Economics 217 - Nonparametric Econometrics

@ Topics covered in this lecture

e Introduction to the nonparametric model
e The role of bandwidth
e Choice of smoothing function

e R commands for nonparametric models

@ Much of these notes are inspired by Prof. Bruce Hansen’s PhD Econometrics
Text.

Linear models to non-parametric models

@ What is a non-parametric model?

e A model that does not assume a strong parametric form of the relationship
between independent variables and dependent variables

e Simple OLS adopts the assumption "linear in parameters". That is, a parametric
function that is linear in things we estimate

e Non-parametric models are occasionally called semi-parametric models, though
these can refer to other techniques as well so we will use non-parametric.

@ Recall that the linear model can be written as:
Yi =% B +u;
@ In general, the non-parametric model is written as:
Y, =S (xil,xiz, ...xip) + u;

@ The key is choosing the particular form of s (), subject to a variety of practical
constraints. What are the issues in choosing these functions?

Top-level issues with non-parametric models

@ Issue #1: Functional Form

e Ultimately, we must choose a form for s (xil,xiz, ...xl-p). And, there are an infinite
number of choices that we have.

@ For example, we could simplify:
Y, =S (xil,xiz, ...,xip) + u;
as
Yi=31061) +52(x2) +--- +s, (Xip) T U,

@ And still, even under the last form, we’d have to assume something about
st (). But why didn’t we use:

Yi =81 (X1, X;0) +53(x;3) + -+, (xip) + U,

@ The choices are (literally) endless.

Top-level issues with non-parametric models

@ One option available to the researcher is to choose a parametric function that
is ridiculously rich and flexible.

@ For example, let’s consider the univariate non-parametric model
yi=s(x)+y;

@ Again, there are a lot of choices for s(). One (parametric) choice is the
following:

Yi = Po+Prx;+ ﬁzxiz + ﬁgxf + ﬁ4xf1
+ ﬁ5xl.5 + /56xi6 + f37log (x;) + Bg cos (x;) + u;

@ Positives for this specification:

e Can estimate with OLS, get standard errors easily, generate predictions
@ Negatives for this specification?

@ We will return to these types of models after we discuss the most basic
non-parametric estimation procedures.

Top-level issues with non-parametric models

@ A common, very simple and intuitive alternative to a flexible functional form
is called "binned estimation".

@ Intuitively, we break-up the data into bins, and find the best fit within these
bins.

e A popular technique in data science, "k-nearest neighbors", is an extended
version of "binned" estimation.

@ Formally, this is accomplished through the following equation

ST (I —x] < By,
ST (I —x| <h)

s(x) =

@ In this equations, we have:
@ s(x) The estimate form s() at x

e h: The bandwidth - the region of x’s over which we estimate s() at x

@ At a given x, we take values no more than h above or below x to estimate s(x)

Top-level issues with non-parametric models

@ This approach can be re-written as a function of a general weighting function.

> 1 —x| <h)y,
ST (Il —x] < h)
= 1(g—x| <h)

= n Yi
251 (s <)

s(x) =

wiCo)

n
= Z w;(x)y;
i
@ What is the primary issue with estimating this function?

@ Issue #2: Weighting and Bandwidth

e Non-parametric estimates may depend heavily on choice of weighting function
w(ox)

@ We will examine different weighting functions later on.

Nadaraya-Watson Estimator

@ Generally, binned-estimation is called either a "local-constant estimator" or
the "Nadaraya-Watson" estimator.

Sx) = Zwi(x)yi

@ Redefine the weighting function as a Kernel Function, k(u), where

X; —X
u=
h
and k(u) has the following properties:
k(u) = k(—u)
0< k(u) <oo
f k(uydu = 1
f wk(wdu < oo

@ k(u) is a bounded pdf and symmetric about zero, with finite variance

Nadaraya-Watson Estimator

@ Choice of k(u) is crucial to any non-parametric study. There are three
common choices:

e Uniform (or "box"):
1
kw) = S1(ul<1)
Just as we’ve described above for the binned estimation
e Epanechnikov:
kw) = >(1—-uv*)1(jul<1)
Like uniform, but declining weights in u”

e Gaussian:

k(u) = ‘/;_ﬂ_ exp (_u;)

Weighted as a standard normal distribution

R Examples: Nadaraya-Watson and Binned Estimation

@ Basic Nadaraya-Watson estimation can be accomplished in R using the

command ksmooth

@ Syntax: ksmooth(x,y, type, bandwidth)
e Xx: the running variable
e y: the outcome variable
e kernel: type of smoothing ("box" or "normal")

e bandwidth: exactly as it sounds.

