Lecture 4 - Survival Models

- Survival Models
 - Definition and Hazards
 - Kaplan Meier
 - Proportional Hazards Model
- Estimation of Survival in R

- Survival Models are a common and incredibly useful extension of the generalized linear model.
 - They are linked on a basic level to Poisson arrivals, which as we learned earlier, yield an exponential distribution of arrival times.
- Survival models are used across many fields
 - Medicine and biostatistics: Many drugs are used to prolong life in the face of serious illness.
 - Firm survival and death. How long do businesses live? Eg: conditional on entering a market (or new market) today, what is the probability of bankruptcy in 12 months?
 - One can imagine survival being used to model time spent on webpages, shopping, Facebook, etc...
- In this part of the course, we'll learn the basics of survival models using the GLM methodology, and then discuss extensions.

- Let y be survival time, and f(y) be the pdf of survival times.
- Probability of surviving less than *y* is:

$$F(y) = \Pr(Y < y) = \int_0^y f(t)dt$$

• By the property of complements, the probability of surviving longer then *y* is the *survivor function*

$$S(y) = 1 - F(y)$$

• The hazard function, h(y) is the probability of death within a small period between y and δy , given they have survived until t.

$$h(y) = \lim_{\delta \to 0} \frac{F(y + \delta y) - F(y)}{\delta y} \cdot \frac{1}{S(y)}$$
$$= \frac{f(y)}{S(y)}$$

• This is essentially a conditional probability. Conditional on surviving up to *y* or later, S(y), what is the instantaneous probability of death?

• For a few more definitions, it is straightforward to show that the hazard function is linked to the survivor function:

$$h(y) = -\frac{d}{dy}\log(S(y)) = -\frac{\frac{dS(y)}{dy}}{S(y)} = \frac{f(y)}{S(y)}$$

• Finally, the cumulative hazard function, H(y) is written as

$$H(y) = -\log(S(y))$$

• Example: Exponential Distribution

$$f(y) = \theta \exp(-\theta y)$$

$$F(y) = \int_0^y \theta \exp(-\theta t) dt = (-\exp(-\theta t)|_0^y = 1 - \exp(-\theta y)$$

• Exponential Survivor function and Hazard:

$$S(y) = \exp(-\theta y)$$
, $h(y) = \theta$

• Note that the hazard does not depend on age. Thus, the exponential distribution is "memoryless". When is this a good or bad property?

- The memoryless property makes the exponential distribution unsuitable for a number of applications.
- The Weibull distribution nests the exponential distribution.

$$f(y) = \lambda \phi y^{\lambda - 1} \exp\left(-\phi y^{\lambda}\right)$$

- Under what condition is this identical to the exponential distribution?
- The survival function of Weibull:

$$S(y) = \int_{t}^{\infty} \lambda \phi t^{\lambda - 1} \exp(-\phi t^{\lambda}) dt$$
$$= \exp(-\phi y^{\lambda})$$

Hence, the hazard is written as:

$$h(y) = \lambda \phi y^{\lambda - 1}$$

• The link between *y* and the hazard may be either positive of negative. What are some economic examples of each?

Simple Estimation: Survival Models

- One way to estimate survival models is to construct a *Kaplan-Meier* estimate of the survivor function
- For this, individuals are ordered by time of death from 1 to *n*
 - $y_{(1)} \le y_{(2)} \le \cdots \le y_{(k)}$, where n_j is the number of individuals alive just before $y_{(j)}$ and, d_j the number of deaths that occur at time $y_{(j)}$
- First, consider the probability of survival just before $y_{(1)}$.

$$\widehat{S}\left(y \in [0, y_{(1)})\right) = 1$$

• Next, probability of survival just before $y_{(2)}$.

$$\widehat{S}(y \in [y_{(1)}, y_{(2)})) = 1 \times \frac{n_1 - d_1}{n_1}$$

• Next, probability of survival just before $y_{(3)}$.

$$\widehat{S}(y \in [y_{(2)}, y_{(3)})) = 1 \times \frac{n_1 - d_1}{n_1} \times \frac{n_2 - d_2}{n_2}$$

Simple Estimation: Survival Models

• In general, the Kaplan-Meier estimate of the survivor function at time $y_{(s)}$ is the following:

$$\widehat{S}(y_{(s)}) = \prod_{j=1}^{s} \left(\frac{n_j - d_j}{n_j}\right)$$

 This can be compared to the survivor function for Exponential and Weibull distributions

Exponential:
$$S(y) = \exp(-\theta y)$$

Weibull: $S(y) = \exp(-\phi y^{\lambda})$

- How do we choose between the two distributions?
- Take logs of the survivor functions:

Exponential:
$$\log(S(y)) = -\theta y$$

Weibull: $\log(S(y)) = -\phi y^{\lambda}$

• Log of KM estimate should be approximately linear for exponential, non-linear for Weibull

Example: Kaplan-Meier

- To study survival models, we will use an influential study, the "Gehan-Freirich" Survival Data
 - Data available on course website in stata format
- The data show the length of remission in weeks for two groups of leukemia patients, treated and control
 - weeks: Weeks in remission (effectively survival)
 - relapse: 1 if a relapse observed, 0 otherwise (this is censoring)
 - **group**: 1 if respondent was in treatment group, 0 if in control
- The library "survival" contains many function that were useful for survival models.
- To construct Kaplan-Meier Estimates:

```
fit <- survfit(Surv(weeks, relapse)~group, data = g)
plot(fit, lty = 2:3)
legend(23, 1, c("Control", "Treatment"), lty = 2:3)</pre>
```

