Lecture 2 - Technical Aspects of GLM estimation

- Topics Covered
- First and Second Moment for the canonical exponential Family
- Maximum Likelihood
- Newton-Raphson
- Fisher Information
- Inference in GLMs

The exponential family: First Moment

- GLMs with the canonical exponential family can be estimated using the same technique and the same function with R (with slight adjustments to the syntax)
- Part of the reason is that they also have a similar form of the mean and variance of their distributions.
- To see this, start with one of the basic properties of all distribution functions:

$$
\int f(y ; \theta) d y=1
$$

- Differentiating with respect to θ

$$
\int \frac{d f(y ; \theta)}{d \theta} d y=0
$$

- Any changes to the distribution through θ must cancel each other out over the support of y.

The exponential family: First Moment (cont)

- Recall that

$$
f(y ; \theta)=\exp (y b(\theta)+c(\theta)+d(y))
$$

- Differentiating with respect to θ

$$
\begin{aligned}
\frac{d f(y ; \theta)}{d \theta} & =\left(y b^{\prime}(\theta)+c^{\prime}(\theta)\right) \exp (y b(\theta)+c(\theta)+d(y)) \\
& =\left(y b^{\prime}(\theta)+c^{\prime}(\theta)\right) f(y ; \theta)
\end{aligned}
$$

- Plugging into $\int \frac{d f(y ; \theta)}{d \theta} d y=0$, we have:

$$
\int\left(y b^{\prime}(\theta)+c^{\prime}(\theta)\right) f(y ; \theta) d y=0
$$

- Breaking the integral into two parts:

$$
b^{\prime}(\theta) \int y f(y ; \theta) d y+c^{\prime}(\theta) \int f(y ; \theta) d y=0
$$

- How do I simplify these components?

The exponential family: First Moment (cont)

- One definition and one property that are useful:

$$
\mathrm{E}(y)=\int y f(y ; \theta) d y, \quad \int f(y ; \theta) d y=1
$$

- Thus,

$$
\begin{aligned}
b^{\prime}(\theta) \underbrace{\int y f(y ; \theta) d y}_{=\mathrm{E}(y)}+c^{\prime}(\theta) \underbrace{\int f(y ; \theta) d y}_{=1} & =0 \\
b^{\prime}(\theta) \mathrm{E}(y)+c^{\prime}(\theta) & =0 \\
\Rightarrow \quad \mathrm{E}(y) & =-\frac{c^{\prime}(\theta)}{b^{\prime}(\theta)}
\end{aligned}
$$

- Both $b(\theta)$ and $c(\theta)$ affect the mean of the y.
- $c(\theta)$ is often called the "scale" function/parameter
- $b(\theta)$ is often called the "shape" function, since it interacts with y.
- These can be most clearly seen when taking the log of the PDF:

$$
\log (f(y ; \theta))=y b(\theta)+c(\theta)+d(y)
$$

The exponential family: Second Moment

- To solve for variance, differentiate $\int \frac{d f(y ; \theta)}{d \theta} d y=0$ with respect to θ

$$
\int \frac{d^{2} f(y ; \theta)}{d \theta^{2}} d y=0
$$

- Recalling that:

$$
\frac{d f(y ; \theta)}{d \theta}=\left(y b^{\prime}(\theta)+c^{\prime}(\theta)\right) f(y ; \theta)
$$

- We take a second derivative to get:

$$
\begin{aligned}
\frac{d^{2} f(y ; \theta)}{d \theta^{2}} & =\left(y b^{\prime \prime}(\theta)+c^{\prime \prime}(\theta)\right) f(y ; \theta)+\left(y b^{\prime}(\theta)+c^{\prime}(\theta)\right)^{2} f(y ; \theta) \\
& =\left(y b^{\prime \prime}(\theta)+c^{\prime \prime}(\theta)\right) f(y ; \theta)+b^{\prime}(\theta)^{2}\left(y+\frac{c^{\prime}(\theta)}{b^{\prime}(\theta)}\right)^{2} f(y ; \theta) \\
& =\left(y b^{\prime \prime}(\theta)+c^{\prime \prime}(\theta)\right) f(y ; \theta)+b^{\prime}(\theta)^{2}(y-\mathrm{E}(y))^{2} f(y ; \theta)
\end{aligned}
$$

- To complete the derivation, substitute into $\int \frac{d^{2} f(y ; \theta)}{d \theta^{2}} d y=0$

The exponential family: Second Moment (cont)

- Precisely,

$$
\int\left(y b^{\prime \prime}(\theta)+c^{\prime \prime}(\theta)\right) f(y ; \theta)+b^{\prime}(\theta)^{2}(y-\mathrm{E}(y))^{2} f(y ; \theta) d y=0
$$

