Economics 217 - Modern Data Science 1

@ Topics covered in this lecture

e K-nearest neighbors
e Lasso

@ Decision Trees

@ There is no reading for these lectures. Just notes. However, I have copied a
number of online websites that may help to the course schedule.

@ There are some extra notes on the website (prepared by a former PhD
student), which provide more examples for those who are interested.

Modern data science

@ In 216 and 217, we have (mostly) evaluated empirical relationships using
parametric models

e Parametric models almost surely have some form of model mis-specification, but
are helpful in that the techniques to analyze the models are well sussed-out and
interpretations of the model are fairly straightforward (ie. take a derivative)

e In new data science lingo, we are "supervising" the data with a model

@ In this last few lectures, we have been more flexible with our modeling
choices

e More flexible models that are non-parametric

e Resampling procedures to conduct inference and choose smoothing parameters

@ Practically, much of the new data science literature, learning and otherwise,
isn’t all that different from what we’re doing already.

e The main difference is the choice of non-parametric model, and the goal is to
improve prediction.

Modern data science (cont.)

@ Whether you adopt new techniques or old techniques is usually a function of
your research objective

@ In economics, we often wish to understand the mechanisms behind
behaviors, as opposed to the collection of attributes that lead to behaviors.

e Example: Knowing that graduates from Harvard are more likely to own a new
house than graduates of Cabrillo college might be interesting from a marketing
perspective, but it tells us nothing of why this is the case

e If we are constructing policy, we want to know why. That is the big difference
between modern data science and econometrics as I see it (even though in
principle the techniques are very similar)

e To be sure, the techniques can be complementary.

@ In this lecture, we will study three techniques:
o K-Nearest Neighbors: Similar people do similar things.
e LASSO: A common technique for model selection

e Decision Trees: Individuals adopt a heuristic to make choices.

K-Nearest Neighbors

@ K-Nearest Neighbors is extremely similar to the Nadaraya-Watson binned
estimator

e In NW, we take a bandwith of h on either side of a given x, and average the
behaviour within the region to generate a prediction for y.

e This technique can be extended to more than one dimension of x by using a
measure of "Euclidean Distance".

@ K-Nearest Neighbors (KNN) also measures average (or modal) behavior
around a particular point.

e Instead of a fixed distance of h around a particular x, KNN, uses k nearest
neighboring observations to measure behavior.

@ The key inputs to a basic KNN model
e The choice of k (obviously)
e The distance function
e The outcome variable (eg. unemployment)

e The input variables (which will be used to determine who is nearest)

K-Nearest Neighbors - Distance

@ FEuclidean Distance is a common measure of distance.

@ In P dimensions, Euclidean distance of two observations,

X, = (xilaxi29 T inp): and X; = (leaszg Tt ,ij), 1S:

d (Xl-,x-) = \I i (xl-l —xﬂ)z

[=1

@ In one dimension, it is just absolute distance
@ In two dimensions, this is basically the Pythagorean theorem.

@ Other distance functions exist, but we’ll just use Euclidean distance

K-Nearest Neighbors - Outcomes

@ In the NW estimator, we averaged outcomes within the bandwidth.

e Eg. Average real wage
e Averages might be weighted by a kernel function
@ In data science jargon, outcomes can also be "classifications"
e Unemployed, part-time, employed, out of workforce
e Classifications are hard to average
@ For KNN, the prediction is:

e Average value if outcome is numeric

e The modal value if outcome is a classification (this is called "majority rule" in
data science lingo)

@ Similar to h being chosen by cross-validation in NW, k can be chosen by a
similar technique for KNN.

R example: K-Nearest Neighbors

@ Load the necessary libraries

library (caret)

library (foreign)

@ Load and clean data

d<-read.dta ("/Users/acspearot/Data/CPSDWS/org_example.dta")
nilf)==FALSE)

educ) ==FALSE)

age)==FALSE)

female)==FALSE)

d<-subset (d, is.na(
d<-subset (d, is.na (
d<-subset (d, is.na (
(na (

d<-subset (d, is.
@ Construct the "training" and "testing" samples:
subtrain<-subset (d, year==2013&state=="CA")

subtest<-subset (d, year==2013&state!="CA")

