
Economics 217 - Sampling and Resampling methods

Topics covered in this lecture

Monte Carlo Simulation

Bootstrap Resampling

Bootstrap percentile intervals

We will be doing lots of coding in these lectures, so make sure you follow
lecture with trying examples at home.



Introduction to Monte Carlo

Most of the models we have discussed utilize large sample properties and the
central limit theorem

With large samples, we know something about the distribution of the estimates.

Small sample properties are much more difficult to derive, and in practice the
sampling distribution is often unknown

Sampling and resampling techniques help us test our models under small
samples and evaluate the bias that might come from results using small
samples and real data.

We will first study Monte Carlo Analysis.

Simple put, we generate fake data and then test the statistics of interest using
the fake data

Model should perform well in two dimensions

Estimate should be centered around the actual value

Should not over or under reject true parameter.



A simple Monte Carlo to test small sample OLS

Suppose we start with the following very simple model:

yi = xi + ui

Intercept is zero, slope coefficient β = 1

Let’s test this model using the following procedure:

1 Pick a sample size of N

2 Generate N values of xi between zero and 1

3 Randomly generate N values of ui between zero and 1 using some distribution

4 Using values of xi and ui, generate yi

5 Estimate model and collect estimates for β

Repeat procedure B times.

What do you think will happen if we have a small sample?



R example: 10 replications
B<-10

N<-50

results<-data.frame(matrix(NA, nrow=B, ncol=3))

names(results)<-c("rep","B0","B1")

for(rep in 1:B){

x<-rnorm(N,mean=0,sd=1)

u<-rnorm(N,mean=0,sd=1)

y<-x+u

fit.B<-lm(y~x)

results$rep[rep]<-rep

results$B0[rep]<-as.numeric(coef(fit.B)[1])

results$B1[rep]<-as.numeric(coef(fit.B)[2])

}

par(mfrow=c(2,2))

plot(density(results$B0),main="Sampling Distribution of B0, B=10")
abline(v=0)
plot(density(results$B1),main="Sampling Distribution of B1, B=10")
abline(v=1)



Monte Carlo to Bootstrap

To summarize, Monte Carlo analysis is great for assessing the performance of
a estimator

Is it biased?

Is inference reasonable?

However, there is a big down-side

We’re testing a known function with fake data. Need a technique to evaluate bias
within a real-world context

If we are running a monte carlo on a linear regression, we’re essentially
evaluating the central limit theorem (which we know works in the limit)

There is no silver bullet, but the Bootstrap is as close as we get.

Resamples from observational data to create an empirical distribution of a test
statistic

Develops confidence intervals and other techniques for inference from this
empirical distribution



Bootstrap Logic

The "Bootstrap" is a technique that was original proposed by Bradley Efron in
the 70’s

The cliche is apt here - we pick the data up by its "bootstraps".

The essential bootstrap insight is the following:

Typical inference is justified via the central limit theorem

The central limit theorem is crucial since we usually only have one sample to
work with.

However, as the sample is from the population, a resample of the sample is also
a sample from the population.

Hence, we can generate sampling variation by resampling from the sample of the
population.

Critical Questions for a bootstrap analysis

How do we resample?

What statistic do we use (T-stat, CI, etc..)?



Three Methods of Resampling

Data resampling:

Sampling observations of (yi, xi) from the original data, with replacement.

Residual Resampling

Collect residuals from the original model, bu

Sample these residuals with replacement to construct a new vector of residuals
of equal size, eu

Define new dependent variable as

ey = by+ eu

Wild Bootstrap

Collect residuals from the original model, bu

Randomly multiply them by −1 or 1 with equal probability, getting , eu

Define new dependent variable as

ey = by+ eu



After resampling

After choosing a method of resampling, we run the resampling procedure B
times, getting B observations of a statistic of interest

Usually parameter estimates

Could be t-statistics

Assuming that we are collecting parameters, it is most straightforward to
calculate bootstrap confidence intervals.

