
Economics 217 - Nonparametric Econometrics

Topics covered in this lecture

Introduction to the nonparametric model

The role of bandwidth

Choice of smoothing function

R commands for nonparametric models

Much of these notes are inspired by Prof. Bruce Hansen’s PhD Econometrics
Text.



Linear models to non-parametric models

What is a non-parametric model?

A model that does not assume a strong parametric form of the relationship
between independent variables and dependent variables

Simple OLS adopts the assumption "linear in parameters". That is, a parametric
function that is linear in things we estimate

Non-parametric models are occasionally called semi-parametric models, though
these can refer to other techniques as well so we will use non-parametric.

Recall that the linear model can be written as:

yi = xT
i β + ui

In general, the non-parametric model is written as:

yi = s
�

xi1, xi2, ...xip

�

+ ui

The key is choosing the particular form of s (), subject to a variety of practical
constraints. What are the issues in choosing these functions?



Top-level issues with non-parametric models

Issue #1: Functional Form

Ultimately, we must choose a form for s
�

xi1, xi2, ...xip

�

. And, there are an infinite
number of choices that we have.

For example, we could simplify:

yi = s
�

xi1, xi2, ..., xip

�

+ ui

as

yi = s1 (xi1) + s2 (xi2) + · · ·+ sp

�

xip

�

+ ui

And still, even under the last form, we’d have to assume something about
sk(). But why didn’t we use:

yi = s1 (xi1, xi2) + s3 (xi3) + · · ·+ sp

�

xip

�

+ ui

The choices are (literally) endless.



Top-level issues with non-parametric models

One option available to the researcher is to choose a parametric function that
is ridiculously rich and flexible.

For example, let’s consider the univariate non-parametric model

yi = s (xi) + ui

Again, there are a lot of choices for s(). One (parametric) choice is the
following:

yi = β0 + β1xi + β2x2
i + β3x3

i + β4x4
i

+ β5x5
i + β6x6

i + β7 log (xi) + β8 cos (xi) + ui

Positives for this specification:

Can estimate with OLS, get standard errors easily, generate predictions

Negatives for this specification?

We will return to these types of models after we discuss the most basic
non-parametric estimation procedures.



Top-level issues with non-parametric models

A common, very simple and intuitive alternative to a flexible functional form
is called "binned estimation".

Intuitively, we break-up the data into bins, and find the best fit within these
bins.

A popular technique in data science, "k-nearest neighbors", is an extended
version of "binned" estimation.

Formally, this is accomplished through the following equation

bs(x) =

∑n
i 1 (|xi − x|< h)yi
∑n

i 1 (|xi − x|< h)

In this equations, we have:

bs(x) The estimate form s() at x

h: The bandwidth - the region of x′s over which we estimate s() at x

At a given x, we take values no more than h above or below x to estimate bs(x)



Top-level issues with non-parametric models

This approach can be re-written as a function of a general weighting function.

bs(x) =

∑n
i 1 (|xi − x|< h)yi
∑n

i 1 (|xi − x|< h)

=
n
∑

i

1 (|xi − x|< h)
∑n

j 1
�

|xj − x|< h
�

︸ ︷︷ ︸

wi(x)

yi

=
n
∑

i

wi(x)yi

What is the primary issue with estimating this function?

Issue #2: Weighting and Bandwidth

Non-parametric estimates may depend heavily on choice of weighting function
w(x)

We will examine different weighting functions later on.



Nadaraya-Watson Estimator

Generally, binned-estimation is called either a "local-constant estimator" or
the "Nadaraya-Watson" estimator.

bs(x) =
n
∑

i

wi(x)yi

Redefine the weighting function as a Kernel Function, k(u), where

u=
xi − x

h

and k(u) has the following properties:

k(u) = k(−u)
0≤ k(u) <∞

∫ ∞

−∞
k(u)du = 1

∫ ∞

−∞
u2k(u)du < ∞

k(u) is a bounded pdf and symmetric about zero, with finite variance



Nadaraya-Watson Estimator

Choice of k(u) is crucial to any non-parametric study. There are three
common choices:

Uniform (or "box"):

k(u) =
1
2

1 (|u| ≤ 1)

Just as we’ve described above for the binned estimation

Epanechnikov:

k(u) =
3
4

�

1− u2
�

1 (|u| ≤ 1)

Like uniform, but declining weights in u2

Gaussian:

k(u) =
1
p

2π
exp

�

−
u2

2

�

Weighted as a standard normal distribution



R Examples: Nadaraya-Watson and Binned Estimation

Basic Nadaraya-Watson estimation can be accomplished in R using the
command ksmooth

Syntax: ksmooth(x,y, type, bandwidth)

x: the running variable

y: the outcome variable

kernel: type of smoothing ("box" or "normal")

bandwidth: exactly as it sounds.

