Economics 217 - Nonparametric Econometrics

- Topics covered in this lecture
 - Introduction to the nonparametric model
 - The role of bandwidth
 - Choice of smoothing function
 - R commands for nonparametric models
- Much of these notes are inspired by Prof. Bruce Hansen's PhD Econometrics Text.

Linear models to non-parametric models

- What is a non-parametric model?
 - A model that does not assume a strong parametric form of the relationship between independent variables and dependent variables
 - Simple OLS adopts the assumption "linear in parameters". That is, a parametric function that is linear in things we estimate
 - Non-parametric models are occasionally called semi-parametric models, though these can refer to other techniques as well so we will use non-parametric.
- Recall that the linear model can be written as:

$$y_i = \mathbf{x}_i^T \boldsymbol{\beta} + u_i$$

• In general, the non-parametric model is written as:

$$y_i = s(x_{i1}, x_{i2}, ...x_{ip}) + u_i$$

• The key is choosing the particular form of s(), subject to a variety of practical constraints. What are the issues in choosing these functions?

- **Issue** #1: Functional Form
 - Ultimately, we *must* choose a form for $s(x_{i1}, x_{i2}, ... x_{ip})$. And, there are an infinite number of choices that we have.
- For example, we could simplify:

$$y_i = s(x_{i1}, x_{i2}, ..., x_{ip}) + u_i$$

as

$$y_i = s_1(x_{i1}) + s_2(x_{i2}) + \dots + s_p(x_{ip}) + u_i$$

• And still, even under the last form, we'd have to assume something about $s_k()$. But why didn't we use:

$$y_i = s_1(x_{i1}, x_{i2}) + s_3(x_{i3}) + \dots + s_p(x_{ip}) + u_i$$

The choices are (literally) endless.

- One option available to the researcher is to choose a parametric function that is ridiculously rich and flexible.
- For example, let's consider the univariate non-parametric model

$$y_i = s\left(x_i\right) + u_i$$

• Again, there are a lot of choices for *s*(). One (parametric) choice is the following:

$$y_{i} = \beta_{0} + \beta_{1}x_{i} + \beta_{2}x_{i}^{2} + \beta_{3}x_{i}^{3} + \beta_{4}x_{i}^{4} + \beta_{5}x_{i}^{5} + \beta_{6}x_{i}^{6} + \beta_{7}\log(x_{i}) + \beta_{8}\cos(x_{i}) + u_{i}$$

- Positives for this specification:
 - Can estimate with OLS, get standard errors easily, generate predictions
- Negatives for this specification?
- We will return to these types of models after we discuss the most basic non-parametric estimation procedures.

- A common, very simple and intuitive alternative to a flexible functional form is called "binned estimation".
- Intuitively, we break-up the data into bins, and find the best fit within these bins.
 - A popular technique in data science, "k-nearest neighbors", is an extended version of "binned" estimation.
- Formally, this is accomplished through the following equation

$$\widehat{s}(x) = \frac{\sum_{i=1}^{n} \mathbf{1}(|x_{i} - x| < h)y_{i}}{\sum_{i=1}^{n} \mathbf{1}(|x_{i} - x| < h)}$$

- In this equations, we have:
 - $\widehat{s}(x)$ The estimate form s() at x
 - h: The bandwidth the region of x's over which we estimate s() at x
- At a given x, we take values no more than h above or below x to estimate $\widehat{s}(x)$

• This approach can be re-written as a function of a general weighting function.

$$\widehat{s}(x) = \frac{\sum_{i}^{n} \mathbf{1}(|x_{i}-x| < h)y_{i}}{\sum_{i}^{n} \mathbf{1}(|x_{i}-x| < h)}$$

$$= \sum_{i}^{n} \frac{\mathbf{1}(|x_{i}-x| < h)}{\sum_{j}^{n} \mathbf{1}(|x_{j}-x| < h)}y_{i}$$

$$= \sum_{i}^{n} w_{i}(x)y_{i}$$

- What is the primary issue with estimating this function?
- Issue #2: Weighting and Bandwidth
 - Non-parametric estimates may depend heavily on choice of weighting function w(x)
- We will examine different weighting functions later on.