Precisely, after collecting B estimates using the bootstrap samples, the
"Percentile Confidence Interval" is simply the following:

C = ( q (α/2) , q (1−α/2) )

where α is the desired level of significance (say, 5%), and q(x) is the xth
percentile of the bootstrap estimates

For example, if α= 10, q (α/2) is the 5th percentile of the bootstrap
estimates, and q (1−α/2) is the 95th percentile.



R Bootstrapping

The function "boot" takes care of much of bootstrapping, but we will do it
ourselves to build on the understanding of the procedure.

The main item we need is a function to resample from a vector or data frame,
with replacement.

sample(x, size, replace = FALSE, prob = NULL)

If "x" is a number, is draws samples from 1:x

If "x" is a vector, is draws samples from that vector

"size" is the number of observations in the desired sample

"replace" indicates if you want sampling done with replacement.

To construct a random sample from a data frame, defining our data frame as
"df", write the following

df[sample(nrow(df), n, replace=TRUE),]

We use this syntax to construct bootstrap samples.



R Bootstrapping

One can place the random sampling within a function to make the entire
procedure modular
randomSample = function(df,n) {

return(df[sample(nrow(df),n),])

}

Finally, we run the bootstrap procedure via the following

form<-as.formula(log(rw)~educ)

fit.full<-lm(form,subd)

B<-1000

N<-1000

resultsB<-matrix(NA,nrow=B,ncol = (length(coef(fit.B))+1))

for(rep in 1:B){

fit.B<-lm(form,randomSample(subd,N))

coef.B<-as.numeric(coef(fit.B))

resultsB[rep,1]<-rep

resultsB[rep,2:ncol(resultsB)]<-t(as.matrix(coef.B))

}

resultsB<-as.data.frame(resultsB)

names(resultsB)<-c("rep",names(coef(fit.full)))



R Bootstrapping

To construct 95% confidence intervals, run:

quantile(resultsB$(Intercept),prob=c(0.025,0.975),na.rm=TRUE)

quantile(resultsB$educCollege,prob=c(0.025,0.975),na.rm=TRUE)

quantile(resultsB$educAdvanced,prob=c(0.025,0.975),na.rm=TRUE)

Also, compare the original estimate of educAdvanced against the entire
distribution of bootstrap estimates

plot(density(resultsB$educAdvanced)main="Coefficient on Advanced
Degree")

abline(v=coef(fit.full)[5])



Residual Resampling

Another approach to bootstrapping is "residual bootstrapping".

Estimate a base model, and then use the model and "new" residuals to
generate new outcome variables.

New residuals are resampled, with replacement, from the old residuals

resid.full<-as.numeric(fit.full$residuals)

predict.full<-as.numeric(fit.full$fitted.values)

B<-1000

resultsR<-matrix(NA,nrow=B,ncol = (length(coef(fit.B))+1))

for(rep in 1:B){

rand.resid<-sample(residuals.full, nrow(subd),replace=TRUE)

subd$rw_boot<-predict.full+newresid

fit.B<-lm(rw_boot~educ,subd)

coef.B<-as.numeric(coef(fit.B))

resultsR[rep,1]<-rep

resultsR[rep,2:ncol(resultsR)]<-t(as.matrix(coef.B))

}



Wild Bootstrap

The Wild bootstrap generates new residuals by randomly multiplying old
residuals by -1 or 1.

New residuals are resampled, with replacement, from the old residuals

resid.full<-as.numeric(fit.full$residuals)

predict.full<-as.numeric(fit.full$fitted.values)

B<-1000

resultsW<-matrix(NA,nrow=B,ncol = (length(coef(fit.B))+1))

for(rep in 1:B){

newresid<-ifelse(runif(nrow(subd),0,1)>0.5,rand.resid,-rand.resid)

subd$rw_boot<-predict.full+newresid

fit.B<-lm(rw_boot~educ,subd)

coef.B<-as.numeric(coef(fit.B))

resultsW[rep,1]<-rep

resultsW[rep,2:ncol(resultsW)]<-t(as.matrix(coef.B))

}