- Using the same operations as before, first distribute the integral:

$$
b^{\prime \prime}(\theta) \int y f(y ; \theta) d y+c^{\prime \prime}(\theta) \int f(y ; \theta) d y+b^{\prime}(\theta)^{2} \int(y-\mathrm{E}(y))^{2} f(y ; \theta) d y=0
$$

- Then impose the definition of expectations and variance:

$$
b^{\prime \prime}(\theta) \mathrm{E}(y)+c^{\prime \prime}(\theta)+b^{\prime}(\theta)^{2} \operatorname{Var}(Y)=0
$$

- Finally, solving for variance:

$$
\operatorname{Var}(Y)=-\frac{b^{\prime \prime}(\theta) \mathrm{E}(y)+c^{\prime \prime}(\theta)}{b^{\prime}(\theta)^{2}}
$$

The exponential family: Summary

- Thus, for the canonical exponential family of distributions,

$$
f(y ; \theta)=\exp (y b(\theta)+c(\theta)+d(y)),
$$

the mean and variance of the variables are precisely characterized by the functions $b(\theta)$ and $c(\theta)$

$$
\begin{aligned}
\mathrm{E}(y) & =-\frac{c^{\prime}(\theta)}{b^{\prime}(\theta)} \\
\operatorname{Var}(Y) & =-\frac{b^{\prime \prime}(\theta) \mathrm{E}(y)+c^{\prime \prime}(\theta)}{b^{\prime}(\theta)^{2}}
\end{aligned}
$$

- Thus, the parameters we estimate are linked to the mean and variance through these equations.

Maximum Likelihood Estimation

- All of these properties are helpful for estimating relationships that are assumed to follow the canonical exponential family.
- As you might recall from 216, the likelihood function is written as:

$$
L=\prod_{i=1}^{N} f\left(y_{i} ; \theta\right)
$$

- The Log-likelihood function, $l=\log (L)$, is

$$
l=\sum_{i=1}^{N} \log \left(f\left(y_{i} ; \theta\right)\right)
$$

- Within the exponential family,

$$
l=\sum_{i=1}^{N}\left[a\left(y_{i}\right) b(\theta)+c(\theta)+d\left(y_{i}\right)\right]
$$

- Remember that θ links to some underlying mean parameter of the model, μ, which is the mean of y, which itself links to the covariates by the link function
- When choosing optimal θ, only $b(\theta)$ and $c(\theta)$ and outcomes y_{i} matter.

Maximum Likelihood Estimation

- The derivative of the log-likelihood function with respect to some parameter θ is called the "score", U.

$$
\begin{aligned}
U \equiv \frac{d l}{d \theta} & =\sum_{i=1}^{N} \frac{d}{d \theta} \log f\left(y_{i} ; \theta\right) \\
& =\sum_{i=1}^{N} \frac{\frac{d}{d \theta} f\left(y_{i} ; \theta\right)}{f\left(y_{i} ; \theta\right)}
\end{aligned}
$$

- The expected value of U is zero. To see this, note that

$$
\begin{aligned}
\mathrm{E}[U] & =\sum_{i=1}^{N} \mathrm{E}\left[\frac{\frac{d}{d \theta} f\left(y_{i} ; \theta\right)}{f\left(y_{i} ; \theta\right)}\right] \\
& =\sum_{i=1}^{N} \int \frac{\frac{d}{d \theta} f(y ; \theta)}{f(y ; \theta)} f(y ; \theta) d y \\
& =\sum_{i=1}^{N} \int \frac{d}{d \theta} f(y ; \theta) d y \\
& =\sum_{i=1}^{N} \frac{d}{d \theta} \underbrace{\int f(y ; \theta) d y}_{=1}=0
\end{aligned}
$$

Maximum Likelihood for Exponential Family

- To make this simple to start, let us assume that:

$$
g(\mu)=\beta
$$

- Under this assumption, we are essentially choosing one value of θ that is the same for every person, since the mean of y is assumed to be invariant to other covariates
- After estimating θ, then we can link to μ using the assumed distribution, and then β using the link function..
- Taking the derivative of l with respect to θ

$$
U=\frac{d l}{d \theta}=\sum_{i=1}^{N} \frac{d l_{i}}{d \theta}=0
$$

- For univariate functions, this can be done by hand in some cases
- Though in practice, this is done using standard computational techniques, such as Newton-Raphson.

