
Economics 217 - Modern Data Science 1

Topics covered in this lecture

K-nearest neighbors

Lasso

Decision Trees

There is no reading for these lectures. Just notes. However, I have copied a
number of online websites that may help to the course schedule.

There are some extra notes on the website (prepared by a former PhD
student), which provide more examples for those who are interested.

Modern data science

In 216 and 217, we have (mostly) evaluated empirical relationships using
parametric models

Parametric models almost surely have some form of model mis-specification, but
are helpful in that the techniques to analyze the models are well sussed-out and
interpretations of the model are fairly straightforward (ie. take a derivative)

In new data science lingo, we are "supervising" the data with a model

In this last few lectures, we have been more flexible with our modeling
choices

More flexible models that are non-parametric

Resampling procedures to conduct inference and choose smoothing parameters

Practically, much of the new data science literature, learning and otherwise,
isn’t all that different from what we’re doing already.

The main difference is the choice of non-parametric model, and the goal is to
improve prediction.

Modern data science (cont.)

Whether you adopt new techniques or old techniques is usually a function of
your research objective

In economics, we often wish to understand the mechanisms behind
behaviors, as opposed to the collection of attributes that lead to behaviors.

Example: Knowing that graduates from Harvard are more likely to own a new
house than graduates of Cabrillo college might be interesting from a marketing
perspective, but it tells us nothing of why this is the case

If we are constructing policy, we want to know why. That is the big difference
between modern data science and econometrics as I see it (even though in
principle the techniques are very similar)

To be sure, the techniques can be complementary.

In this lecture, we will study three techniques:

K-Nearest Neighbors: Similar people do similar things.

LASSO: A common technique for model selection

Decision Trees: Individuals adopt a heuristic to make choices.

K-Nearest Neighbors

K-Nearest Neighbors is extremely similar to the Nadaraya-Watson binned
estimator

In NW, we take a bandwith of h on either side of a given x, and average the
behaviour within the region to generate a prediction for y.

This technique can be extended to more than one dimension of x by using a
measure of "Euclidean Distance".

K-Nearest Neighbors (KNN) also measures average (or modal) behavior
around a particular point.

Instead of a fixed distance of h around a particular x, KNN, uses k nearest
neighboring observations to measure behavior.

The key inputs to a basic KNN model

The choice of k (obviously)

The distance function

The outcome variable (eg. unemployment)

The input variables (which will be used to determine who is nearest)

K-Nearest Neighbors - Distance

Euclidean Distance is a common measure of distance.

In P dimensions, Euclidean distance of two observations,
xi =

�

xi1, xi2, · · · , xip

�

, and xj =
�

xj1, xj2, · · · , xjp

�

, is:

d
�

xi,xj

�

=

√

√

√

p
∑

l=1

�

xil − xjl

�2

In one dimension, it is just absolute distance

In two dimensions, this is basically the Pythagorean theorem.

Other distance functions exist, but we’ll just use Euclidean distance

K-Nearest Neighbors - Outcomes

In the NW estimator, we averaged outcomes within the bandwidth.

Eg. Average real wage

Averages might be weighted by a kernel function

In data science jargon, outcomes can also be "classifications"

Unemployed, part-time, employed, out of workforce

Classifications are hard to average

For KNN, the prediction is:

Average value if outcome is numeric

The modal value if outcome is a classification (this is called "majority rule" in
data science lingo)

Similar to h being chosen by cross-validation in NW, k can be chosen by a
similar technique for KNN.

R example: K-Nearest Neighbors

Load the necessary libraries

library(caret)

library(foreign)

Load and clean data

d<-read.dta("/Users/acspearot/Data/CPSDWS/org_example.dta")

d<-subset(d,is.na(nilf)==FALSE)

d<-subset(d,is.na(educ)==FALSE)

d<-subset(d,is.na(age)==FALSE)

d<-subset(d,is.na(female)==FALSE)

Construct the "training" and "testing" samples:

subtrain<-subset(d,year==2013&state=="CA")

subtest<-subset(d,year==2013&state!="CA")

