
Lecture 2 - Technical Aspects of GLM estimation

Topics Covered

First and Second Moment for the canonical exponential Family

Maximum Likelihood

Newton-Raphson

Fisher Information

Inference in GLMs



The exponential family: First Moment

GLMs with the canonical exponential family can be estimated using the same technique
and the same function with R (with slight adjustments to the syntax)

Part of the reason is that they also have a similar form of the mean and variance of
their distributions.

To see this, start with one of the basic properties of all distribution functions:
∫

f (y;θ )dy = 1

Differentiating with respect to θ
∫

df (y;θ )
dθ

dy = 0

Any changes to the distribution through θ must cancel each other out over the support
of y.



The exponential family: First Moment (cont)

Recall that

f (y;θ ) = exp (yb (θ ) + c (θ ) + d (y))

Differentiating with respect to θ

df (y;θ )
dθ

=
�

yb′ (θ ) + c′ (θ )
�

exp (yb (θ ) + c (θ ) + d (y))

=
�

yb′ (θ ) + c′ (θ )
�

f (y;θ )

Plugging into
∫ df(y;θ )

dθ dy = 0, we have:
∫

�

yb′ (θ ) + c′ (θ )
�

f (y;θ )dy = 0

Breaking the integral into two parts:

b′ (θ )

∫

yf (y;θ )dy+ c′ (θ )

∫

f (y;θ )dy = 0

How do I simplify these components?



The exponential family: First Moment (cont)

One definition and one property that are useful:

E (y) =

∫

yf (y;θ )dy ,

∫

f (y;θ )dy = 1

Thus,

b′ (θ )

∫

yf (y;θ )dy
︸ ︷︷ ︸

=E(y)

+ c′ (θ )

∫

f (y;θ )dy
︸ ︷︷ ︸

=1

= 0

b′ (θ )E (y) + c′ (θ ) = 0

⇒ E (y) = −
c′ (θ )
b′ (θ )

Both b (θ ) and c (θ ) affect the mean of the y.

c (θ ) is often called the "scale" function/parameter

b (θ ) is often called the "shape" function, since it interacts with y.

These can be most clearly seen when taking the log of the PDF:

log (f (y;θ )) = yb (θ ) + c (θ ) + d (y)



The exponential family: Second Moment

To solve for variance, differentiate
∫ df(y;θ )

dθ dy = 0 with respect to θ
∫

d2f (y;θ )
dθ 2

dy = 0

Recalling that:

df (y;θ )
dθ

=
�

yb′ (θ ) + c′ (θ )
�

f (y;θ )

We take a second derivative to get:

d2f (y;θ )
dθ 2

=
�

yb′′ (θ ) + c′′ (θ )
�

f (y;θ ) +
�

yb′ (θ ) + c′ (θ )
�2

f (y;θ )

=
�

yb′′ (θ ) + c′′ (θ )
�

f (y;θ ) + b′ (θ )2
�

y+
c′ (θ )
b′ (θ )

�2

f (y;θ )

=
�

yb′′ (θ ) + c′′ (θ )
�

f (y;θ ) + b′ (θ )2 (y− E (y))2 f (y;θ )

To complete the derivation, substitute into
∫ d2f(y;θ )

dθ2 dy = 0



The exponential family: Second Moment (cont)

Precisely,
∫

�

yb′′ (θ ) + c′′ (θ )
�

f (y;θ ) + b′ (θ )2 (y− E (y))2 f (y;θ )dy = 0

Using the same operations as before, first distribute the integral:

b′′ (θ )

∫

yf (y;θ )dy+ c′′ (θ )

∫

f (y;θ )dy+ b′ (θ )2
∫

(y− E (y))2 f (y;θ )dy = 0

Then impose the definition of expectations and variance:

b′′ (θ )E (y) + c′′ (θ ) + b′ (θ )2 Var(Y) = 0

Finally, solving for variance:

Var(Y) = −
b′′ (θ )E (y) + c′′ (θ )

b′ (θ )2



The exponential family: Summary

Thus, for the canonical exponential family of distributions,

f (y;θ ) = exp (yb (θ ) + c (θ ) + d (y)) ,

the mean and variance of the variables are precisely characterized by the functions
b(θ ) and c(θ )

E (y) = −
c′ (θ )
b′ (θ )

Var(Y) = −
b′′ (θ )E (y) + c′′ (θ )

b′ (θ )2

Thus, the parameters we estimate are linked to the mean and variance through these
equations.