e Evaluate smooth relationship between age and labor force participation

plot (ksmooth (subdSage, subdSnilf, "box", bandwidth = 1), col = 1)
lines (ksmooth (subd$age, subd$nilf, "box", bandwidth = 10),
lines (ksmooth (subd$age, subdS$Snilf, "box", bandwidth = 20), col =
lines (ksmooth (subd$age, subd$nilf, "box", bandwidth = 40),

col =

col =

@ With the normal kernel instead of boxed

plot (ksmooth (subdSage, subd$Snilf, "normal", bandwidth = 1), col =
lines (ksmooth (subd$age, subd$nilf, "normal", bandwidth = 10), col
lines (ksmooth (subd$age, subdSnilf, "normal", bandwidth = 20), co
lines (ksmooth (subd$age, subdSnilf, "normal", bandwidth = 40), co

2)

Locally linear regression

@ A common alternative to Nadaraya-Watson (NW), though not necessarily
better, is the locally linear regression (often called "loess" smoothing)

Like NW, we produce an estimate for each x

Unlike NW, we run a full linear regression rather than just estimate an
intercept (though we still use an intercept)

Formally, we solve the following for each x

s(x) = al(x)

where

{@(x), B()}

arg,rlglinzn:k(xi ;X) ;i —a—p (x;—x))°

L

Then, after we do this, we plot s(x)

When do you think that the Loess regression works better than NW?

R Examples: Loess Estimator

The "loess" function is one way to execute local-linear estimation in R.

"loess" allows for both first and second degree polynomial smoothing.
fit.lm<-1lm(subdSnilf~subd$age)

fit.loessl<-loess (subdSnilf~subd$age, span=1, degree=1)
fit.loess2<-loess (subd$nilf~subd$age, span=1, degree=2)

And now we plot it.

plot (subdSage, predict (fit.1lm), type="1", lwd=2,ylim=c (0, 1))
lines (subdSage, predict (fit.loessl),col=1, 1lty=2)

lines (subd$age, predict (fit.loess2),col=4)

Let’s evaluate the role of "span" which is the command’s bandwidth control

fit.loessl<-loess (subd$nilf subd$age, span=1, degree=1)
fit.loess2<-1loess (subdSnilf~subd$age, span=10, degree=1)
fit.loess3<-loess (subdSnilf~subd$age, span=.1, degree=1)

Again, we plot:

plot (subdSage, predict (fit.1lm), type="1", lwd=2,ylim=c (0, 1))
lines (subd$age, predict (fit.loessl),col=1,1lty=2)

lines (subd$age, predict (fit.loess2),col=3)

lines (subd$age, predict (fit.loess3),col=4)

Optimal Bandwidth Selection

@ How do we choose optimal bandwidth?

@ The tradeoffs are fairly straightforward.
e Large h: reduces variance but increases bias and oversmoothing
e Small h: reduces bias but increases noise

@ Need a technique to systematically balance these objectives.

@ Cross Validation is the general technique that is used for choosing bandwidth

@ Leave-one-out bandwidth selection is a type of cross-validation, the standard
approach

e The technique itself drops an observation, generates the model, and predicts the
outcome for the dropped observation using the model.

e We choose the bandwidth that minimizes any out-of-sample prediction errors.

Optimal Bandwidth Selection

@ Cross-Validation procedure

Q@ Choose h

@ Estimate 5(x) without observation i. Label this estimates_,(x, h)
@ Calculate prediction error for i: é; =y, —5_;(x, h)

© Repeat for all i

@ Calculate CV(h) =Y.' &?

© Repeat for all other h.
@ Choose h that minimizes CV(h)

@ This technique could obviously take a while. For example, with a dataset of
1000 observations and 100 choices of bandwidth, 100,000 regressions are
run in total.

R: Optimal Bandwidth Selection

@ To demonstrate leave-one-out, let’s first create some fake data
x<-seq(-10,10, 1length=1000)

y<—-sin (x) +trnorm(1000,0, 1)

@ Then, let’s have a look at a few loess plots and talk about what we see.
fit.loessl<-loess(y~x, family="gaussian",span=1, degree=1)
fit.loess2<-loess (y~x, family="gaussian", span=.05, degree=1)
plot (x,predict (fit.loessl),type="1", 1wd=2,ylim=c(-2,2))
lines (x,predict (fit.loess2),col=1,1ty=2)

@ For the leave-one-out estimator, let’s create a fake data frame to use

small<-data.frame (y, x)