Run your model:

model.knn <- train(nilf~age+educ+female, data = subtrain,
method = "knn")

R example: K-Nearest Neighbors

After the regression, check accuracy using the training sample

val.pred <- predict(model.knn, subtrain)

Calculate the share of predictions that match the actual values in the training
sample

val.acc <- sum(val.pred ==
subtrain$nilf,na.rm=TRUE)/length(subtrain$nilf)

print(val.acc)

Now do the same with the testing sample

pred <- predict(model.knn, subtest)

accuracy <- sum(pred ==
subtest$nilf,na.rm=TRUE)/length(subtest$nilf)

print(accuracy)

By comparing "acc" and "accuracy", we can compare how well the model does
within sample and out of sample.

R example: K-Nearest Neighbors (cont.)

The results look pretty poor. So, let’s redefine our outcome variable as
non-numeric

d$nilf2<-ifelse(d$nilf==1,"Out of Labor Force", "In Labor Force")

Re-construct the "training" and "testing" samples:

subtrain<-subset(d,year==2013&state=="CA")

subtest<-subset(d,year==2013&state!="CA")

Run the model:

model.knn2 <- train(nilf2 ~age+educ+female, data = subtrain, method =
"knn")

And compare accuracy:
val.pred <- predict(model.knn2, subtrain)

val.acc <- sum(val.pred ==
subtrain$nilf2,na.rm=TRUE)/length(subtrain$nilf2)

pred <- predict(model.knn2, subtest)

accuracy <- sum(pred == subtest$nilf2,na.rm=TRUE)/length(subtest$nilf2)

print(val.acc)

print(accuracy)

R example: KNN with more than two outcomes

Labor force models often distinguish between labor force participation, and if
so, employment and unemployment

Augmenting our models to account for this:
d$nilf3<-ifelse(d$nilf==1,"Out of Labor
Force",ifelse(d$empl==0,"Unemployed","Employed"))

Re-construct the "training" and "testing" samples:

subtrain<-subset(d,year==2013&state=="CA")

subtest<-subset(d,year==2013&state!="CA")

Run the model:

model.knn3 <- train(nilf3 ~age+educ+female, data = subtrain, method =
"knn")

And compare accuracy:
val.pred <- predict(model.knn3, subtrain)

val.acc <- sum(val.pred ==
subtrain$nilf3,na.rm=TRUE)/length(subtrain$nilf3)

pred <- predict(model.knn3, subtest)

accuracy <- sum(pred == subtest$nilf3,na.rm=TRUE)/length(subtest$nilf3)

print(val.acc)

print(accuracy)

The LASSO

Model selection is an important issue in econometrics

We have a choice of how many variables to include.

Including more variables must make predictions better (weakly), but may reduce
precision.

The LASSO:

"Least Absolute Shrinkage and Selection Operator"

Suppose that we have N observations, P potential explanatory variables

The Lasso Problem:

min
βp

N
∑

i=1

yi −
P
∑

p=1

βpxip

!2

(1)

s.t.
P
∑

p=1

�

�βp

�

�< λ (2)

(1) is the OLS problem.

(2) constrains the total absolute size of all coefficients

The LASSO (cont.)

We’ll study LASSO by estimating a third degree spline predicting labor force
participation:

min
βp

N
∑

i=1

nilfi −
3
∑

p=0

βpagep
i −

∑

a∈A

βa (agei − ca)
3 1 (agei > ca)

!2

s.t.
3
∑

p=0

�

�βp

�

�+
∑

a∈A

�

�βa

�

�< λ

where a ∈ A identifies as set of age knots, ca

λ can be chosen by cross-validation. Let’s first look at the procedure

Load the required libraries and the org data
library(lars)

library(foreign)

d<-read.dta("/Users/acspearot/Data/CPSDWS/org_example.dta")

d<-subset(d,is.na(nilf)==FALSE&is.na(age)==FALSE&year==2013)

sd<-d[,c("nilf","age")]

sd<-sd[order(sd$age),]

The LASSO (cont.)

