
Economics 217 - Multinomial Choice Models

So far, most extensions of the linear model have centered on either a binary choice
between two options (work or don’t work) or censoring options.

Many questions in economics involve consumers making choices between more than
two varieties of goods

Ready-to-eat cereal

Vacation destinations

Type of car to buy

Firms also have such multinomial choices

In which country to operate

Where to locate a store

Which CEO to hire

Techniques to evaluate these questions are complex, but widely used in practice.
Generally, they are referred to as Discrete Choice Models, or Multinomial Choice
Models



Multinomial Choice - The basic framework

Suppose there are individuals, indexed by i

They choose from J options of a good, and may only choose one option.

If they choose option k, then individual i receives Uik in utility, where

Uik = Vik + εik

Vik is observable utility (to the econometrician). This can be linked to things like product
characteristics, demographics, etc..

εik is random utility. The econometrician doesn’t see this, but knows its distribution. This
actually makes the problem a bit more reasonable to characterize empirically

Utility maximization - individual i chooses option k if

Uik > Uij ∀ j 6= k

This maximization problem involves comparing observable utility for each option,
while accounting for random utility.



Multinomial Choice - The basic framework

From here, there are a variety of techniques that one can use to estimate multinomial
choice models

Multinomial Logit is the easiest, and will be derived below

Assumes a particular functional form that has questionable properties, but produces closed
form solutions

There are two ways to derive the multinomial logit - we will go over the easier approach,
though I have also derived the second approach in the notes.

Nested Logit is more realistic:

Consumers choose between larger groups (car vs. truck) before making more refined
choices (two-door vs. four-door)

Also yields closed form solutions, but results can depend on choices over "nests"

Additional extensions to multinomial choice are beyond this course, but can be used if
you understand the basic assumptions

Multinomial Probit (requires heavy computation)

Random coefficients logit (variation in how agents value attributes of choices)



Multinomial Distribution

Recall the binomial distribution:
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Remember that p is the probability some event (eg. unemployment) occurs, and y is
the number of times the event occurs after n attempts.

n− y is the number of times the event does not occur.

When there are more than two choices, the distribution is generalized as multinomial

Defining πj as the probability that option j is chosen, the multinomial distribution is
written as:
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This is the PDF that is used for maximum likelihood. We wish to estimate J πj’s.

Do you think we can? Or do you think that we need to?

Let’s now take the next step and link the likelihood function to data.



Multinomial Logit - Derivation

Recall for the Logit model we link the log odds ratio to data
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We exponentiate and rearrange to get:
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We must extend this link to having multiple options in the multinomial model.

Since there is a linear dependency in our probabilities (ie. they sum to one), we must choose
a reference group

We write the log odds ratio relative to the reference group (j= 1) as:

log
� πij

πi1

�

= xT
ijβj

Note that the relative probability is specific to j: βj.

βj: The effect of some covariate on the choice between j and 1 may vary by j.

xT
ij is a vector covariates for i that may vary by j.

Eg. Price matters for choice between compact cars, but not between compact and luxury.



Multinomial Logit - Derivation

Exponentiate and solve for πij
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Next, use the requirement that all probabilities sum to 1
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Substituting for πij, we get:
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Solving for πi1
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Thus, the probability of option j, πij, is
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Multinomial Logit - Assumptions

The multinomial logit formula is pretty simple
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The multinomial logit has a pretty sharp property that is usually not good in practice:
Independence of Irrelevant Alternatives (IIA)

Precisely, when choosing between two goods, substitution with other goods does not
matter

To see IIA in practice, take the ratio of probabilities between some good j and another k
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Thus, the relative probabilities of two outcomes do not depend on the other J− 2
outcomes.

Techniques such as multinomial probit, and nested logit, avoid this strong prediction.



Multinomial Logit - Estimation in R

There are a few packages in R to estimate the multinomial logit.

mlogit is the best.

The package also includes a number of datasets that we can use to demonstrate the
model. Since it is pretty simple, we will use the dataset "Cracker".

After loading mlogit, you can call the data internal to the package via the following
command:

data("Cracker", package = "mlogit")
str(Cracker)

Each row represents an individual, and "choice" represents the chosen brand. This will
be the outcome variable.

For each brand of cracker, the dataset contains the following information

price observed for individual i

Whether or not there was an in-store display observed by individual i, disp.

Whether or not there was a newspaper ad observed by individual i, feat.



Multinomial Logit - Estimation in R

To setup the data.frame for estimation, you must create an mlogit data object.

data_c<-mlogit.data(Cracker, shape="wide", choice="choice",
varying=c(2:13))

"data_c" is the mlogit data object in "wide" format

"Cracker" is the original data frame

’ shape="wide" ’ tells us to list the data in a format that I will describe with R.

"varying=c(2:13)" indicates the variables from the dataset that vary by individual (prices
they observe, advertisements they see

To estimate the model, run:

m <- mlogit(choice~price+disp+feat,data_c)
summary(m)

Can estimate the model with product specific coefficients using

m2 <- mlogit(choice~0|price+disp+feat,data_c)
summary(m2)



Extra: Multinomial Logit from Extreme Value Distribution

Choices are independent of one another, and εik follows an extreme value I distribution
(also known as the Gumbel distribution).

f (εik) = exp (−εik)exp (−exp (−εik))

Pr (ε < εik) = F (εik) = exp (−exp (−εik))

Recall that from utility maximization - individual i chooses option k if

Uik > Uij ∀ j 6= k

We now seek the probability that this outcome occurs, which can then be compared
empirically to the share of agents that choose option k over all other j.



Extra: Multinomial Logit - Derivation

First, let’s consider option k against some other option j. The probability the consumer
purchases k:
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Rearranging to isolate εij

Pr
�

Uik > Uij

�

= Pr
�

Vik − Vij + εik > εij

�

This simply says that the difference in observable utility plus εik is greater than εij. Put
differently, unobserved utility in option j is not sufficient to make-up for the other
factors influencing the decision between k and j.

Imposing the CDF of the Gumbel distribution, and treating εik as a conditioning
variable, we have:
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Given εik, what is the probability that this occurs for all j 6= k?



Extra: Multinomial Logit - Derivation

Since unobserved utility is independent across goods, the intersection of these events is
just their probabilities multiplied together

So, the probability that k is chosen over j for all j 6= k, conditional on εik, is:
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For the final step before some algebra, recall that this is a conditional probability. We
still need to account for the possible values of εik

Formally, the unconditional probability that k is chosen, Pik, is written as:
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Basically, what we’re doing is taking each
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, and then
weighting by the pdf f (εik).



Extra: Multinomial Logit - Derivation

Imposing the solution for the choice of k conditional on εik:
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Imposing the parameterization of the extreme value distribution, we have:
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Note that since exp (−exp (−εik)) = exp (−exp (− (Vik − Vik + εik))), we can simply as:
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Simplifying this is not too hard, once you note a few convenient features of the
extreme value distribution.



Extra: Multinomial Logit - Derivation

Remember that the product of exponentials is just the exponential of the sums of the
exponents
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Using a similar rule, we can we can factor out exp(εik)
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The next step is tricky. What is the relationship between −exp (−εik) and
exp (−εik)dεik?



Extra: Multinomial Logit - Derivation

Time for a change of variables, where

t = −exp (−εik)
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where t ∈ (−∞, 0)

Thus,
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Completing the integral:
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Extra: Multinomial Logit - Derivation

And finally, simplify
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From here, we usually assume that observed utility is a function of covariates

Vij = Xijβ

Thus,

Pik =
exp (Xikβ)
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