@ Run your model:

model.knn <- train(nilf~aget+educ+female, data = subtrain,
method = "knn")

R example: K-Nearest Neighbors

@ After the regression, check accuracy using the training sample

val.pred <- predict (model.knn, subtrain)

@ Calculate the share of predictions that match the actual values in the training
sample

val.acc <— sum(val.pred ==
subtrain$nilf, na.rm=TRUE) /length (subtrain$nilf)

print (val.acc)

@ Now do the same with the testing sample

pred <- predict (model.knn, subtest)

accuracy <- sum(pred ==
subtest$nilf, na.rm=TRUE) /length (subtest$nilf)

print (accuracy)

@ By comparing "acc" and "accuracy", we can compare how well the model does
within sample and out of sample.

R example: K-Nearest Neighbors (cont.)

@ The results look pretty poor. So, let’s redefine our outcome variable as
non-numeric

dSnilf2<-ifelse (d$nilf==1,"Out of Labor Force", "In Labor Force")

Re-construct the "training" and "testing" samples:

subtrain<-subset (d, year==2013&state=="CA")
subtest<-subset (d, year==2013&state!="CA")

Run the model:

model .knn2 <- train(nilf2 ~ageteduc+female, data = subtrain, method =
" knn ")

And compare accuracy:
val.pred <- predict (model.knn2, subtrain)

val.acc <- sum(val.pred ==
subtrain$nilf2,na.rm=TRUE) /length (subtrain$nilf2)

pred <- predict (model.knn2, subtest)
accuracy <- sum(pred == subtest$nilf2,na.rm=TRUE)/length (subtest$nilf2)
print (val.acc)

print (accuracy)

R example: KNN with more than two outcomes

@ Labor force models often distinguish between labor force participation, and if
so, employment and unemployment

@ Augmenting our models to account for this:
dSnilf3<—ifelse (d$nilf==1, "Out of Labor
Force",ifelse (d$empl==0, "Unemployed", "Employed"))

@ Re-construct the "training" and "testing" samples:

subtrain<-subset (d, year==2013&state=="CA")
subtest<-subset (d, year==2013&state!="CA")

@ Run the model:

model .knn3 <- train(nilf3 ~ageteduct+female, data = subtrain, method =
" knn ")

@ And compare accuracy:
val.pred <- predict (model.knn3, subtrain)

val.acc <- sum(val.pred ==
subtrain$nilf3, na.rm=TRUE) /length (subtrain$nilf3)

pred <- predict (model.knn3, subtest)
accuracy <- sum(pred == subtest$nilf3,na.rm=TRUE)/length (subtest$nilf3)
print (val.acc)

print (accuracy)

The LASSO

@ Model selection is an important issue in econometrics

e We have a choice of how many variables to include.

e Including more variables must make predictions better (weakly), but may reduce
precision.

@ The LASSO:
e "Least Absolute Shrinkage and Selection Operator"
@ Suppose that we have N observations, P potential explanatory variables

@ The Lasso Problem:
2

N p
min Y — Z Byxip (1)
Py i=1 p=1
p
s.t. Z 18, < 2 (2)
p=1

@ (1) is the OLS problem.

@ (2) constrains the total absolute size of all coefficients

The LASSO (cont.)

@ We’ll study LASSO by estimating a third degree spline predicting labor force
participation:

2

N 3
min > | nilf;—), Byage] =) Ba (agei— ;)" 1(age; > co)
Pi=1 p=0 acA

3
s.t. Z |/5p| + Z
p=0 acA

where a € A identifies as set of age knots, c,

<A

Ba

@ A can be chosen by cross-validation. Let’s first look at the procedure

@ Load the required libraries and the org data
library (lars)
library (foreign)
d<-read.dta ("/Users/acspearot/Data/CPSDWS/org_example.dta")
d<-subset (d,1s.na(nilf)==FALSE&is.na (age)==FALSE&year==2013)
sd<-d[,c("nilf", "age")]
sd<-sd[order (sd$Sage),]

The LASSO (cont.)