Generate series terms

sd$age2<-sd$age^2

sd$age3<-sd$age^3

Generate many spline terms and constant

ages<-seq(from=18,to=70,by=2)

for(a in ages){

sd$newvar<-ifelse(sd$age>=a,(sd$age-a)^3,0)

names(sd)[ncol(sd)]<-paste("agespline",a,sep="_")

}
sd$cons<-1

Run a regression, a LASSO, and compare coefficients

rhs<-sd

rhs$nilf<-NULL

rhs<-as.matrix(rhs)

lhs<-as.matrix(sd$nilf)

lm.reg<-lm(nilf~.,data=sd)

lasso.reg<-lars(rhs,lhs,type="lasso",normalize=TRUE)

The LASSO (cont.)

Choose the optimal λ via cross validation

CVlasso<-cv.lars(rhs,lhs,K=10,type="lasso",normalize=TRUE)

str(CVlasso)

Extract the optimal s using "which.min" and "index"

opt<-CVlasso$index[which.min(CVlasso$cv)]

predict(lasso.reg,s=opt,type="coef",mode="fraction")

Plot LASSO predictions and compared with linear regression.

lassopredict<-{predict(lasso.reg,newx=rhs,s=opt,

type="fit",mode="fraction")$fit}

lmpredict<-predict(lm.reg)

plot(lassopredict sd$age,type=’l’,lwd=3)

lines(lmpredict sd$age,lwd=3,col="red")

Decision Trees

Decision Trees are a form of classification, and map nicely into a "heuristic"
approach of decision making by individuals.

An example: Buying a car

Car or Truck

Domestic or Foreign

Decision Trees can also be used to categorize outcomes by defining thresholds

Suppose the outcome is "employed"

White or Non-White

Education greater than X, or less than X

These are very complex models, but they general require (1) an order of
"sub-trees", (2) splitting variables and (3) splitting points.

All three components can be chosen by cross-validation.

The technique that is used for estimation is called "recursive partitioning".

R example: Decision Trees

Let’s evaluate employment outcomes as a function of education and
demographics.

Load the required libraries
library(rpart)

library(foreign)

Reload and prepare outcome variable

d<-read.dta("/Users/acspearot/Data/CPSDWS/org_example.dta")

d<-subset(d,is.na(educ)==FALSE&is.na(age)==FALSE
&is.na(female)==FALSE&is.na(nilf)==FALSE)

Take "lfstat", which is labor force status, and create a dichotomous variable
for whether or not the respondent is employed
d$lfstat2<-ifelse(d$lfstat=="Employed","Employed","Not
Employed")

Also, it will be easier if we create a gender factor variable:
d$gender=ifelse(d$female==1,"female","male")

R example: Decision Trees (cont)

Just like with the KNN, create the training and testing samples

subtrain<-subset(d,year==2013&state=="CA")

subtest<-subset(d,year==2013&state!="CA")

Run the classification tree

tree <- rpart(lfstat2 ~educ+wbho+gender,data = subtrain,
method = "class")

Use plot and labeling functions from rpart to visualize the results
plot(tree,cex=1.5,branch=0,main="Decision Tree for
Employment",margin=.05)

text(tree,cex=1.5,use.n=TRUE,minlength=0)

Convention on plots:

To the left when condition is satisfied

Counts at bottom are in order of aggregate frequency

R example: Decision Trees (cont)

Try again on the three outcome employment status model

d$nilf3<-ifelse(d$nilf==1,"Out of Labor
Force",ifelse(d$empl==0,"Unemployed","Employed"))

subtrain<-subset(d,year==2013&state=="CA")

subtest<-subset(d,year==2013&state!="CA")

Plot the results

tree2 <- rpart(nilf3 ~educ+wbho+gender,data = subtrain, method
= "class")

plot(tree2,cex=1.5,branch=0,main="Decision Tree for Labor
Force Status",margin=.05)

text(tree2,cex=1.5,use.n=TRUE,minlength=0)

Evaluate how the testing model works

outcomes <- predict(tree2, subtest,type=’class’)

subtest$outcomes <- as.character(outcomes)

sum(subtest$outcomes==subtest$nilf3)/nrow(subtest)

Compare this with the KNN precision in the testing dataset.

