Lecture 4 - Survival Models

@ Survival Models

e Definition and Hazards
e Kaplan Meier

e Proportional Hazards Model

@ Estimation of Survival in R



GLM Extensions: Survival Models

@ Survival Models are a common and incredibly useful extension of the
generalized linear model.

e They are linked on a basic level to Poisson arrivals, which as we learned
earlier, yield an exponential distribution of arrival times.

@ Survival models are used across many fields

e Medicine and biostatistics: Many drugs are used to prolong life in the
face of serious illness.

e Firm survival and death. How long do businesses live? Eg: conditional
on entering a market (or new market) today, what is the probability of
bankruptcy in 12 months?

e One can imagine survival being used to model time spent on webpages,
shopping, Facebook, etc...

@ In this part of the course, we’ll learn the basics of survival models
using the GLM methodology, and then discuss extensions.



GLM Extensions: Survival Models

@ Let y be survival time, and f(y) be the pdf of survival times.

@ Probability of surviving less than y is:

Y
F(y)=Pr(Y <y) =J f(t)dt
0

@ By the property of complements, the probability of surviving longer
then y is the survivor function

SO)=1-F(Q)

@ The hazard function, h(y) is the probability of death within a small
period between y and 0y, given they have survived until t.

.. Fy+6y)—-F@) 1
hy) = lim 5y SO
&)
S(y)

@ This is essentially a conditional probability. Conditional on surviving
up to y or later, S(y), what is the instantaneous probability of death?




GLM Extensions: Survival Models

@ For a few more definitions, it is straightforward to show that the
hazard function is linked to the survivor function:

d T _ )
dy
h(y) == log (S(¢)) = ——r =222
dy S SK)
@ Finally, the cumulative hazard function, H(y) is written as
H(y) = —1og(S(y))

@ Example: Exponential Distribution

fly) = Oexp(—0y)

Y
F(y) = J 0 exp (—60t)dt = (—exp(—0t) [} = 1 —exp(—0y)
0

@ Exponential Survivor function and Hazard:

S(y) =exp(=0y) , h(y)=06

@ Note that the hazard does not depend on age. Thus, the exponential
distribution is "memoryless". When is this a good or bad property?



GLM Extensions: Survival Models

@ The memoryless property makes the exponential distribution
unsuitable for a number of applications.

@ The Weibull distribution nests the exponential distribution.

o) =2y texp(—oy?)

@ Under what condition is this identical to the exponential distribution?

@ The survival function of Weibull:

S(y) = J Apt* Lexp (—¢pt)dt
t
= exp(—¢y")
@ Hence, the hazard is written as:
h(y) = A¢y*™

@ The link between y and the hazard may be either positive of negative.
What are some economic examples of each?



Simple Estimation: Survival Models

@ One way to estimate survival models is to construct a Kaplan-Meier
estimate of the survivor function

@ For this, individuals are ordered by time of death from 1 to n

® Y1) <Y < - < Ywx), where n; is the number of individuals alive just

before Vi) and, d. the number of deaths that occur at time Yi)

@ First, consider the probability of survival just before y().

S(yel0,yq))=1
@ Next, probability of survival just before y(,).

n, —d;

S(y€lyayy)) =1 x
ny

@ Next, probability of survival just before ys).

n,—d; np—d,

S(y € yayy)) =1 x X
n, ny




Simple Estimation: Survival Models

@ In general, the Kaplan-Meier estimate of the survivor function at time
Y(s) 1s the following:

J=1
@ This can be compared to the survivor function for Exponential and
Weibull distributions

Exponential : S(y) = exp(—0y)
Weibull : S(y) = exp (—qﬁy’“)

@ How do we choose between the two distributions?

@ Take logs of the survivor functions:
Exponential : log(S(y)) = —0y
Weibull : log(S(y) = —o¢y*

@ Log of KM estimate should be approximately linear for exponential,
non-linear for Weibull



Example: Kaplan-Meier

@ To study survival models, we will use an influential study, the
"Gehan-Freirich" Survival Data

e Data available on course website in stata format

The data show the length of remission in weeks for two groups of
leukemia patients, treated and control

e weeks: Weeks in remission (effectively survival)
o relapse: 1 if a relapse observed, O otherwise (this is censoring)

e group: 1 if respondent was in treatment group, O if in control

The library "survival" contains many function that were useful for
survival models.

