Economics 217 - Multinomial Choice Models

- So far, most extensions of the linear model have centered on either a binary choice between two options (work or don't work) or censoring options.
- Many questions in economics involve consumers making choices between more than two varieties of goods
- Ready-to-eat cereal
- Vacation destinations
- Type of car to buy
- Firms also have such multinomial choices
- In which country to operate
- Where to locate a store
- Which CEO to hire
- Techniques to evaluate these questions are complex, but widely used in practice. Generally, they are referred to as Discrete Choice Models, or Multinomial Choice Models

Multinomial Choice - The basic framework

- Suppose there are individuals, indexed by i
- They choose from J options of a good, and may only choose one option.
- If they choose option k, then individual i receives $U_{i k}$ in utility, where

$$
U_{i k}=V_{i k}+\epsilon_{i k}
$$

- $V_{i k}$ is observable utility (to the econometrician). This can be linked to things like product characteristics, demographics, etc..
- $\epsilon_{i k}$ is random utility. The econometrician doesn't see this, but knows its distribution. This actually makes the problem a bit more reasonable to characterize empirically
- Utility maximization - individual i chooses option k if

$$
U_{i k}>U_{i j} \forall j \neq k
$$

- This maximization problem involves comparing observable utility for each option, while accounting for random utility.

Multinomial Choice - The basic framework

- From here, there are a variety of techniques that one can use to estimate multinomial choice models
- Multinomial Logit is the easiest, and will be derived below
- Assumes a particular functional form that has questionable properties, but produces closed form solutions
- There are two ways to derive the multinomial logit - we will go over the easier approach, though I have also derived the second approach in the notes.
- Nested Logit is more realistic:
- Consumers choose between larger groups (car vs. truck) before making more refined choices (two-door vs. four-door)
- Also yields closed form solutions, but results can depend on choices over "nests"
- Additional extensions to multinomial choice are beyond this course, but can be used if you understand the basic assumptions
- Multinomial Probit (requires heavy computation)
- Random coefficients logit (variation in how agents value attributes of choices)

Multinomial Distribution

- Recall the binomial distribution:

$$
f(y ; p)=\frac{n!}{y!(n-y)!} p^{y}(1-p)^{n-y}
$$

- Remember that p is the probability some event (eg. unemployment) occurs, and y is the number of times the event occurs after n attempts.
- $n-y$ is the number of times the event does not occur.
- When there are more than two choices, the distribution is generalized as multinomial
- Defining π_{j} as the probability that option j is chosen, the multinomial distribution is written as:

$$
\begin{aligned}
f(y ; p) & =n!\prod_{j=1}^{J} \frac{1}{y_{j}!} \pi_{j}^{y_{j}} \\
& =\frac{n!}{y_{1}!y_{2}!\cdots y_{J-1}!y_{J}!} \pi_{1}^{y_{1}} \pi_{2}^{y_{2}} \cdots \pi_{J-1}^{y_{J-1}} \pi_{J}^{y_{J}}
\end{aligned}
$$

- This is the PDF that is used for maximum likelihood. We wish to estimate $J \pi_{j}$'s.
- Do you think we can? Or do you think that we need to?
- Let's now take the next step and link the likelihood function to data.

Multinomial Logit - Derivation

- Recall for the Logit model we link the log odds ratio to data

$$
\log \left(\frac{p_{i}}{1-p_{i}}\right)=\mathbf{x}_{i}^{T} \beta
$$

- We exponentiate and rearrange to get:

$$
p_{i}=\frac{\exp \left(\mathbf{x}_{i}^{T} \beta\right)}{1+\exp \left(\mathbf{x}_{i}^{T} \beta\right)}
$$

- We must extend this link to having multiple options in the multinomial model.
- Since there is a linear dependency in our probabilities (ie. they sum to one), we must choose a reference group
- We write the log odds ratio relative to the reference group $(j=1)$ as:

$$
\log \left(\frac{\pi_{i j}}{\pi_{i 1}}\right)=\mathbf{x}_{i j}^{T} \beta_{j}
$$

- Note that the relative probability is specific to $j: \beta_{j}$.
- β_{j} : The effect of some covariate on the choice between j and 1 may vary by j.
- $\mathbf{x}_{i j}^{T}$ is a vector covariates for i that may vary by j.
- Eg. Price matters for choice between compact cars, but not between compact and luxury.