Evaluate smooth relationship between age and labor force participation
plot(ksmooth(subd$age,subd$nilf, "box", bandwidth = 1), col = 1)

lines(ksmooth(subd$age,subd$nilf, "box", bandwidth = 10), col = 2)

lines(ksmooth(subd$age, subd$nilf, "box", bandwidth = 20), col = 3)

lines(ksmooth(subd$age, subd$nilf, "box", bandwidth = 40), col = 4)

With the normal kernel instead of boxed
plot(ksmooth(subd$age,subd$nilf, "normal", bandwidth = 1), col = 1)

lines(ksmooth(subd$age,subd$nilf, "normal", bandwidth = 10), col = 2)

lines(ksmooth(subd$age, subd$nilf, "normal", bandwidth = 20), col = 3)

lines(ksmooth(subd$age, subd$nilf, "normal", bandwidth = 40), col = 4)



Locally linear regression

A common alternative to Nadaraya-Watson (NW), though not necessarily
better, is the locally linear regression (often called "loess" smoothing)

Like NW, we produce an estimate for each x

Unlike NW, we run a full linear regression rather than just estimate an
intercept (though we still use an intercept)

Formally, we solve the following for each x

bs(x) = bα(x)
where

�

bα(x), bβ(x)
	

= argmin
α,β

n
∑

i

k
�xi − x

h

�

(yi −α− β (xi − x))2

Then, after we do this, we plot bs(x)

When do you think that the Loess regression works better than NW?



R Examples: Loess Estimator

The "loess" function is one way to execute local-linear estimation in R.

"loess" allows for both first and second degree polynomial smoothing.
fit.lm<-lm(subd$nilf~subd$age)

fit.loess1<-loess(subd$nilf~subd$age,span=1, degree=1)

fit.loess2<-loess(subd$nilf~subd$age,span=1, degree=2)

And now we plot it.
plot(subd$age,predict(fit.lm),type="l",lwd=2,ylim=c(0,1))

lines(subd$age,predict(fit.loess1),col=1,lty=2)

lines(subd$age,predict(fit.loess2),col=4)

Let’s evaluate the role of "span" which is the command’s bandwidth control
fit.loess1<-loess(subd$nilf subd$age,span=1, degree=1)

fit.loess2<-loess(subd$nilf~subd$age,span=10, degree=1)

fit.loess3<-loess(subd$nilf~subd$age,span=.1, degree=1)

Again, we plot:
plot(subd$age,predict(fit.lm),type="l",lwd=2,ylim=c(0,1))

lines(subd$age,predict(fit.loess1),col=1,lty=2)

lines(subd$age,predict(fit.loess2),col=3)

lines(subd$age,predict(fit.loess3),col=4)



Optimal Bandwidth Selection

How do we choose optimal bandwidth?

The tradeoffs are fairly straightforward.

Large h: reduces variance but increases bias and oversmoothing

Small h: reduces bias but increases noise

Need a technique to systematically balance these objectives.

Cross Validation is the general technique that is used for choosing bandwidth

Leave-one-out bandwidth selection is a type of cross-validation, the standard
approach

The technique itself drops an observation, generates the model, and predicts the
outcome for the dropped observation using the model.

We choose the bandwidth that minimizes any out-of-sample prediction errors.



Optimal Bandwidth Selection

Cross-Validation procedure

1 Choose h

2 Estimate bs(x) without observation i. Label this estimate bs−i(x, h)

3 Calculate prediction error for i: ẽi = yi −bs−i(x, h)

4 Repeat for all i

5 Calculate CV(h) =
∑n

i ẽ2
i

6 Repeat for all other h.

Choose h that minimizes CV(h)

This technique could obviously take a while. For example, with a dataset of
1000 observations and 100 choices of bandwidth, 100,000 regressions are
run in total.