To construct Kaplan-Meier Estimates:

fit <- survfit (Surv (weeks, relapse)~group, data = qg)
plot (fit, 1lty = 2:3)
legend (23, 1, c("Control", "Treatment"), lty = 2:3)



Estimation: Survival Models

@ The importance of the survival function and hazard function become
apparent when estimating rigorously by maximum likelihood.

@ For survival analysis, the data are recorded by subject j
o y; is the survival time of individual j

o 6; =1 is a variable identifying uncensored observations, 6; = 0 if
censored.

o X; a vector of explanatory variables for j.

e Orderj such thatj = 1..r are uncensored, and j =r + 1..n are censored

@ Censored individuals are still "surviving" at the end of the data
collection. We do not observe when censored individuals actually die.

@ For uncensored data, the likelihood function is written as:

L= l_l[f (%)



Estimation: Survival Models

@ With censored data, the likelihood function is written as:

L= ]_[fy] l_[Sy]

j=r+1

@ f (yj) is the pdf at y;, which is appropriate for uncensored data.

@S (yj) is the probability that we observe y; or greater, which is the
appropriate likelihood to consider for censored observations.

o We know that a censored individual j survives y; or longer, so the
likelihood of this event is S (yj)

@ Rearranging the likelihood function, we get:

=] [r0;)"s(;) ™
j=1

@ We can now place this in log-likelihood form, and impose the
distributional assumptions.



Estimation: Survival Models

@ In log-likelihood form:

n

= 25 (B00( 05) + (1-0)ox (5(1)
31108 (7 () +10g (5 (1)) ~ 5, 10g (5 () )

5
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@ Intuition:
o All individuals survive until y;. This is accounted for in log (S (yj))

o For individuals with 6; =1, they die at y;. So, we account for this
within the likelihood function using the hazard function, log (h (yj))



Estimation: Exponential Survival

@ The exponential distribution has convenient forms for h (y]-) and S(y;).

h (y) =6, S(y;) =exp (—Gy]-)
@ Thus, log-likelihood is:

j=1
@ This looks a lot like a Poisson likelihood function, with 6; as the
dependent variable. To get it even closer, write:

n

L= Y (5]- log (6,y;) — 6;— 8;10g () )

j=1
@ Defining u; = 6.y;, we have

n

L= (5]. log (1) — 1 — ; log(yf))

j=1
@ We choose u; to maximize the log-likelihood.



Estimation: Exponential Survival

@ Often, we assume a proportional hazards model, where the hazard
function is related to observables, 6;: = exp (x3)

e While exponential is memoryless, the probability of dying at y is a
function of observables (treatment vs control, for example).

@ Thus, substituting into u; = 6,y;, we have
U; = €Xp (xB)y j
@ Taking logs:

log (,uj) = x5 +log (yj)

@ Exponential with proportional hazards can be estimated by
e glm in R, Poisson as family
e log link (u to xf3)

o Offset (of the log mean) by log(y;)



Estimation: Proportional Hazards Model in R

@ Estimated the simple exponential survival model using R
form<—as.formula (relapse~groupt+offset (log(weeks))

haz_glm<-glm(form, family=poisson ("log"), data=qg)
summary (haz_glm)

@ To interpret, note that the hazard is estimated as:

Qtreat — €exp (ﬁO + ﬁ 1Treat)
—  exp(Bo) exp (B, Treat)
@ Note that 6,,,,,; = exp(f3y). Hence:

Qtreat — Qcontrol €xp (ﬁlTreat)

v,

L = exp ()

control

0. ..—0
reat  “oontrol  —  axp(f;)— 1= exp(—1.53) —1 = —0.783
Gcontrol

@ 78% reduction in the hazard of relapse relative to control.