Estimation: Survival Models

- The importance of the survival function and hazard function become apparent when estimating rigorously by maximum likelihood.
- For survival analysis, the data are recorded by subject *j*
 - y_j is the survival time of individual j
 - $\delta_j = 1$ is a variable identifying uncensored observations, $\delta_j = 0$ if censored.
 - \mathbf{x}_i a vector of explanatory variables for j.
 - Order j such that j = 1..r are uncensored, and j = r + 1..n are censored
- Censored individuals are still "surviving" at the end of the data collection. We do not observe when censored individuals actually die.
- For uncensored data, the likelihood function is written as:

$$L = \prod_{j=1}^{n} f(y_j)$$

Estimation: Survival Models

With censored data, the likelihood function is written as:

$$L = \prod_{j=1}^{r} f(y_j) \prod_{j=r+1}^{n} S(y_j)$$

- $f(y_i)$ is the pdf at y_i , which is appropriate for uncensored data.
- $S(y_j)$ is the probability that we observe y_j or greater, which is the appropriate likelihood to consider for censored observations.
 - We know that a censored individual j survives y_j or longer, so the likelihood of this event is $S(y_j)$
- Rearranging the likelihood function, we get:

$$L = \prod_{j=1}^{n} f(y_j)^{\delta_j} S(y_j)^{1-\delta_j}$$

• We can now place this in log-likelihood form, and impose the distributional assumptions.

Estimation: Survival Models

• In log-likelihood form:

$$l = \sum_{j=1}^{n} \left(\delta_{j} \log(f(y_{j})) + (1 - \delta_{j}) \log(S(y_{j})) \right)$$

$$= \sum_{j=1}^{n} \left(\delta_{j} \log(f(y_{j})) + \log(S(y_{j})) - \delta_{j} \log(S(y_{j})) \right)$$

$$= \sum_{j=1}^{n} \left(\delta_{j} \left(\log(f(y_{j})) - \log(S(y_{j})) \right) + \log(S(y_{j})) \right)$$

$$= \sum_{j=1}^{n} \left(\delta_{j} \log(h(y_{j})) + \log(S(y_{j})) \right)$$

- Intuition:
 - All individuals survive until y_j . This is accounted for in $\log(S(y_j))$
 - For individuals with $\delta_j = 1$, they die at y_j . So, we account for this within the likelihood function using the hazard function, $\log(h(y_j))$

Estimation: Exponential Survival

• The exponential distribution has convenient forms for $h(y_i)$ and $S(y_i)$.

$$h(y_j) = \theta$$
 , $S(y_j) = \exp(-\theta y_j)$

Thus, log-likelihood is:

$$l = \sum_{j=1}^{n} \left(\delta_{j} \log \left(\theta_{j} \right) - \theta_{j} y_{j} \right)$$

• This looks a lot like a Poisson likelihood function, with δ_j as the dependent variable. To get it even closer, write:

$$l = \sum_{j=1}^{n} \left(\delta_{j} \log (\theta_{j} y_{j}) - \theta_{j} y_{j} - \delta_{j} \log (y_{j}) \right)$$

• Defining $\mu_i = \theta_i y_i$, we have

$$l = \sum_{j=1}^{n} \left(\delta_{j} \log(\mu_{j}) - \mu_{j} - \delta_{j} \log(y_{j}) \right)$$

• We choose μ_i to maximize the log-likelihood.

Estimation: Exponential Survival

- Often, we assume a proportional hazards model, where the hazard function is related to observables, $\theta_i = \exp(\mathbf{x}\beta)$
 - While exponential is memoryless, the probability of dying at *y* is a function of observables (treatment vs control, for example).
- Thus, substituting into $\mu_i = \theta_i y_i$, we have

$$\mu_j = \exp(\mathbf{x}\beta)y_j$$

Taking logs:

$$\log(\mu_j) = \mathbf{x}\beta + \log(y_j)$$

- Exponential with proportional hazards can be estimated by
 - glm in R, Poisson as family
 - log link (μ to $x\beta$)
 - Offset (of the log mean) by $log(y_i)$

Estimation: Proportional Hazards Model in R

Estimated the simple exponential survival model using R

```
form<-as.formula(relapse~group+offset(log(weeks))
haz_glm<-glm(form, family=poisson("log"), data=g)
summary(haz_glm)</pre>
```

To interpret, note that the hazard is estimated as:

$$\theta_{treat} = \exp(\beta_0 + \beta_1 Treat)$$
$$= \exp(\beta_0) \exp(\beta_1 Treat)$$

• Note that $\theta_{control} = \exp(\beta_0)$. Hence:

$$\begin{array}{rcl} \theta_{treat} & = & \theta_{control} \exp{(\beta_1 Treat)} \\ \frac{\theta_{treat}}{\theta_{control}} & = & \exp{(\beta_1)} \\ \frac{\theta_{treat} - \theta_{control}}{\theta_{control}} & = & \exp{(\beta_1)} - 1 = \exp(-1.53) - 1 = -0.783 \end{array}$$

• 78% reduction in the hazard of relapse relative to control.