R: Optimal Bandwidth Selection

To demonstrate leave-one-out, let’s first create some fake data
x<-seq(-10,10,length=1000)

y<-sin(x)+rnorm(1000,0,1)

Then, let’s have a look at a few loess plots and talk about what we see.
fit.loess1<-loess(y~x, family="gaussian",span=1, degree=1)

fit.loess2<-loess(y~x, family="gaussian",span=.05, degree=1)

plot(x,predict(fit.loess1),type="l",lwd=2,ylim=c(-2,2))

lines(x,predict(fit.loess2),col=1,lty=2)

For the leave-one-out estimator, let’s create a fake data frame to use
small<-data.frame(y,x)



R: Optimal Bandwidth Selection

Again, the basic process for leave-one-out is the following

For each h, iterate through each observation i

Drop i, estimate the model with the rest

Use model to predict i

Calculate squared error of prediction⇒ save

Choose h that minimizes out of sample SSR: Code:
for(h in 1:20){

for(i in 1:nrow(small)){

smalldrop<-small[i,]

smallkeep<-small[-i,]

fit<-loess(y~x,smallkeep, family="gaussian",span=(h/20), degree=1)

dropfit<-predict(fit,smalldrop,se=FALSE)

sqrerr<-(smalldrop$y-as.numeric(dropfit))^2

if(i*h==1){results<-data.frame(h,i,sqrerr)}

if(i*h>1){results<-rbind(results,data.frame(h,i,sqrerr))}

}

}

Use tapply (or some other function) to find the minimizing h
tapply(results$sqrerr,results$h,FUN=sum,na.rm=TRUE)



Series estimation

Series estimation involves using a flexible polynomial to estimate an
unknown function.

Though earlier I mentioned that the choice of polynomial is arbitrary, there is
a science behind it.

Stone-Weierstrass Theorem (1885, 1937, 1948)

Any continuous function can be well approximated by a polynomial of a
sufficiently high order.

How do we choose such a function?

Two main considerations:

Do we interact variables of interest?

What order polynomial should we use?



Series estimation

Two techniques:

Approximation by series

Approximation by spline

In the former, we essentially choose a flexible polynomial, including all
powers of variables and cross-products of variables and their powers.

Two defining features of approximation by series

p number of variables:

k order of the polynomial.

A simple series regression, p= 2 and k= 1, is the following:

s(x) = β0 + β1x1 + β1x2 + β12x1x2

Assuming p= 2 and k= 2 we get:

s(x) = β0 + β1x1 + β2x2 + β12x1x2

+ β11x2
1 + β22x2

2 + β122x1x2
2 + β112x2

1x2 + β1122x2
1x2

2

Just by going from k= 1 to k= 2, dimension more than doubled



Series estimation

In general, series estimation has a dimension K = (1+ k)p

This can obviously get pretty big depending on the dataset and desire for a
smooth fit

There is also a downside to a polynomial fit of this type: Runge’s
Phenomenon

Polynomials can be very bad at interpolation.

In other words, they might do well predicting the actual data, but very poorly
when generating out-of-sample predictions.

To study this, let’s plot the function

s(x) =
1

1+ x2

And try to estimate it with a polynomial.



R Example: Runge’s phenomenon

Try this with linear regression, and 10th order polynomial

First, let’s create some fake data

x<-seq(-10,10,by=1)

y<-1/(1+x^2)

x2<-x^2

x3<-x^3

x4<-x^4

x5<-x^5

x6<-x^6

x7<-x^7

x8<-x^8

x9<-x^9

x10<-x^10

Then let’s plot:

plot(y~x,ylim=c(-0.25,1))

lines(predict(lm(y~x))~x,col=1,lwd=2)

lines(predict(lm(y~x+x2))~x,col=2,lwd=2)

lines(predict(lm(y~x+x2+x3+x4+x5+x6+x7+x8+x9+x10))~x,col=3,lwd=2)



R Example: Runge’s phenomenon

Next, let’s generate a new dataset, and evaluate out-of-sample predictions

xnew<-data.frame(x=seq(-5,5,by=0.01))

xnew$x2<-xnew$x^2

xnew$x3<-xnew$x^3

xnew$x4<-xnew$x^4

xnew$x5<-xnew$x^5

xnew$x6<-xnew$x^6

xnew$x7<-xnew$x^7

xnew$x8<-xnew$x^8

xnew$x9<-xnew$x^9

xnew$x10<-xnew$x^10

ynew<-1/(1+xnew$x^2)

Then let’s plot:

plot(ynew~xnew$x,ylim=c(-0.25,1),cex=0.25)

lines(predict(lm(y~x+x2+x3+x4+x5+x6+x7+x8+x9+x10),xnew)~xnew$x,col=4,lwd=2)

The original fit was created using 11 data points evenly spaced between -5
and 5. How did we do away from these points?



Spline estimation

Spline estimation is an alternative to series estimation which is also based on
polynomials, but allows for the polynomial to "evolve" with the value of the
dependent variable.