Nadaraya-Watson Estimator

 Generally, binned-estimation is called either a "local-constant estimator" or the "Nadaraya-Watson" estimator.

$$\widehat{s}(x) = \sum_{i=1}^{n} w_i(x) y_i$$

• Redefine the weighting function as a Kernel Function, k(u), where

$$u = \frac{x_i - x}{h}$$

and k(u) has the following properties:

$$k(u) = k(-u)$$

$$0 \le k(u) < \infty$$

$$\int_{-\infty}^{\infty} k(u)du = 1$$

$$\int_{-\infty}^{\infty} u^{2}k(u)du < \infty$$

 \bullet k(u) is a bounded pdf and symmetric about zero, with finite variance

Nadaraya-Watson Estimator

- Choice of k(u) is crucial to any non-parametric study. There are three common choices:
 - Uniform (or "box"):

$$k(u) = \frac{1}{2}\mathbf{1}(|u| \le 1)$$

Just as we've described above for the binned estimation

• Epanechnikov:

$$k(u) = \frac{3}{4} (1 - u^2) \mathbf{1} (|u| \le 1)$$

Like uniform, but declining weights in u^2

• Gaussian:

$$k(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right)$$

Weighted as a standard normal distribution

R Examples: Nadaraya-Watson and Binned Estimation

- Basic Nadaraya-Watson estimation can be accomplished in R using the command ksmooth
- Syntax: ksmooth(x,y, type, bandwidth)
 - x: the running variable
 - y: the outcome variable
 - kernel: type of smoothing ("box" or "normal")
 - bandwidth: exactly as it sounds.
- Evaluate smooth relationship between age and labor force participation

```
plot(ksmooth(subd$age, subd$nilf, "box", bandwidth = 1), col = 1)
lines(ksmooth(subd$age, subd$nilf, "box", bandwidth = 10), col = 2)
lines(ksmooth(subd$age, subd$nilf, "box", bandwidth = 20), col = 3)
lines(ksmooth(subd$age, subd$nilf, "box", bandwidth = 40), col = 4)
```

With the normal kernel instead of boxed

```
plot(ksmooth(subd$age, subd$nilf, "normal", bandwidth = 1), col = 1)
lines(ksmooth(subd$age, subd$nilf, "normal", bandwidth = 10), col = 2)
lines(ksmooth(subd$age, subd$nilf, "normal", bandwidth = 20), col = 3)
lines(ksmooth(subd$age, subd$nilf, "normal", bandwidth = 40), col = 4)
```

Locally linear regression

- A common alternative to Nadaraya-Watson (NW), though not necessarily better, is the locally linear regression (often called "loess" smoothing)
- Like NW, we produce an estimate for each *x*
- Unlike NW, we run a full linear regression rather than just estimate an intercept (though we still use an intercept)
- Formally, we solve the following for each *x*

$$\widehat{s}(x) = \widehat{\alpha}(x)$$
where
$$\{\widehat{\alpha}(x), \widehat{\beta}(x)\} = \underset{\alpha, \beta}{\operatorname{argmin}} \sum_{i}^{n} k\left(\frac{x_{i} - x}{h}\right) (y_{i} - \alpha - \beta(x_{i} - x))^{2}$$

- Then, after we do this, we plot $\widehat{s}(x)$
- When do you think that the Loess regression works better than NW?

R Examples: Loess Estimator

- The "loess" function is one way to execute local-linear estimation in R.
- "loess" allows for both first and second degree polynomial smoothing.

```
fit.lm<-lm(subd$nilf~subd$age)
fit.loess1<-loess(subd$nilf~subd$age,span=1, degree=1)
fit.loess2<-loess(subd$nilf~subd$age,span=1, degree=2)</pre>
```

And now we plot it.

```
plot(subd$age,predict(fit.lm),type="l",lwd=2,ylim=c(0,1))
lines(subd$age,predict(fit.loess1),col=1,lty=2)
lines(subd$age,predict(fit.loess2),col=4)
```