Univariate Numerical Optimization by Newton-Raphson

- The idea behind Newton-Raphson is pretty simple. Suppose you have a function $U(\theta)$, and you want to find the roots of the function.

$$
U(\theta)=0
$$

- For Newton-Raphson, we iterate over different values for θ, trying to find a solution. θ^{m} is defined as the "mth" iteration (not to the power of m).
- Suppose that were are at a value θ^{m-1}, and would like to approximate the function $U(\theta)$ at θ^{m}. By a first-order Taylor series approximation:

$$
U\left(\theta^{m}\right)=U\left(\theta^{m-1}\right)+\frac{d U(\theta)}{d \theta}\left(\theta^{m}-\theta^{m-1}\right)
$$

- Substituting $U\left(\theta^{m}\right)=0$, and solving for θ^{m}, we have

$$
\begin{aligned}
0 & =U\left(\theta^{m-1}\right)+\frac{d U(\theta)}{d \theta}\left(\theta^{m}-\theta^{m-1}\right) \\
0 & =\frac{U\left(\theta^{m-1}\right)}{\frac{d U(\theta)}{d \theta}}+\left(\theta^{m}-\theta^{m-1}\right) \\
\Rightarrow \quad \theta^{m} & =\theta^{m-1}-\frac{U\left(\theta^{m-1}\right)}{\frac{d U\left(\theta^{m-1}\right)}{d \theta}}
\end{aligned}
$$

- The Newton-Raphson algorithm is based on this equation

Univariate Numerical Optimization by Newton-Raphson

- Newton-Raphson algorithm
(1) Begin with an initial guess, θ^{0}
(2) Solve for

$$
\theta^{1}=\theta^{0}-\frac{U\left(\theta^{0}\right)}{\frac{d U\left(\theta^{0}\right)}{d \theta}}
$$

(3) If $\left|\theta^{1}-\theta^{0}\right|<\epsilon$, then stop.
(3) If $\left|\theta^{1}-\theta^{0}\right|>\epsilon$, then use θ^{1} as initial guess and repeat from step 1 .

- This always works when nicely behavior functions (continuous, differentiable) have a unique, global maximum.
- Other techniques are used when you cannot guarantee a unique global maximum. They all seem to have funny names (simulated annealing, particle swarm, etc..)
- Broyden's method is a variant of Newton-Raphson that approximates $\frac{d U\left(\theta^{0}\right)}{d \theta}$ using past changes in the function. Useful, but very slow. If you can take derivatives, you can speed up the process.

Newton-Raphson Example

- Here is a simple version of Newton-Raphson. We wish to find the value at which the following function is zero:

$$
f(x)=(x-1)^{2}
$$

- Obviously, we know the answer is $x=1$. But, let's work through this iteratively.
- For newton-raphson, we need an initial guess. Let's say $x^{0}=0$
- Next, we need the derivative of the function.

$$
\frac{d f(x)}{d x}=2 x-2
$$

- Now, we iterate!

$$
\begin{aligned}
x^{1} & =x^{0}-\frac{f\left(x^{0}\right)}{\frac{d f\left(x^{0}\right)}{d x}} \\
& =0-\frac{f(0)}{\frac{d f(0)}{d x}} \\
x^{1} & =0-\frac{1}{-2}=\frac{1}{2}
\end{aligned}
$$

Newton-Raphson Example

- Again!!

$$
\begin{aligned}
x^{2} & =x^{1}-\frac{f\left(x^{1}\right)}{\frac{d f\left(x^{1}\right)}{d x}} \\
& =\frac{1}{2}-\frac{f\left(\frac{1}{2}\right)}{\frac{d f\left(\frac{1}{2}\right)}{d x}} \\
x^{2} & =\frac{1}{2}-\frac{\frac{1}{4}}{-1}=\frac{3}{4}
\end{aligned}
$$

- Check the value of $f(x)$

$$
f\left(\frac{3}{4}\right)=\left(\frac{3}{4}-1\right)^{2}=\frac{1}{16} \neq 0
$$

- Difference in x 's: $\left|\frac{3}{4}-\frac{1}{2}\right|=\frac{1}{4}$

Newton-Raphson Example

- Again!!

$$
\begin{aligned}
x^{3} & =x^{2}-\frac{f\left(x^{2}\right)}{\frac{d f\left(x^{2}\right)}{d x}} \\
& =\frac{3}{4}-\frac{f\left(\frac{3}{4}\right)}{\frac{d f\left(\frac{3}{4}\right)}{d x}} \\
& =\frac{3}{4}-\frac{\frac{1}{16}}{-\frac{1}{2}} \\
x^{2} & =\frac{3}{4}+\frac{1}{8}=7 / 8
\end{aligned}
$$

- Check the value of $f(x)$

$$
f\left(\frac{7}{8}\right)=\left(\frac{7}{8}-1\right)^{2}=\frac{1}{64}
$$

- We are closer to 0 for the outcome.
- Difference in x^{\prime} s: $\left|\frac{3}{4}-\frac{7}{8}\right|=\frac{1}{8}$

Newton-Raphson Example

- Again!!