To develop a spline model, suppose that s(x) is univariate, and that x ∈
�

x, x
�

Further, suppose that we have chosen N "knots" {t1, t2, ..., tN} ∈
�

x, x
�

.

These knots split up the relevant range of x, and as you will see, are crucial to
the estimation of spline functions.

With these knots, a spline function is defined by the following:

s(x) =
k
∑

j=0

βjx
j +

N
∑

z=1

γz (x− tz)
k 1 (x ≥ tz)

Characteristics of the spline function

Conitinuous derivatives up to k− 1

In practice k is usually 3 to have continuous second derivatives.



Spline estimation

s(x) =
k
∑

j=0

βkxk +
N
∑

z=1

γz (x− tz)
k 1 (x ≥ tz)

There are two critical parts to the spline function:

∑k
j=0 βkxk is the basic polynomial

∑N
z=1 γk (x− tz)

k 1 (x ≥ tz) at the maximum degree

Critical issues moving forward is choosing tz’s. Cross-validation is the
technique that is typically used for this

However, must choose either flexibility (location of tz’s), or depth of changes
to the polynomial (number of tz’s).

If you limit yourself to very small number of tz’s, can grid search over a few tz’s.

If you want to possibly have a lot of flexibility in the spline, evenly space the
knots.



R Example: Spline estimation

Let’s do another example with s(x) = 1
1+x2 . We’ll compare the 10th-order

polynomial with a third-degree spline with four knots at -3, -1, 1, and 3.

To construct the spline, let’s first write out the equation:

s(x) = u+ β0 + β1x+ β2x2 + β3x3 + γ1 (x− (−3)))3 1 (x ≥ −3)
+γ2 (x− (−1))3 1 (x ≥ −1) + γ3 (x− 1)3 1 (x ≥ 1) + γ4 (x− 3)3 1 (x ≥ 3)

To code in R, let’s create the knots at the original and new data
k1<-ifelse(x>(-3),(x-(-3))^3,0)

k2<-ifelse(x>(-1),(x-(-1))^3,0)

k3<-ifelse(x>(1),(x-1)^3,0)

k4<-ifelse(x>(3),(x-(3))^3,0)

xnew$k1<-ifelse(xnew$x>(-3),(xnew$x-(-3))^3,0)

xnew$k2<-ifelse(xnew$x>(-1),(xnew$x-(-1))^3,0)

xnew$k3<-ifelse(xnew$x>(1),(xnew$x-1)^3,0)

xnew$k4<-ifelse(xnew$x>(3),(xnew$x-(3))^3,0)

Then plot
plot(ynew~xnew$x,ylim=c(-0.25,1))

lines(predict(lm(y~x+x2+x3+x4+x5+x6+x7+x8+x9+x10),xnew)~xnew$x,col=4,lwd=2)

lines(predict(lm(y~x+x2+x3+k1+k2+k3+k4),xnew)~xnew$x,col=1,lwd=2)



R Example: GAM package in R

There are a number of non-parametric econometrics packages in R

library "gam" is the easiest to use

library "mvcv" has more bells and whistles - check it out on your own as you wish.

We will estimate (again) labor force participation with gam, as a function of
age:

gamresults<-gam(nilf ~s(age,4), data=subd)

summary(gamresults)

plot(gamresults,se=TRUE,rug=FALSE,terms="s")

In the first line, "s(age,4)" specifies a smooth function of the variable "age"
with a smoothing parameter of 4.

This smoothing parameter goes into a complicated procedure called
"backfitting", but the entire procedure is based on third-order splines.

"s(age,1)" would yield a linear regression.

The dependent variable is always demeaned to zero before estimation. So,
E (s(age, )) = 0. This is useful for inference.



R Example: GAM package in R

Now we add-in education, which is a factor variable.

gamresults<-gam(nilf ~s(age,4)+educ, data=subd)

summary(gamresults)

par(mfrow=c(1,2))

plot(gamresults,se=TRUE,rug=FALSE,terms="s")

abline(v=0)

abline(h=0)

plot(gamresults,se=TRUE,rug=FALSE,terms="educ")

abline(v=0)

abline(h=0)

The use of the function "abline" places a horizontal and vertical intercept at
zero, with the former being the benchmark for being different from the
sample average.

That is, if the two standard deviation confidence bands do not include zero, we
reject zero as a hypothesized value at that point.

Since E (s(age, )) = 0, we conclude that the estimate at that point is significantly
different from the sample average.

GLM restrictions (eg. families, links) can be used with gam.