• Let's evaluate the role of "span" which is the command's bandwidth control

```
fit.loess1<-loess(subd$nilf subd$age,span=1, degree=1)
fit.loess2<-loess(subd$nilf~subd$age,span=10, degree=1)
fit.loess3<-loess(subd$nilf~subd$age,span=.1, degree=1)</pre>
```

• Again, we plot:

```
plot(subd$age,predict(fit.lm),type="1",lwd=2,ylim=c(0,1))
lines(subd$age,predict(fit.loess1),col=1,lty=2)
lines(subd$age,predict(fit.loess2),col=3)
lines(subd$age,predict(fit.loess3),col=4)
```

Optimal Bandwidth Selection

- How do we choose optimal bandwidth?
- The tradeoffs are fairly straightforward.
 - Large *h*: reduces variance but increases bias and oversmoothing
 - Small h: reduces bias but increases noise
- Need a technique to systematically balance these objectives.
- Cross Validation is the general technique that is used for choosing bandwidth
- Leave-one-out bandwidth selection is a type of cross-validation, the standard approach
 - The technique itself drops an observation, generates the model, and predicts the outcome for the dropped observation using the model.
 - We choose the bandwidth that minimizes any out-of-sample prediction errors.

Optimal Bandwidth Selection

- Cross-Validation procedure
 - ① Choose *h*
 - 2 Estimate $\widehat{s}(x)$ without observation i. Label this estimate $\widehat{s}_{-i}(x,h)$
 - 3 Calculate prediction error for i: $\tilde{e}_i = y_i \hat{s}_{-i}(x, h)$
 - Repeat for all i
 - **5** Calculate $CV(h) = \sum_{i=1}^{n} \tilde{e}_{i}^{2}$
 - \odot Repeat for all other h.
- Choose h that minimizes CV(h)
- This technique could obviously take a while. For example, with a dataset of 1000 observations and 100 choices of bandwidth, 100,000 regressions are run in total.

R: Optimal Bandwidth Selection

• To demonstrate leave-one-out, let's first create some fake data

```
x < -seq(-10, 10, length=1000)
y<-sin(x)+rnorm(1000, 0, 1)
```

• Then, let's have a look at a few loess plots and talk about what we see.

```
fit.loess1<-loess(y~x, family="gaussian", span=1, degree=1)
fit.loess2<-loess(y~x, family="gaussian", span=.05, degree=1)
plot(x,predict(fit.loess1), type="l", lwd=2, ylim=c(-2,2))
lines(x,predict(fit.loess2), col=1, lty=2)</pre>
```

• For the leave-one-out estimator, let's create a fake data frame to use

```
small < -data.frame(y, x)
```

R: Optimal Bandwidth Selection

- Again, the basic process for leave-one-out is the following
 - For each *h*, iterate through each observation *i*
 - Drop *i*, estimate the model with the rest
 - Use model to predict *i*
 - Calculate squared error of prediction ⇒ save
- Choose *h* that minimizes out of sample SSR: Code:

```
for(h in 1:20){
   for(i in 1:nrow(small)) {
      smalldrop<-small[i,]
      smallkeep<-small[-i,]
      fit<-loess(y~x,smallkeep, family="gaussian",span=(h/20), degree=1)
      dropfit<-predict(fit,smalldrop,se=FALSE)
      sqrerr<-(smalldrop$y-as.numeric(dropfit))^2
      if(i*h==1) {results<-data.frame(h,i,sqrerr)}
      if(i*h>1) {results<-rbind(results,data.frame(h,i,sqrerr))}
   }
}</pre>
```

• Use tapply (or some other function) to find the minimizing *h*

```
tapply(results$sqrerr,results$h,FUN=sum,na.rm=TRUE)
```

Series estimation

- Series estimation involves using a flexible polynomial to estimate an unknown function.
- Though earlier I mentioned that the choice of polynomial is arbitrary, there is a science behind it.
- Stone-Weierstrass Theorem (1885, 1937, 1948)
 - Any continuous function can be well approximated by a polynomial of a sufficiently high order.
- How do we choose such a function?
- Two main considerations:
 - Do we interact variables of interest?
 - What order polynomial should we use?

