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GLM Extensions: Survival Models

Survival Models are a common and incredibly useful extension of the
generalized linear model.

They are linked on a basic level to Poisson arrivals, which as we learned
earlier, yield an exponential distribution of arrival times.

Survival models are used across many fields

Medicine and biostatistics: Many drugs are used to prolong life in the
face of serious illness.

Firm survival and death. How long do businesses live? Eg: conditional
on entering a market (or new market) today, what is the probability of
bankruptcy in 12 months?

One can imagine survival being used to model time spent on webpages,
shopping, Facebook, etc...

In this part of the course, we’ll learn the basics of survival models
using the GLM methodology, and then discuss extensions.



GLM Extensions: Survival Models

Let y be survival time, and f(y) be the pdf of survival times.

Probability of surviving less than y is:

F (y) = Pr (Y < y) =

∫ y

0

f(t)dt

By the property of complements, the probability of surviving longer
then y is the survivor function

S (y) = 1− F (y)

The hazard function, h(y) is the probability of death within a small
period between y and δy, given they have survived until t.

h(y) = lim
δ→0

F(y+δy)− F(y)
δy

·
1

S(y)

=
f(y)
S(y)

This is essentially a conditional probability. Conditional on surviving
up to y or later, S(y), what is the instantaneous probability of death?



GLM Extensions: Survival Models

For a few more definitions, it is straightforward to show that the
hazard function is linked to the survivor function:

h(y) = −
d
dy

log (S(y)) = −
dS(y)

dy

S(y)
=

f(y)
S(y)

Finally, the cumulative hazard function, H(y) is written as

H(y) = − log (S(y))

Example: Exponential Distribution

f(y) = θ exp (−θy)

F(y) =

∫ y

0

θ exp (−θ t)dt= (−exp (−θ t)
�

�

y
0 = 1− exp (−θy)

Exponential Survivor function and Hazard:

S(y) = exp (−θy) , h(y) = θ

Note that the hazard does not depend on age. Thus, the exponential
distribution is "memoryless". When is this a good or bad property?



GLM Extensions: Survival Models

The memoryless property makes the exponential distribution
unsuitable for a number of applications.

The Weibull distribution nests the exponential distribution.

f(y) = λφyλ−1 exp
�

−φyλ
�

Under what condition is this identical to the exponential distribution?

The survival function of Weibull:

S(y) =

∫ ∞

t
λφtλ−1 exp

�

−φtλ
�

dt

= exp
�

−φyλ
�

Hence, the hazard is written as:

h(y) = λφyλ−1

The link between y and the hazard may be either positive of negative.
What are some economic examples of each?



Simple Estimation: Survival Models

One way to estimate survival models is to construct a Kaplan-Meier
estimate of the survivor function

For this, individuals are ordered by time of death from 1 to n

y(1) ≤ y(2) ≤ · · · ≤ y(k), where nj is the number of individuals alive just
before y(j) and, dj the number of deaths that occur at time y(j)

First, consider the probability of survival just before y(1).

bS
�

y ∈ [0, y(1))
�

= 1

Next, probability of survival just before y(2).

bS
�

y ∈ [y(1), y(2))
�

= 1×
n1 − d1

n1

Next, probability of survival just before y(3).

bS
�

y ∈ [y(2), y(3))
�

= 1×
n1 − d1

n1
×

n2 − d2

n2



Simple Estimation: Survival Models

In general, the Kaplan-Meier estimate of the survivor function at time
y(s) is the following:

bS
�

y(s)
�

=
s
∏

j=1

�

nj − dj

nj

�

This can be compared to the survivor function for Exponential and
Weibull distributions

Exponential : S (y) = exp (−θy)

Weibull : S (y) = exp
�

−φyλ
�

How do we choose between the two distributions?

Take logs of the survivor functions:

Exponential : log (S (y)) = −θy

Weibull : log (S (y)) = −φyλ

Log of KM estimate should be approximately linear for exponential,
non-linear for Weibull



Example: Kaplan-Meier

To study survival models, we will use an influential study, the
"Gehan-Freirich" Survival Data

Data available on course website in stata format

The data show the length of remission in weeks for two groups of
leukemia patients, treated and control

weeks: Weeks in remission (effectively survival)

relapse: 1 if a relapse observed, 0 otherwise (this is censoring)

group: 1 if respondent was in treatment group, 0 if in control

The library "survival" contains many function that were useful for
survival models.