Multinomial Logit - Derivation

- Exponentiate and solve for $\pi_{i j}$

$$
\pi_{i j}=\pi_{i 1} \exp \left(\mathbf{x}_{i j}^{T} \beta_{j}\right)
$$

- Next, use the requirement that all probabilities sum to 1

$$
\pi_{i 1}+\sum_{j=2}^{J} \pi_{i j}=1
$$

- Substituting for $\pi_{i j}$, we get:

$$
\pi_{i 1}+\sum_{j=2}^{J} \pi_{i 1} \exp \left(\mathbf{x}_{i j}^{T} \beta_{j}\right)=1
$$

- Solving for $\pi_{i 1}$

$$
\pi_{i 1}=\frac{1}{1+\sum_{j=2}^{J} \exp \left(\mathbf{x}_{i j}^{T} \beta_{j}\right)}
$$

- Thus, the probability of option $j, \pi_{i j}$, is

$$
\pi_{i j}=\frac{\exp \left(\mathbf{x}_{i j}^{T} \beta_{j}\right)}{1+\sum_{s=2}^{J} \exp \left(\mathbf{x}_{i s}^{T} \beta_{s}\right)}
$$

Multinomial Logit - Assumptions

- The multinomial logit formula is pretty simple

$$
\pi_{i j}=\frac{\exp \left(\mathbf{x}_{i j}^{T} \beta_{j}\right)}{1+\sum_{s=2}^{J} \exp \left(\mathbf{x}_{i s}^{T} \beta_{s}\right)}
$$

- The multinomial logit has a pretty sharp property that is usually not good in practice: Independence of Irrelevant Alternatives (IIA)
- Precisely, when choosing between two goods, substitution with other goods does not matter
- To see IIA in practice, take the ratio of probabilities between some good j and another k

$$
\frac{\pi_{i j}}{\pi_{i k}}=\frac{\exp \left(\mathbf{x}_{i j}^{T} \beta_{j}\right)}{\exp \left(\mathbf{x}_{i k}^{T} \beta_{k}\right)}
$$

- Thus, the relative probabilities of two outcomes do not depend on the other $J-2$ outcomes.
- Techniques such as multinomial probit, and nested logit, avoid this strong prediction.

Multinomial Logit - Estimation in R

- There are a few packages in R to estimate the multinomial logit.
- mlogit is the best.
- The package also includes a number of datasets that we can use to demonstrate the model. Since it is pretty simple, we will use the dataset "Cracker".
- After loading mlogit, you can call the data internal to the package via the following command:

```
data("Cracker", package = "mlogit")
str(Cracker)
```

- Each row represents an individual, and "choice" represents the chosen brand. This will be the outcome variable.
- For each brand of cracker, the dataset contains the following information
- price observed for individual i
- Whether or not there was an in-store display observed by individual i, disp.
- Whether or not there was a newspaper ad observed by individual i, feat.

Multinomial Logit - Estimation in R

- To setup the data.frame for estimation, you must create an mlogit data object.

```
data_c<-mlogit.data(Cracker, shape="wide", choice="choice",
varying=c(2:13))
```

- "data_c" is the mlogit data object in "wide" format
- "Cracker" is the original data frame
- ' shape="wide" ' tells us to list the data in a format that I will describe with R.
- "varying=c(2:13)" indicates the variables from the dataset that vary by individual (prices they observe, advertisements they see
- To estimate the model, run:

```
m <- mlogit(choice~price+disp+feat,data_c)
summary(m)
```

- Can estimate the model with product specific coefficients using

```
m2 <- mlogit(choice~0|price+disp+feat,data
_c)
summary(m2)
```


Extra: Multinomial Logit from Extreme Value Distribution

- Choices are independent of one another, and $\epsilon_{i k}$ follows an extreme value I distribution (also known as the Gumbel distribution).

$$
\begin{aligned}
f\left(\epsilon_{i k}\right) & =\exp \left(-\epsilon_{i k}\right) \exp \left(-\exp \left(-\epsilon_{i k}\right)\right) \\
\operatorname{Pr}\left(\epsilon<\epsilon_{i k}\right)=F\left(\epsilon_{i k}\right) & =\exp \left(-\exp \left(-\epsilon_{i k}\right)\right)
\end{aligned}
$$

- Recall that from utility maximization - individual i chooses option k if

$$
U_{i k}>U_{i j} \forall j \neq k
$$

- We now seek the probability that this outcome occurs, which can then be compared empirically to the share of agents that choose option k over all other j.