$$
\begin{aligned}
x^{4} & =x^{3}-\frac{f\left(x^{3}\right)}{\frac{d f\left(x^{3}\right)}{d x}} \\
& =\frac{7}{8}-\frac{f\left(\frac{7}{8}\right)}{\frac{d f\left(\frac{7}{8}\right)}{d x}} \\
& =\frac{7}{8}-\frac{\frac{1}{64}}{-\frac{1}{4}} \\
x^{4} & =\frac{7}{8}+\frac{1}{16}=\frac{15}{16}
\end{aligned}
$$

- Check the value of $f(x)$

$$
f\left(\frac{15}{16}\right)=\left(\frac{15}{16}-1\right)^{2}=\left(\frac{1}{256}\right)
$$

- We are closer to 0 for the outcome.
- Difference in x 's: $\left|\frac{15}{16}-\frac{14}{16}\right|=\frac{1}{16}$
- We'll stop here, but you keep going until the difference in x 's is small enough.

Multivariate Newton Raphson

- Newton Raphson can be extended to a setting with multiple variables over which we maximize a function.
- Suppose that there are p variables, indexed $\beta_{j}, j=1 \ldots p$, over which we are maximizing a function f
- For this case,

$$
\frac{d f}{d \beta_{j}} \equiv U_{j}(\beta)=0
$$

must equal zero for all j, where β represents the $p x 1$ vector of β_{j} 's

- A multi-variate first-order taylor-series expansion is written as:

$$
\mathbf{U}^{m}=\mathbf{U}^{m-1}+\mathbf{J}^{m-1}\left(\beta^{m}-\beta^{m-1}\right)
$$

where:

- \mathbf{J}^{m-1} is the Jacobian matrix of U at iteration $m-1$
- U^{m} is the $p x 1$ vector of scoring values at iteration m.

Multivariate Newton Raphson (cont.)

- As a reminder, the Jacobian is a $p x p$ matrix with $\frac{d U_{j}}{d \beta_{k}}$ is the $j^{\text {th }}$ row and $k^{\text {th }}$ column.
- The element in the $j^{\text {th }}$ row and $k^{\text {th }}$ column of \mathbf{J} is written as $J_{j k}$
- Trying to hit $\mathbf{U}^{m}=\mathbf{0}$ (all scores equal to zero) using the first-order approximation, we get:

$$
\mathbf{0}=\mathbf{U}^{m-1}+\mathbf{J}^{m-1}\left(\beta^{m}-\beta^{m-1}\right)
$$

- Rearranging:

$$
\beta^{m}=\beta^{m-1}-\left(\mathbf{J}^{m-1}\right)^{-1} \mathbf{U}^{m-1}
$$

- Again, we iterate until a solution.

Multivariate Maximum Likelihood for Exponential Family

- We now extend our earlier model to allow for a vector of covariates (which may include constants)

$$
g\left(\mu_{i}\right)=\mathbf{x}_{i}^{T} \beta
$$

- Recall that μ_{i} links to to the mean of the distribution by θ_{i}
- Taking the derivative of l with respect to some parameter β_{j}

$$
U_{j}=\frac{d l}{d \beta_{j}}=\sum_{i=1}^{N} \frac{d l_{i}}{d \theta_{i}} \frac{d \theta_{i}}{d \mu_{i}} \frac{d \mu_{i}}{d \beta_{j}}
$$

- $\frac{d l_{i}}{d \theta_{i}}$ is once again written as:

$$
\begin{aligned}
\frac{d l_{i}}{d \theta_{i}} & =\frac{d}{d \theta_{i}}\left(y_{i} b\left(\theta_{i}\right)+c\left(\theta_{i}\right)+d\left(y_{i}\right)\right) \\
& =y_{i} b^{\prime}\left(\theta_{i}\right)+c^{\prime}\left(\theta_{i}\right) \\
& =b^{\prime}\left(\theta_{i}\right)\left(y_{i}+\frac{c^{\prime}\left(\theta_{i}\right)}{b^{\prime}\left(\theta_{i}\right)}\right)=b^{\prime}\left(\theta_{i}\right)\left(y_{i}-\mu_{i}\right)
\end{aligned}
$$

- The last step is since $\mu_{i}=\mathrm{E}\left(Y_{i}\right)=-\frac{c^{\prime}(\theta)}{b^{\prime}(\theta)}$