Series estimation

- Two techniques:
 - Approximation by series
 - Approximation by spline
- In the former, we essentially choose a flexible polynomial, including all powers of variables and cross-products of variables and their powers.
- Two defining features of approximation by series
 - *p* number of variables:
 - *k* order of the polynomial.
- A simple series regression, p = 2 and k = 1, is the following:

$$s(x) = \beta_0 + \beta_1 x_1 + \beta_1 x_2 + \beta_{12} x_1 x_2$$

• Assuming p = 2 and k = 2 we get:

$$s(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{122} x_1 x_2^2 + \beta_{112} x_1^2 x_2 + \beta_{1122} x_1^2 x_2^2$$

• Just by going from k = 1 to k = 2, dimension more than doubled

Series estimation

- In general, series estimation has a dimension $K = (1 + k)^p$
 - This can obviously get pretty big depending on the dataset and desire for a smooth fit
- There is also a downside to a polynomial fit of this type: Runge's
 Phenomenon
 - Polynomials can be very bad at interpolation.
 - In other words, they might do well predicting the actual data, but very poorly when generating out-of-sample predictions.
- To study this, let's plot the function

$$s(x) = \frac{1}{1 + x^2}$$

And try to estimate it with a polynomial.

R Example: Runge's phenomenon

- Try this with linear regression, and 10th order polynomial
- First, let's create some fake data

```
x<-seq(-10,10,by=1)
y<-1/(1+x^2)
x2<-x^2
x3<-x^3
x4<-x^4
x5<-x^5
x6<-x^6
x7<-x^7
x8<-x^8
x9<-x^9
x10<-x^10
```

• Then let's plot:

```
plot (y \sim x, y = c(-0.25, 1))
lines (predict(lm(y \sim x)) \sim x, col = 1, lwd = 2)
lines (predict(lm(y \sim x + x2)) \sim x, col = 2, lwd = 2)
lines (predict(lm(y \sim x + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10)) \sim x, col = 3, lwd = 2)
```

R Example: Runge's phenomenon

Next, let's generate a new dataset, and evaluate out-of-sample predictions

```
xnew<-data.frame (x=seq(-5,5,by=0.01))
xnew$x2<-xnew$x^2
xnew$x3<-xnew$x^3
xnew$x4<-xnew$x^4
xnew$x5<-xnew$x^5
xnew$x6<-xnew$x^6
xnew$x7<-xnew$x^7
xnew$x8<-xnew$x^8
xnew$x9<-xnew$x^9
xnew$x10<-xnew$x^10
ynew<-1/(1+xnew$x^2)</pre>
```

• Then let's plot:

```
plot(ynew~xnew$x,ylim=c(-0.25,1),cex=0.25) lines(predict(lm(y~x+x2+x3+x4+x5+x6+x7+x8+x9+x10),xnew)~xnew$x,col=4,lwd=2)
```

• The original fit was created using 11 data points evenly spaced between -5 and 5. How did we do away from these points?

Spline estimation

- Spline estimation is an alternative to series estimation which is also based on polynomials, but allows for the polynomial to "evolve" with the value of the dependent variable.
- To develop a spline model, suppose that s(x) is univariate, and that $x \in (\underline{x}, \overline{x})$
- Further, suppose that we have chosen N "knots" $\{t_1, t_2, ..., t_N\} \in (\underline{x}, \overline{x})$.
 - These knots split up the relevant range of x, and as you will see, are crucial to the estimation of spline functions.
- With these knots, a spline function is defined by the following:

$$s(x) = \sum_{j=0}^{k} \beta_j x^j + \sum_{z=1}^{N} \gamma_z (x - t_z)^k \mathbf{1} (x \ge t_z)$$

- Characteristics of the spline function
 - Conitinuous derivatives up to k-1
 - In practice *k* is usually 3 to have continuous second derivatives.