@ Generate series terms

sdSage2<-sdSage”2
sdSage3<-sdSage”3

@ Generate many spline terms and constant
ages<-seq(from=18,to=70,by=2)
for(a in ages) {
sd$Snewvar<-ifelse (sd$age>=a, (sd$age-a) "3,0)
names (sd) [ncol (sd)] <-paste ("agespline",a, sep="_")

}

sd$Scons<-1
@ Run a regression, a LASSO, and compare coefficients

rhs<-sd

rhsSnil f£<-NULL
rhs<—-as.matrix (rhs)
lhs<-as.matrix (sdSnilf)
Im.reg<-Im(nilf~.,data=sd)

lasso.reg<-lars(rhs, lhs, type="1lasso",normali1ze=TRUE)

The LASSO (cont.)

@ Choose the optimal A via cross validation

CVlasso<-cv.lars (rhs, lhs,K=10,type="lasso",normalize=TRUE)
str (CVlasso)

@ Extract the optimal s using "which.min" and "index"

opt<—-CVlassoS$index[which.min (CVlassoScv)]

predict (lasso.reg, s=opt, type="coef",mode="fraction")

@ Plot LASSO predictions and compared with linear regression.

lassopredict<—-{predict (lasso.reg, newx=rhs, s=opt,
type="fit",mode="fraction")$fit}

Ilmpredict<-predict (1lm.req)

plot (lassopredict sdS$Sage, type='"1’", 1lwd=3)

lines (1lmpredict sd$age, lwd=3,col="red")

Decision Trees

@ Decision Trees are a form of classification, and map nicely into a "heuristic"
approach of decision making by individuals.

@ An example: Buying a car
e Car or Truck
@ Domestic or Foreign

@ Decision Trees can also be used to categorize outcomes by defining thresholds

@ Suppose the outcome is "employed"

e White or Non-White

@ Education greater than X, or less than X

@ These are very complex models, but they general require (1) an order of
"sub-trees", (2) splitting variables and (3) splitting points.

e All three components can be chosen by cross-validation.

@ The technique that is used for estimation is called "recursive partitioning".

R example: Decision Trees

@ Let’s evaluate employment outcomes as a function of education and
demographics.

@ Load the required libraries
library (rpart)

library (foreign)

@ Reload and prepare outcome variable

d<-read.dta ("/Users/acspearot/Data/CPSDWS/org_example.dta")

d<-subset (d, is.na (educ)==FALSE&is.na (age)==FALSE
&ls.na(female)==FALSE&is.na(nilf)==FALSE)

@ Take "lfstat", which is labor force status, and create a dichotomous variable
for whether or not the respondent is employed

dslfstat2<-ifelse (d$lfstat=="Employed", "Employed", "Not
Employed")
@ Also, it will be easier if we create a gender factor variable:

dSgender=ifelse (dSfemale==1, "female", "male")

R example: Decision Trees (cont)

@ Just like with the KNN, create the training and testing samples

subtrain<-subset (d, year==2013&state=="CA")
subtest<-subset (d, year==2013&state!="CA")

@ Run the classification tree

tree <- rpart(lfstat2 ~educ+wbhot+gender,data = subtrain,
method = "class")

@ Use plot and labeling functions from rpart to visualize the results

plot (tree,cex=1.5,branch=0,main="Decision Tree for
Employment", margin=.05)

text (tree,cex=1.5,use.n=TRUE,minlength=0)
@ Convention on plots:

e To the left when condition is satisfied

e Counts at bottom are in order of aggregate frequency

R example: Decision Trees (cont)

@ Try again on the three outcome employment status model
dSnilf3<-ifelse(dsnilf==1, "Out of Labor
Force",ifelse (dSempl==0, "Unemployed", "Employed"))
subtrain<-subset (d, year==2013&state=="CA")
subtest<-subset (d, year==2013&state!="CA")

@ Plot the results

tree2 <- rpart (nilf3 ~educ+wbho+gender,data = subtrain, method
= "class")

plot (tree2,cex=1.5,branch=0,main="Decision Tree for Labor
Force Status",margin=.05)

text (tree2,cex=1.5,use.n=TRUE, minlength=0)

@ Evaluate how the testing model works

outcomes <- predict (tree2, subtest,type=’'class’)
subtestSoutcomes <—- as.character (outcomes)

sum (subtestSoutcomes==subtest$nilf3) /nrow (subtest)

@ Compare this with the KNN precision in the testing dataset.