Multivariate Maximum Likelihood for Exponential Family

- $\frac{d \theta_{i}}{d \mu_{i}}$ is the inverse of $\frac{d \mu_{i}}{d \theta_{i}}$:

$$
\begin{aligned}
\frac{d \mu_{i}}{d \theta_{i}} & =-\frac{c^{\prime \prime}\left(\theta_{i}\right) b^{\prime}\left(\theta_{i}\right)-c^{\prime}\left(\theta_{i}\right) b^{\prime \prime}\left(\theta_{i}\right)}{b^{\prime}\left(\theta_{i}\right)^{2}} \\
& =-b^{\prime}\left(\theta_{i}\right) \frac{c^{\prime \prime}\left(\theta_{i}\right)-c^{\prime}\left(\theta_{i}\right) \frac{b^{\prime \prime}\left(\theta_{i}\right)}{b^{\prime}\left(\theta_{i}\right)}}{b^{\prime}\left(\theta_{i}\right)^{2}}=b^{\prime}\left(\theta_{i}\right) \operatorname{Var}\left(Y_{i}\right)
\end{aligned}
$$

- Thus,

$$
\frac{d \theta_{i}}{d \mu_{i}}=\frac{1}{b^{\prime}(\theta) \operatorname{Var}\left(Y_{i}\right)}
$$

- Finally, since $g\left(\mu_{i}\right)=\mathbf{x}_{i}^{T} \beta$, we have:

$$
\begin{aligned}
\frac{d g\left(\mu_{i}\right)}{d \mu_{i}} \frac{d \mu_{i}}{d \beta_{j}} & =x_{i j} \\
\Rightarrow \quad \frac{d \mu_{i}}{d \beta_{j}} & =\frac{x_{i j}}{\frac{d g\left(\mu_{i}\right)}{d \mu_{i}}}
\end{aligned}
$$

- Overall, we have that the derivative of the likelihood function (the "score") is:

$$
U_{j}=\sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)}{\operatorname{Var}\left(Y_{i}\right)} \frac{x_{i j}}{\frac{d g(\mu)}{d \mu}}=0
$$

- To find the maximum likelihood estimates, U_{j} must be zero for all j.

Examples of Scoring Functions: Gaussian

- Gaussian regression with the identity link:
- Identity link: $g\left(\mu_{i}\right)=\mu_{i}=x_{i}^{T} \beta$
- Gaussian Distribution: $\operatorname{Var}\left(Y_{i}\right)=\sigma$
- Thus, the score can be written as:

$$
\begin{aligned}
U_{j} & =\sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)}{\operatorname{Var}\left(Y_{i}\right)} \frac{x_{i j}}{\frac{d g(\mu)}{d \mu}}=0 \\
& =\sum_{i=1}^{N} \frac{\left(y_{i}-x_{i}^{T} \beta\right)}{\sigma} \frac{x_{i j}}{1}=0 \\
& =\sum_{i=1}^{N}\left(y_{i}-x_{i}^{T} \beta\right) x_{i j}=0
\end{aligned}
$$

- What does this remind you of?

Examples of Scoring Functions: Poisson

- Recall the Poisson distribution:

$$
f(y ; \theta)=\frac{\theta^{y} \exp [-\theta]}{y!}
$$

- Poisson has a very cool property:
- $\mathrm{E}\left(Y_{i}\right)=\operatorname{Var}\left(Y_{i}\right)=\theta_{i}$
- Assuming the identity link: $g\left(\mu_{i}\right)=\mu_{i}=x_{i}^{T} \beta=\theta_{i}$
- Thus, the score can be written as:

$$
\begin{aligned}
U_{j} & =\sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)}{\operatorname{Var}\left(Y_{i}\right)} \frac{x_{i j}}{\frac{d g\left(\mu_{i}\right)}{d \mu_{i}}}=0 \\
& =\sum_{i=1}^{N} \frac{\left(y_{i}-x_{i}^{T} \beta\right) x_{i j}}{x_{i}^{T} \beta}=0
\end{aligned}
$$

- We will use this a bit later when continuing the Poisson example

Multivariate Maximum Likelihood for Exponential Family

- The last piece for multivariate estimation of GLM models is the information matrix, \mathbf{J}, which is made up of the elements $J_{j k}$
- J is also called the "Fisher Information Matrix", named after Ronald Fisher.
- Accuracy or (information given by X) around the maximum likelihood solution is defined by the curvature of the likelihood function at these points. This is why we call it information.
- The element $J_{j k}$ is simply the covariance between score functions

$$
J_{j k}=\mathrm{E}\left[U_{j} U_{k}\right]
$$

- Importantly, for GLM models, $J_{j k}$ is also the Jacobian matrix of the scoring functions (or, the Hessian matrix for the log-likelihood function)
- Thus, the information matrix is used in optimization, as well in variance-covariance estimation.