R: Optimal Bandwidth Selection

@ Again, the basic process for leave-one-out is the following

e For each h, iterate through each observation i
@ Drop i, estimate the model with the rest
@ Use model to predict i

@ Calculate squared error of prediction = save

@ Choose h that minimizes out of sample SSR: Code:
for(h in 1:20) {
for(i in l:nrow(small)) {

smalldrop<-small[i,]
smallkeep<-small[-1i,]
fit<-loess (y~x,smallkeep, family="gaussian", span=(h/20), degree=1)
dropfit<-predict (fit, smalldrop, se=FALSE)
sqrerr<-(smalldropSy—as.numeric (dropfit)) "2
1if(ixh==1) {results<-data.frame (h, 1, sgqrerr) }

1if(1xh>1) {results<-rbind(results,data.frame (h, i, sgrerr))}

}
@ Use tapply (or some other function) to find the minimizing h

tapply (results$sqgrerr, results$h, FUN=sum, na.rm=TRUE)

Series estimation

Series estimation involves using a flexible polynomial to estimate an
unknown function.

Though earlier I mentioned that the choice of polynomial is arbitrary, there is
a science behind it.

Stone-Weierstrass Theorem (1885, 1937, 1948)

e Any continuous function can be well approximated by a polynomial of a
sufficiently high order.

How do we choose such a function?

Two main considerations:

e Do we interact variables of interest?

e What order polynomial should we use?

Series estimation

Two techniques:
e Approximation by series
e Approximation by spline

In the former, we essentially choose a flexible polynomial, including all
powers of variables and cross-products of variables and their powers.

Two defining features of approximation by series
e p number of variables:

e k order of the polynomial.

A simple series regression, p = 2 and k = 1, is the following:

s(x) = Bo + B1xq + B1x5 + B1ox1Xo
Assuming p = 2 and k = 2 we get:
s(x) = Po+ Pixy + Poxs + ProxX,
2 2 2 2 2.2
+ Pr1x5 + Pooxs + Prooxy X5 + Pr10X7X0 + Pr120X7 X5

Just by going from k = 1 to k = 2, dimension more than doubled

Series estimation

@ In general, series estimation has a dimension K = (1 + k)?

e This can obviously get pretty big depending on the dataset and desire for a
smooth fit

@ There is also a downside to a polynomial fit of this type: Runge’s
Phenomenon

e Polynomials can be very bad at interpolation.

e In other words, they might do well predicting the actual data, but very poorly
when generating out-of-sample predictions.

@ To study this, let’s plot the function

1
1 + x2

s(x) =

And try to estimate it with a polynomial.

R Example: Runge’s phenomenon

@ Try this with linear regression, and 10th order polynomial

@ First, let’s create some fake data

x<-seqg(-10,10,by=1)
y<—=1/(1+x"2)
X2<=x"2

X3<-x"3

X4<-x"4

X5<-x"5

X6<-xX"6

XT7<=x""7

xX8<—-x"8

X9<-x"9

x10<-x"10
@ Then let’s plot:

plot (y~x,ylim=c(-0.25,1))
lines (predict (Im(y~x))~x,col=1, lwd=2)
lines (predict (Im(y~x+x2))~x,col=2, lwd=2)

lines (predict (Im(y~x+x2+x3+x4+x5+x6+x7+x8+x9+x10)) ~x, col=3, 1lwd=2)

R Example: Runge’s phenomenon

@ Next, let’s generate a new dataset, and evaluate out-of-sample predictions

xnew<-data.frame (x=seq(-5,5,by=0.01))
xnewsSx2<—-xnews$x”"2

xnews$x3<—-xnew$x”"3

xnewSx4<-xnew$Sx"4

XnewsSx5<—-xnews$x"5

XNewsSxo6<—xnewsSx”" 6

XnewsSx7<—-xnews$x”"7

XNnewsSx8<—xnews$x”" 8

XnewsSx9<—xnewsSx”"9
xnews$x10<-xnew$x”"10

ynew<—1/ (1+xnews$x"2)
@ Then let’s plot:
plot (ynew~xnewSx,ylim=c (-0.25,1),cex=0.25)

lines (predict (Im(y~x+x2+x3+x4+x5+x6+x7+x8+x9+x10) , xnew) ~xnewsSx, col=4, lwd=2)

@ The original fit was created using 11 data points evenly spaced between -5
and 5. How did we do away from these points?

Spline estimation

@ Spline estimation is an alternative to series estimation which is also based on
polynomials, but allows for the polynomial to "evolve" with the value of the
dependent variable.