Extra: Multinomial Logit - Derivation

- First, let's consider option k against some other option j. The probability the consumer purchases k :

$$
\operatorname{Pr}\left(U_{i k}>U_{i j}\right)=\operatorname{Pr}\left(V_{i k}+\epsilon_{i k}>V_{i j}+\epsilon_{i j}\right)
$$

- Rearranging to isolate $\epsilon_{i j}$

$$
\operatorname{Pr}\left(U_{i k}>U_{i j}\right)=\operatorname{Pr}\left(V_{i k}-V_{i j}+\epsilon_{i k}>\epsilon_{i j}\right)
$$

- This simply says that the difference in observable utility plus $\epsilon_{i k}$ is greater than $\epsilon_{i j}$. Put differently, unobserved utility in option j is not sufficient to make-up for the other factors influencing the decision between k and j.
- Imposing the CDF of the Gumbel distribution, and treating $\epsilon_{i k}$ as a conditioning variable, we have:

$$
\operatorname{Pr}\left(U_{i k}>U_{i j} \mid \epsilon_{i k}\right)=F\left(V_{i k}-V_{i j}+\epsilon_{i k}\right)
$$

- Given $\epsilon_{i k}$, what is the probability that this occurs for all $j \neq k$?

Extra: Multinomial Logit - Derivation

- Since unobserved utility is independent across goods, the intersection of these events is just their probabilities multiplied together
- So, the probability that k is chosen over j for all $j \neq k$, conditional on $\epsilon_{i k}$, is:

$$
\operatorname{Pr}\left(U_{i k}>U_{i j} \forall j \neq k \mid \epsilon_{i k}\right)=\prod_{j \neq k} F\left(V_{i k}-V_{i j}+\epsilon_{i k}\right)
$$

- For the final step before some algebra, recall that this is a conditional probability. We still need to account for the possible values of $\epsilon_{i k}$
- Formally, the unconditional probability that k is chosen, $P_{i k}$, is written as:

$$
P_{i k}=\operatorname{Pr}\left(U_{i k}>U_{i j} \forall j \neq k\right)=\int \operatorname{Pr}\left(U_{i k}>U_{i j} \forall j \neq k \mid \epsilon_{i k}\right) f\left(\epsilon_{i k}\right) d \epsilon_{i k}
$$

- Basically, what we're doing is taking each $\int \operatorname{Pr}\left(U_{i k}>U_{i j} \forall j \neq k \mid \epsilon_{i k}\right)$, and then weighting by the $\operatorname{pdf} f\left(\epsilon_{i k}\right)$.

Extra: Multinomial Logit - Derivation

- Imposing the solution for the choice of k conditional on $\epsilon_{i k}$:

$$
P_{i k}=\int_{-\infty}^{\infty} \prod_{j \neq k} F\left(V_{i k}-V_{i j}+\epsilon_{i k}\right) f\left(\epsilon_{i k}\right) d \epsilon_{i k}
$$

- Imposing the parameterization of the extreme value distribution, we have:

$$
P_{i k}=\int_{-\infty}^{\infty} \prod_{j \neq k} \exp \left(-\exp \left(-\left(V_{i k}-V_{i j}+\epsilon_{i k}\right)\right)\right) \exp \left(-\epsilon_{i k}\right) \exp \left(-\exp \left(-\epsilon_{i k}\right)\right) d \epsilon_{i k}
$$

- Note that since $\exp \left(-\exp \left(-\epsilon_{i k}\right)\right)=\exp \left(-\exp \left(-\left(V_{i k}-V_{i k}+\epsilon_{i k}\right)\right)\right)$, we can simply as:

$$
P_{i k}=\int_{-\infty}^{\infty} \prod_{j} \exp \left(-\exp \left(-\left(V_{i k}-V_{i j}+\epsilon_{i k}\right)\right)\right) \exp \left(-\epsilon_{i k}\right) d \epsilon_{i k}
$$

- Simplifying this is not too hard, once you note a few convenient features of the extreme value distribution.