To construct Kaplan-Meier Estimates:

fit <- survfit(Surv(weeks, relapse)~group, data = g)
plot(fit, lty = 2:3)
legend(23, 1, c("Control", "Treatment"), lty = 2:3)



Estimation: Survival Models

The importance of the survival function and hazard function become
apparent when estimating rigorously by maximum likelihood.

For survival analysis, the data are recorded by subject j

yj is the survival time of individual j

δj = 1 is a variable identifying uncensored observations, δj = 0 if
censored.

xj a vector of explanatory variables for j.

Order j such that j= 1..r are uncensored, and j= r+ 1..n are censored

Censored individuals are still "surviving" at the end of the data
collection. We do not observe when censored individuals actually die.

For uncensored data, the likelihood function is written as:

L=
n
∏

j=1

f
�

yj

�



Estimation: Survival Models

With censored data, the likelihood function is written as:

L=
r
∏

j=1

f
�

yj

�

n
∏

j=r+1

S
�

yj

�

f
�

yj

�

is the pdf at yj, which is appropriate for uncensored data.

S
�

yj

�

is the probability that we observe yj or greater, which is the
appropriate likelihood to consider for censored observations.

We know that a censored individual j survives yj or longer, so the
likelihood of this event is S

�

yj

�

Rearranging the likelihood function, we get:

L=
n
∏

j=1

f
�

yj

�δj S
�

yj

�1−δj

We can now place this in log-likelihood form, and impose the
distributional assumptions.



Estimation: Survival Models

In log-likelihood form:

l =
n
∑

j=1

�

δj log
�

f
�

yj

��

+
�

1−δj

�

log
�

S
�

yj

��

�

=
n
∑

j=1

�

δj log
�

f
�

yj

��

+ log
�

S
�

yj

��

−δj log
�

S
�

yj

��

�

=
n
∑

j=1

�

δj

�

log
�

f
�

yj

��

− log
�

S
�

yj

���

+ log
�

S
�

yj

��

�

=
n
∑

j=1

�

δj log
�

h
�

yj

��

+ log
�

S
�

yj

��

�

Intuition:

All individuals survive until yj. This is accounted for in log
�

S
�

yj

��

For individuals with δj = 1, they die at yj. So, we account for this
within the likelihood function using the hazard function, log

�

h
�

yj

��



Estimation: Exponential Survival

The exponential distribution has convenient forms for h
�

yj

�

and S(yj).

h
�

yj

�

= θ , S(yj) = exp
�

−θyj

�

Thus, log-likelihood is:

l=
n
∑

j=1

�

δj log
�

θj

�

− θjyj

�

This looks a lot like a Poisson likelihood function, with δj as the
dependent variable. To get it even closer, write:

l =
n
∑

j=1

�

δj log
�

θjyj

�

− θjyj −δj log
�

yj

�

�

Defining µj = θjyj, we have

l =
n
∑

j=1

�

δj log
�

µj

�

−µj −δj log
�

yj

�

�

We choose µj to maximize the log-likelihood.



Estimation: Exponential Survival

Often, we assume a proportional hazards model, where the hazard
function is related to observables, θj = exp (xβ)

While exponential is memoryless, the probability of dying at y is a
function of observables (treatment vs control, for example).

Thus, substituting into µj = θjyj, we have

µj = exp (xβ)yj

Taking logs:

log
�

µj

�

= xβ + log
�

yj

�

Exponential with proportional hazards can be estimated by

glm in R, Poisson as family

log link (µ to xβ)

Offset (of the log mean) by log(yj)



Estimation: Proportional Hazards Model in R

Estimated the simple exponential survival model using R

form<-as.formula(relapse~group+offset(log(weeks))
haz_glm<-glm(form,family=poisson("log"),data=g)
summary(haz_glm)

To interpret, note that the hazard is estimated as:

θtreat = exp (β0 + β1Treat)

= exp (β0)exp (β1Treat)

Note that θcontrol = exp (β0). Hence:

θtreat = θcontrol exp (β1Treat)
θtreat

θcontrol
= exp (β1)

θtreat − θcontrol

θcontrol
= exp (β1)− 1= exp(−1.53)− 1= −0.783

78% reduction in the hazard of relapse relative to control.