@ To develop a spline model, suppose that s(x) is univariate, and that x € ()_c,)_C)

@ Further, suppose that we have chosen N "knots" {t;,t5,...,ty} € ()_c,)_c).

e These knots split up the relevant range of x, and as you will see, are crucial to
the estimation of spline functions.

@ With these knots, a spline function is defined by the following:

k N
sG)= D B+ D v -6 1 x>)
j=0 z=1

@ Characteristics of the spline function
e Conitinuous derivatives up to k—1

e In practice k is usually 3 to have continuous second derivatives.

Spline estimation

k N
se) =D Bk + Dy, (e—) 1>)
j=0 z=1

@ There are two critical parts to the spline function:
° Zj;o B x* is the basic polynomial
° Z]ZV:l v Gc—t,)1(x > t,) at the maximum degree

@ Critical issues moving forward is choosing t,’s. Cross-validation is the
technique that is typically used for this

@ However, must choose either flexibility (location of t,’s), or depth of changes
to the polynomial (number of t,’s).

e If you limit yourself to very small number of t,’s, can grid search over a few t,’s.

e If you want to possibly have a lot of flexibility in the spline, evenly space the
knots.

R Example: Spline estimation

1

@ Let’s do another example with s(x) = 1==. We’ll compare the 10th-order
polynomial with a third-degree spline with four knots at -3, -1, 1, and 3.

@ To construct the spline, let’s first write out the equation:
_ 2 3 3
s(0) = u+fo+Prx+ Pox” + Pax” +v, (x—=(=3)))" 1(x=—3)
Fr,c— (1)) 10> =D+ y3(c—1)1(x>1) + 7, (x—3)° 1 (x> 3)
@ To code in R, let’s create the knots at the original and new data
kl<-ifelse (x>(-3), (x-(-3))"3,0)
k2<-ifelse (x> (-1), (x—(-1))"3,0)
k3<-ifelse (x> (1), (x~1)"3,0)
k4<-ifelse (x>(3), (x—(3))"3,0)

X , (X
, (X

xnewsSkl<—ifelse (xnews$x> (-3), (xnewSx—(-3))"3,0)
1

xnewSk2<—-ifelse (xnewsSx>), (xnewSx—(-1))"3,0)

((—
((—
xnewsSk3<—ifelse (xnews$x> (1), (xnewSx-1)"3,0)
((3

xnewSk4d<—-ifelse (xnew$x> (3), (xnews$x—-(3))"3,0)

@ Then plot
plot (ynew~xnew$x, ylim=c (-0.25,1))
lines (predict (Im(y~x+x2+x3+x4+x5+x6+x7+x8+x9+x10) , xnew) ~xnewsSx, col=4, lwd=2)

lines (predict (Im(y~x+x2+x3+k1l+k2+k3+kd) , xnew) ~xnewS$Sx, col=1, lwd=2)

R Example: GAM package in R

@ There are a number of non-parametric econometrics packages in R

o library "gam" is the easiest to use

e library "mvcv" has more bells and whistles - check it out on your own as you wish.

We will estimate (again) labor force participation with gam, as a function of
age:

gamresults<-gam(nilf ~s(age,4), data=subd)
summary (gamresults)
plot (gamresults, se=TRUE, rug=FALSE, terms="s")

In the first line, "s(age,4)" specifies a smooth function of the variable "age"
with a smoothing parameter of 4.

e This smoothing parameter goes into a complicated procedure called
"backfitting", but the entire procedure is based on third-order splines.

"s(age,1)" would yield a linear regression.

The dependent variable is always demeaned to zero before estimation. So,
IE (s(age,)) = 0. This is useful for inference.

R Example: GAM package in R

@ Now we add-in education, which is a factor variable.

gamresults<—-gam(nilf ~s(age, 4)+educ, data=subd)
summary (gamresults)

par (mfrow=c(1l,2))

plot (gamresults, se=TRUE, rug=FALSE, terms="s")
abline (v=0)

abline (h=0)

plot (gamresults, se=TRUE, rug=FALSE, terms="educ")
abline (v=0)

abline (h=0)

@ The use of the function "abline" places a horizontal and vertical intercept at
zero, with the former being the benchmark for being different from the
sample average.

e That is, if the two standard deviation confidence bands do not include zero, we
reject zero as a hypothesized value at that point.

e Since E(s(age,)) = 0, we conclude that the estimate at that point is significantly
different from the sample average.

@ GLM restrictions (eg. families, links) can be used with gam.