Extra: Multinomial Logit - Derivation

- Remember that the product of exponentials is just the exponential of the sums of the exponents

$$
\prod_{j} \exp x_{j}=\exp \left(\sum_{j} x_{j}\right)
$$

- Thus,

$$
\begin{aligned}
P_{i k} & =\int_{-\infty}^{\infty} \prod_{j} \exp \left(-\exp \left(-\left(V_{i k}-V_{i j}+\epsilon_{i k}\right)\right)\right) \exp \left(-\epsilon_{i k}\right) d \epsilon_{i k} \\
& =\int_{-\infty}^{\infty} \exp \left(-\sum_{j} \exp \left(-\left(V_{i k}-V_{i j}+\epsilon_{i k}\right)\right)\right) \exp \left(-\epsilon_{i k}\right) d \epsilon_{i k}
\end{aligned}
$$

- Using a similar rule, we can we can factor out $\exp \left(\epsilon_{i k}\right)$

$$
P_{i k}=\int_{-\infty}^{\infty} \exp \left(-\exp \left(-\epsilon_{i k}\right) \sum_{j} \exp \left(-\left(V_{i k}-V_{i j}\right)\right)\right) \exp \left(-\epsilon_{i k}\right) d \epsilon_{i k}
$$

- The next step is tricky. What is the relationship between $-\exp \left(-\epsilon_{i k}\right)$ and $\exp \left(-\epsilon_{i k}\right) d \epsilon_{i k}$?

Extra: Multinomial Logit - Derivation

- Time for a change of variables, where

$$
\begin{aligned}
t & =-\exp \left(-\epsilon_{i k}\right) \\
d t & =\exp \left(-\epsilon_{i k}\right) d \epsilon_{i k} \\
\text { where } t & \in(-\infty, 0)
\end{aligned}
$$

- Thus,

$$
\begin{aligned}
P_{i k} & =\int_{-\infty}^{\infty} \exp \left(-\exp \left(-\epsilon_{i k}\right) \sum_{j} \exp \left(-\left(V_{i k}-V_{i j}\right)\right)\right) \exp \left(-\epsilon_{i k}\right) d \epsilon_{i k} \\
& =\int_{-\infty}^{0} \exp \left(t \sum_{j} \exp \left(-\left(V_{i k}-V_{i j}\right)\right)\right) d t
\end{aligned}
$$

- Completing the integral:

$$
P_{i k}=\left(\left.\frac{\exp \left(t \sum_{j} \exp \left(-\left(V_{i k}-V_{i j}\right)\right)\right)}{\sum_{j} \exp \left(-\left(V_{i k}-V_{i j}\right)\right)}\right|_{-\infty} ^{0}\right.
$$

Extra: Multinomial Logit - Derivation

- And finally, simplify

$$
\begin{array}{rlr}
P_{i k} & =\frac{1}{\sum_{j} \exp \left(-\left(V_{i k}-V_{i j}\right)\right)} & \\
& =\frac{1}{\sum_{j} \exp \left(-V_{i k}\right) \exp \left(V_{i j}\right)} & \text { use exponent rule } \\
& =\frac{1}{\exp \left(-V_{i k}\right) \sum_{j} \exp \left(V_{i j}\right)} & \\
\text { factor out } \exp \left(-V_{i k}\right) \\
& =\frac{\exp \left(V_{i k}\right)}{\sum_{j j} \exp \left(V_{i j}\right)} & \text { multiply top and bottom by } \exp \left(V_{i k}\right)
\end{array}
$$

- From here, we usually assume that observed utility is a function of covariates

$$
V_{i j}=X_{i j} \beta
$$

- Thus,

$$
P_{i k}=\frac{\exp \left(X_{i k} \beta\right)}{\sum_{j} \exp \left(X_{i j} \beta\right)}
$$