Spline estimation

$$s(x) = \sum_{j=0}^{k} \beta_k x^k + \sum_{z=1}^{N} \gamma_z (x - t_z)^k \mathbf{1} (x \ge t_z)$$

- There are two critical parts to the spline function:
 - $\sum_{i=0}^{k} \beta_k x^k$ is the basic polynomial
 - $\sum_{z=1}^{N} \gamma_k (x t_z)^k \mathbf{1} (x \ge t_z)$ at the maximum degree
- Critical issues moving forward is choosing t_z 's. Cross-validation is the technique that is typically used for this
- However, must choose either flexibility (location of t_z 's), or depth of changes to the polynomial (number of t_z 's).
 - If you limit yourself to very small number of t_z 's, can grid search over a few t_z 's.
 - If you want to possibly have a lot of flexibility in the spline, evenly space the knots.

R Example: Spline estimation

- Let's do another example with $s(x) = \frac{1}{1+x^2}$. We'll compare the 10th-order polynomial with a third-degree spline with four knots at -3, -1, 1, and 3.
- To construct the spline, let's first write out the equation:

$$s(x) = u + \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \gamma_1 (x - (-3)))^3 \mathbf{1}(x \ge -3) + \gamma_2 (x - (-1))^3 \mathbf{1}(x \ge -1) + \gamma_3 (x - 1)^3 \mathbf{1}(x \ge 1) + \gamma_4 (x - 3)^3 \mathbf{1}(x \ge 3)$$

• To code in R, let's create the knots at the original and new data

```
 k1 < -ifelse(x > (-3), (x - (-3))^3, 0) \\ k2 < -ifelse(x > (-1), (x - (-1))^3, 0) \\ k3 < -ifelse(x > (1), (x - 1)^3, 0) \\ k4 < -ifelse(x > (3), (x - (3))^3, 0) \\ xnew $k1 < -ifelse(xnew $x > (-3), (xnew $x - (-3))^3, 0) \\ xnew $k2 < -ifelse(xnew $x > (-1), (xnew $x - (-1))^3, 0) \\ xnew $k3 < -ifelse(xnew $x > (1), (xnew $x - 1)^3, 0) \\ xnew $k4 < -ifelse(xnew $x > (3), (xnew $x - (3))^3, 0) \\ \end{cases}
```

Then plot

```
plot (ynew~xnew$x,ylim=c(-0.25,1)) lines (predict (lm(y~x+x2+x3+x4+x5+x6+x7+x8+x9+x10),xnew)~xnew$x,col=4,lwd=2) lines (predict (lm(y~x+x2+x3+k1+k2+k3+k4),xnew)~xnew$x,col=1,lwd=2)
```

R Example: GAM package in R

- There are a number of non-parametric econometrics packages in R
 - library "gam" is the easiest to use
 - library "mvcv" has more bells and whistles check it out on your own as you wish.
- We will estimate (again) labor force participation with gam, as a function of age:

```
gamresults<-gam(nilf ~s(age,4), data=subd)
summary(gamresults)
plot(gamresults, se=TRUE, rug=FALSE, terms="s")</pre>
```

- In the first line, "s(age,4)" specifies a smooth function of the variable "age" with a smoothing parameter of 4.
 - This smoothing parameter goes into a complicated procedure called "backfitting", but the entire procedure is based on third-order splines.
- "s(age,1)" would yield a linear regression.
- The dependent variable is always demeaned to zero before estimation. So, $\mathbb{E}(s(age,)) = 0$. This is useful for inference.

R Example: GAM package in R

Now we add-in education, which is a factor variable.

```
gamresults<-gam(nilf ~s(age,4)+educ, data=subd)
summary(gamresults)
par(mfrow=c(1,2))
plot(gamresults,se=TRUE,rug=FALSE,terms="s")
abline(v=0)
abline(h=0)
plot(gamresults,se=TRUE,rug=FALSE,terms="educ")
abline(v=0)
abline(h=0)</pre>
```

- The use of the function "abline" places a horizontal and vertical intercept at zero, with the former being the benchmark for being different from the sample average.
 - That is, if the two standard deviation confidence bands do not include zero, we reject zero as a hypothesized value at that point.
 - Since $\mathbb{E}(s(age,)) = 0$, we conclude that the estimate at that point is significantly different from the sample average.
- GLM restrictions (eg. families, links) can be used with gam.