Information Matrix

- Using the formula for $U_{j}, \mathrm{E}\left[U_{j} U_{k}\right]$ can be written as:

$$
\mathrm{E}\left[U_{j} U_{k}\right]=\mathrm{E}\left(\sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)}{\operatorname{Var}\left(Y_{i}\right)} \frac{x_{i j}}{\frac{d g\left(\mu_{i}\right)}{d \mu_{i}}} \sum_{l=1}^{N} \frac{\left(y_{l}-\mu_{l}\right)}{\operatorname{Var}\left(Y_{l}\right)} \frac{x_{i k}}{\frac{\operatorname{dg}\left(\mu_{l}\right)}{d \mu_{l}}}\right)
$$

- Expanding the summation into the square and cross-products

$$
\mathrm{E}\left[U_{j} U_{k}\right]=\mathrm{E}\left(\sum_{i=1}^{N} \frac{\left(y_{i}-\mu_{i}\right)^{2}}{\operatorname{Var}\left(Y_{i}\right)^{2}} \frac{x_{i j} x_{i k}}{\left(\frac{d g\left(\mu_{i}\right)}{d \mu_{i}}\right)^{2}}\right)+\mathrm{E}\left(\sum_{i=1}^{N} \sum_{l \neq i}^{N} \frac{\left(y_{i}-\mu_{i}\right)}{\operatorname{Var}\left(Y_{i}\right)} \frac{x_{i j}}{\frac{\operatorname{dg}\left(\mu_{i}\right)}{d \mu_{i}}} \frac{\left(y_{l}-\mu_{l}\right)}{\operatorname{Var}\left(Y_{l}\right)} \frac{x_{l k}}{\frac{\operatorname{dg}\left(\mu_{l}\right)}{d \mu_{l}}}\right)
$$

- Since the expectation is only applied to random data (y's)

$$
\begin{aligned}
\mathrm{E}\left[U_{j} U_{k}\right]= & \left(\sum_{i=1}^{N} \frac{\mathrm{E}\left(y_{i}-\mu_{i}\right)^{2}}{\operatorname{Var}\left(Y_{i}\right)^{2}} \frac{x_{i j} x_{i k}}{\left(\frac{d g\left(\mu_{i}\right)}{d \mu_{i}}\right)^{2}}\right) \\
& +\left(\sum_{i=1}^{N} \sum_{l \neq i}^{N} \frac{1}{\operatorname{Var}\left(Y_{i}\right)} \frac{x_{i j}}{\frac{d g\left(\mu_{i}\right)}{d \mu_{i}}} \frac{1}{\operatorname{Var}\left(Y_{l}\right)} \frac{x_{l k}}{\frac{d g\left(\mu_{l}\right)}{d \mu_{l}}} \mathrm{E}\left[\left(y_{i}-\mu_{i}\right)\left(y_{l}-\mu_{l}\right)\right]\right)
\end{aligned}
$$

- If observations are independent $\mathrm{E}\left[\left(y_{i}-\mu_{i}\right)\left(y_{l}-\mu_{l}\right)\right]=0$ for all $i \neq l$. Finally,

$$
J_{j k}=\mathrm{E}\left[U_{j} U_{k}\right]=\sum_{i=1}^{N} \frac{1}{\operatorname{Var}\left(Y_{i}\right)} \frac{x_{i j} x_{i k}}{\left(\frac{d g\left(\mu_{i}\right)}{d \mu_{i}}\right)^{2}}
$$

Examples of Information Matrix

- We wish to simplify the following elements of the matrix \mathbf{J}

$$
J_{j k}=\mathrm{E}\left[U_{j} U_{k}\right]=\sum_{i=1}^{N} \frac{1}{\operatorname{Var}\left(Y_{i}\right)} \frac{x_{i j} x_{i k}}{\left(\frac{d g\left(\mu_{i}\right)}{d \mu_{i}}\right)^{2}}
$$

- For Gaussian, assuming an identity link, we get:

$$
J_{j k}=\mathrm{E}\left[U_{j} U_{k}\right]=\frac{1}{\sigma} \sum_{i=1}^{N} x_{i j} x_{i k}
$$

- For Poisson, assuming an identity link, $\operatorname{Var}\left(Y_{i}\right)=x_{i}^{T} \beta$, we get:

$$
J_{j k}=\mathrm{E}\left[U_{j} U_{k}\right]=\sum_{i=1}^{N} \frac{x_{i j} x_{i k}}{x_{i}^{T} \beta}
$$

- Let's now write out the entire procedure for Poisson and $\mu_{i}=\beta_{1} x_{i 1}+\beta_{2} x_{i 2}$, where $x_{i 1}=1$ for all i (ie. a constant)
- That is, $\mu_{i}=\beta_{1}+\beta_{2} x_{i 2}$

Examples of Information Matrix

- Since $x_{i 1}=1$ for all i, J_{11} is written as:

$$
J_{11}=\mathrm{E}\left[U_{1} U_{1}\right]=\sum_{i=1}^{N} \frac{1}{\beta_{1}+\beta_{2} x_{i 2}}
$$

