Administrative governence
- Market catchment areas
- Agro-climactic variation
- Data is from a service that provides GPS locations of cities, towns, and villages
- Anonymized version on the website
- For now, we will use the clustering algorithms to evaluate clusters in space
- Questions:
- How to clusters change with each method?
- What happens when we use an optimal cluster size algorithm?

Villages in Kilimanjaro, TZ

K-Means: The approach

- K-Means
- Partition clusters based on their proximity to an iterative set of centroids
- Basic algorithm
- Choose number of clusters, K
- Start with random cluster centroids
- Assign points to closest centroid
- Re-calculate centroids
- Repeat until convergence
- Upside: Very quick, straightforward
- Downside: May be sensitive to starting values, number of clusters

K-Means: Code

- Load Data
sx<-read.csv("https://people.ucsc.edu/~aspearot/Econ_217/TZ.csv")
- Create a color pallete to use in all examples

$$
\begin{array}{r}
\text { color<-c ("red", "blue", "green", "gray", "yellow", "orange", } \\
\text { "brown", "midnightblue", "black", "lightgray") }
\end{array}
$$

- Create an empty plot with a title

```
plot(sx,pch=3,cex=0.5,col="white",main="K-Means Clusters")
```

- Calculate the K-means clusters, assuming $K=10$

```
results10<-kmeans(sx,10)
```

- Illustrate the results, using different colors for clusters, on a plot

```
sx2<-sx
sx2$res<-results10$cluster
for(i in 1:10){
    sx3<-subset(sx2,res==i) [,c("longitude","latitude")]
    points(sx3,pch=19,col=color[i])
    points(results10$centers[i,],pch=19,col=color[i])
}
```

K-Means Clusters

Hierarchical Clustering: The approach(es)

- Start with all points as singleton clusters, and join observations based on proximity of existing clusters
- Joining methods:
- Complete: Smallest maximum pairwise distance between clusters. Tends to create agglomerative clusters
- Single: Smallest minimum pairwise distance between clusters. Tends to create long, connected clusters
- Basic algorithm
- Choose number of clusters, K
- Compute a distance matrix between points
- Merge the two closest clusters
- Update the distance matrix according to method and repeat
- Stop when there is only one cluster
- As with K-Means, results will depend on the number of clusters.

Hierarchical Clustering: Code

- Create a distance matrix between villages

```
distmat<-dist(sx)
```

- Run HC using complete and single linkages

```
results.complete<-hclust(distmat,method="complete")
results.single<-hclust(distmat,method="single")
```

- Results can be represented as a dendrogram
- Essentially like a tree diagram, starting from singleton clusters, aggregated to one cluster
- Sample of a Dendrogram for the complete linkage
plot(results.complete)

Cluster Dendrogram

distmat
hclust (*, "complete")

Hierarchical Clustering: Code (cont.)

- Illustrate the "complete" results, using different colors for clusters, on a plot

```
plot(sx,pch=3,cex=0.5,col="white",main="Hierarchical
Clustering - Complete Linkage")
sx2<-sx
sx2$res<-as.numeric(cluster.complete)
for(i in 1:10){
    sx3<-subset(sx2,res==i) [,c("longitude","latitude")]
    points(sx3,pch=19,col=color[i])
}
```

- Illustrate the "single" results, using different colors for clusters, on a plot

```
plot(sx,pch=3, cex=0.5,col="white",main="Hierarchical
Clustering - Single Linkage")
sx2<-sx
sx2$res<-as.numeric(cluster.single)
for(i in 1:10){
    sx3<-subset(sx2,res==i) [,c("longitude","latitude")]
    points(sx3,pch=19,col=color[i])
```

\}

Hierarchical Clustering - Complete Linkage

Hierarchical Clustering - Single Linkage

DBSCAN: The approach

- Group observations into high density areas, with outliers considered noise. Density determined by:
- eps is the radius to determine density.
- MinPoints determines a minimum number of points within a radius
- Three types of points:
- Core: The interior. A point is a core point if there are at least MinPoints within a distance of eps.
- Border: A border point is not a core point, but falls within eps of a core point.
- Noise: Neither a core point nor a border point.
- Basic algorithm
- Eliminate noise points.
- Group of connected core points into a separate cluster.
- Assign each border point to one of the clusters of its associated core points.

DBSCAN: Code

- Load dbscan library
install.packages("dbscan")
library (dbscan)
- Calculate distance matrix

```
distmat<-dist(sx)
```

- Create plot with all points
plot (sx,pch=3, cex=0.5,main="DBSCAN Clustering")
- Some of these points will not be assigned to a cluster
- Illustrate the results, using different colors for clusters, on a plot

```
sx2<-sx
sx2$res<-results.dbscan$cluster
for(i in 1:10){
    sx3<-subset(sx2,res==i) [,c("longitude","latitude")]
    points(sx3,pch=19,col=color[i])
}
```


DBSCAN Clustering