- J_{12} is written as:

$$
J_{12}=\mathrm{E}\left[U_{1} U_{2}\right]=\sum_{i=1}^{N} \frac{x_{i 2}}{\beta_{1}+\beta_{2} x_{i 2}}
$$

- J_{21} is written as:

$$
J_{21}=\mathrm{E}\left[U_{2} U_{1}\right]=\sum_{i=1}^{N} \frac{x_{i 2}}{\beta_{1}+\beta_{2} x_{i 2}}
$$

- J_{22} is written as:

$$
J_{22}=\mathrm{E}\left[U_{2} U_{2}\right]=\sum_{i=1}^{N} \frac{x_{i 2}^{2}}{\beta_{1}+\beta_{2} x_{i 2}}
$$

- On your own, you should write this for the Gaussian distribution under the same link $\mu_{i}=\beta_{1}+\beta_{2} x_{i 2}$.

Examples of Information Matrix

- Thus, we can write the matrix \mathbf{J}

$$
\mathbf{J}=\left(\begin{array}{ll}
J_{11} & J_{12} \\
J_{21} & J_{22}
\end{array}\right)=\left(\begin{array}{ll}
\sum_{i=1}^{N} \frac{1}{\beta_{1}+\beta_{2} x_{i 2}} & \sum_{i=1}^{N} \frac{x_{i 2}}{\beta_{1}+\beta_{2} x_{i 2}} \\
\sum_{i=1}^{N} \frac{x_{i 2}}{\beta_{1}+\beta_{2} x_{i 2}} & \sum_{i=1}^{N} \frac{x_{12}^{2}}{\beta_{1}+\beta_{2} x_{i 2}}
\end{array}\right)
$$

- Recalling that the score is written as:

$$
U_{j}=\sum_{i=1}^{N} \frac{\left(y_{i}-x_{i}^{T} \beta\right) x_{i j}}{x_{i}^{T} \beta}=0
$$

- A matrix \mathbf{U} of scoring functions can be written as:

$$
\mathbf{U}=\binom{U_{1}}{U_{2}}=\binom{\sum_{i=1}^{N} \frac{y_{i}-\beta_{1}-\beta_{2} x_{i 2}}{\beta_{1}+\beta_{2} x_{i 2}}}{\sum_{i=1}^{N} \frac{\left(y_{i}-\beta_{1}-\beta_{2} x_{i 2}\right) x_{i 2}}{\beta_{1}+\beta_{2} x_{i 2}}}
$$

- So, by Newton Raphson, we find our solution by iterating the following:

$$
\binom{\beta_{1}^{n e w}}{\beta_{2}^{n e w}}=\binom{\beta_{1}}{\beta_{2}}-\mathbf{J}^{-1} \mathbf{U}
$$

- R uses "Iteratively Re-weighted Least Squares ", which is identical to this (though approached differently)

Predictions in GLM Models

- Predictions are central to applied applications
- Predict clicking behavior on ads
- Prediction intervals for stock prices
- A vast majority of R commands use "predict()" to generate a vector of predictions
- Example using Logit

```
glm_logit<-glm(nilf~age+educ,d,family=binomial(link="logit"))
glm_predict_1<-predict(glm_logit)
summary(glm_predict_1)
length(glm_predict_1)
nrow(d)
```

- What do you notice about the predictions?

Predictions in GLM Models

- There are two issues
- The vector of predictions is, by default, the same length as the vector of feasible output
- The predictions are on the scale of the link function, not the response
- Two solutions (respectively):
- Define "newdata" as the original dataset, in this case "d".
- Use option type="response".
- Example using Logit
glm_predict_2<-predict(glm_logit,newdata=d,type="response")
summary(glm_predict_2)
length(glm_predict_2)
nrow(d)
d\$nilf_predict<-as.numeric(glm_predict_2)
- You can also extract standard errors of the predictions
glm_predict_3<-predict(glm_logit,newdata=d,type="response", se=TRUE)
- Command is similar for "lm" but without option for type.

Inference in GLM Models

- For inference regarding one parameter, use t-test as you would with OLS
- Central limit theorem works for GLMs
- The variance-covariance matrix of β 's is \mathbf{J}^{-1}
- For joint-tests:
- Use F-test and F-distribution for normal regression
- Use "Likelihood Ratio" test and Chi-square distribution for all others
- Likelihood Ratios are a simple comparison of the "maximal model", i.e. the best we could do given the data, and the actual model:

$$
D=2\left(l\left(\beta_{\max } ; y\right)-l(\widehat{\beta} ; y)\right)
$$

- D is also called "deviance", and a summary of which is provided in regression results.
- l($\left.\beta_{\max } ; y\right)$ is constructed by basically using y_{i} for μ_{i} in the likelihood function, and then calculating likelihood.

Derivation of Deviance

- Deviance is defined as follows

$$
D=2\left(l\left(\widehat{\beta}_{\max } ; y\right)-l(\widehat{\beta} ; y)\right)
$$

- The questions:
- Where does the 2 come from?
- How do we use this for inference?
- Write a second-order taylor series expansion of the likelihood function around some estimate $\widehat{\beta}$:

$$
l(\beta ; y)=l(\widehat{\beta} ; y)+(\beta-\widehat{\beta}) \mathbf{U}(\widehat{\beta})-\frac{1}{2}(\beta-\widehat{\beta})^{T} \mathbf{J}(\widehat{\beta})(\beta-\widehat{\beta})
$$

- What is the value of $\mathbf{U}(\widehat{\beta})$ if $\widehat{\beta}$ is the solution to maximum likelihood?
- $\mathbf{U}(\widehat{\beta})=0$

Deriving Deviance

- Thus, we have:

$$
l(\beta ; y)=l(\widehat{\beta} ; y)-\frac{1}{2}(\beta-\widehat{\beta})^{T} \mathbf{J}(\widehat{\beta})(\beta-\widehat{\beta})
$$

- Rearranging

$$
2(l(\widehat{\beta} ; y)-l(\beta ; y))=(\widehat{\beta}-\beta)^{T} \mathrm{~J}(\widehat{\beta})(\widehat{\beta}-\beta) \sim \chi^{2}(p)
$$

- This is where the two comes from. To related deviance to this, recall that

$$
\begin{aligned}
D & =2\left(l\left(\widehat{\beta}_{\max } ; y\right)-l(\widehat{\beta} ; y)\right) \\
& =2\left(l\left(\widehat{\beta}_{\max } ; y\right)-l\left(\beta_{\max } ; y\right)\right)-2(l(\widehat{\beta} ; y)-l(\beta ; y))+2\left(l\left(\beta_{\max } ; y\right)-l(\beta ; y)\right) \\
& \sim \chi^{2}(m)+\chi^{2}(p)+\quad K
\end{aligned}
$$

- If K is small, then we have:

$$
D \sim \chi^{2}(m-p)
$$

Likelihood Ratio Test

- The likelihood ratio tests does exactly as the name suggests - compares the likelihood of two different models.
- Suppose that $\widehat{\beta}$ are the estimates from the full unrestricted model, and $\widehat{\beta}_{A}$ is an alternate set of parameter estimates that impose restrictions on the model.
- Deviance for unrestricted model:

$$
D=2\left(l\left(\widehat{\beta}_{\max } ; y\right)-l(\widehat{\beta} ; y)\right)
$$

- Deviance for restricted model:

$$
D_{A}=2\left(l\left(\widehat{\beta}_{\max } ; y\right)-l\left(\widehat{\beta}_{A} ; y\right)\right)
$$

- Subtract D from D_{A} :

$$
\Delta D=D_{A}-D=2\left(l(\widehat{\beta} ; y)-l\left(\widehat{\beta}_{A} ; y\right)\right)
$$

- Then compare this value to $\chi^{2}(r, p)$, which is the value from a chi-squared distribution, where:
- r is the number of restrictions.
- p is the preferred probability of false rejection (note that programs, including R , may require the confidence level as opposed to probability of false rejection).

LR Test in R

- There are a few ways to execute the LR test in R.
- Can calculate the likelihood ratio directly.
- Using our previous Poisson example for hours worked, let's test for the joint effect of all education dummy categories.

```
poissonreg<-glm(hourslw~age+educ,subd,family=poisson(link="log"))
summary(poissonreg)
poissonreg2<-glm(hourslw~age,subd,family=poisson(link="log"))
summary(poissonreg2)
LR<-(poissonreg2$deviance-poissonreg$deviance)
```

- Then, we compare the LR to the Chi-square distribution
chi_crit<-qchisq(.95, df=4)
ifelse(LR>chi_crit,"Reject the restrictions", "Fail to reject the restrictions")
- Or, you can construct the P-value for false rejection
pchisq(LR, 4, lower.tail $=$ FALSE $)$

LR Test in R

- There are a few ways to execute the LR test in R.
- The best is using the "lrtest" command from the "lmtest" library in R.
- Using our previous Poisson example for hours worked, let's test for the joint effect of all education dummy categories.
library(lmtest)
poissonreg<-glm(hourslw~age+educ,subd,family=poisson(link="log"))
summary (poissonreg)
lrtest(poissonreg,"educ")
- The results indicate the two models being tested, the log-likelihood for each, and the p-value from the LR test.
- Small p-values indicate that one can reject the joint restrictions.