Maximum Likelihood Estimation

All of these properties are helpful for estimating relationships that are assumed to
follow the canonical exponential family.

As you might recall from 216, the likelihood function is written as:

L=
N
∏

i=1

f (yi;θ )

The Log-likelihood function, l= log(L), is

l=
N
∑

i=1

log (f (yi;θ ))

Within the exponential family,

l=
N
∑

i=1

[a(yi)b (θ ) + c (θ ) + d (yi)]

Remember that θ links to some underlying mean parameter of the model, µ, which is
the mean of y, which itself links to the covariates by the link function

When choosing optimal θ , only b (θ ) and c (θ ) and outcomes yi matter.



Maximum Likelihood Estimation

The derivative of the log-likelihood function with respect to some parameter θ is called
the "score", U.

U ≡
dl
dθ

=
N
∑

i=1

d
dθ

log f (yi;θ )

=
N
∑

i=1

d
dθ f (yi;θ )

f (yi;θ )

The expected value of U is zero. To see this, note that

E [U] =
N
∑

i=1

E

�

d
dθ f (yi;θ )

f (yi;θ )

�

=
N
∑

i=1

∫ d
dθ f (y;θ )

f (y;θ )
f (y;θ )dy

=
N
∑

i=1

∫

d
dθ

f (y;θ )dy

=
N
∑

i=1

d
dθ

∫

f (y;θ )dy
︸ ︷︷ ︸

=1

= 0



Maximum Likelihood for Exponential Family

To make this simple to start, let us assume that:

g(µ) = β

Under this assumption, we are essentially choosing one value of θ that is the same for
every person, since the mean of y is assumed to be invariant to other covariates

After estimating θ , then we can link to µ using the assumed distribution, and then β
using the link function..

Taking the derivative of l with respect to θ

U =
dl
dθ
=

N
∑

i=1

dli
dθ
= 0

For univariate functions, this can be done by hand in some cases

Though in practice, this is done using standard computational techniques, such as
Newton-Raphson.



Univariate Numerical Optimization by Newton-Raphson

The idea behind Newton-Raphson is pretty simple. Suppose you have a function U(θ ),
and you want to find the roots of the function.

U(θ ) = 0

For Newton-Raphson, we iterate over different values for θ , trying to find a solution.
θm is defined as the "mth" iteration (not to the power of m).

Suppose that were are at a value θm−1, and would like to approximate the function
U(θ ) at θm. By a first-order Taylor series approximation:

U(θm) = U(θm−1) +
dU(θ )

dθ

�

θm − θm−1
�

Substituting U(θm) = 0, and solving for θm, we have

0 = U(θm−1) +
dU(θ )

dθ

�

θm − θm−1
�

0 =
U(θm−1)

dU(θ )
dθ

+
�

θm − θm−1
�

⇒ θm = θm−1 −
U(θm−1)
dU(θm−1)

dθ

The Newton-Raphson algorithm is based on this equation



Univariate Numerical Optimization by Newton-Raphson

Newton-Raphson algorithm

1 Begin with an initial guess, θ0

2 Solve for

θ1 = θ0 −
U(θ0)
dU(θ0)

dθ

3 If
�

�θ1 − θ0
�

�< ε, then stop.

4 If
�

�θ1 − θ0
�

�> ε, then use θ1 as initial guess and repeat from step 1.

This always works when nicely behavior functions (continuous, differentiable) have a
unique, global maximum.

Other techniques are used when you cannot guarantee a unique global maximum.
They all seem to have funny names (simulated annealing, particle swarm, etc..)

Broyden’s method is a variant of Newton-Raphson that approximates dU(θ0)
dθ using past

changes in the function. Useful, but very slow. If you can take derivatives, you can
speed up the process.



Newton-Raphson Example

Here is a simple version of Newton-Raphson. We wish to find the value at which the
following function is zero:

f(x) = (x− 1)2

Obviously, we know the answer is x = 1. But, let’s work through this iteratively.

For newton-raphson, we need an initial guess. Let’s say x0 = 0

Next, we need the derivative of the function.

df(x)
dx

= 2x− 2

Now, we iterate!

x1 = x0 −
f(x0)
df(x0)

dx

= 0−
f(0)
df(0)

dx

x1 = 0−
1
−2
=

1
2



Newton-Raphson Example

Again!!

x2 = x1 −
f(x1)
df(x1)

dx

=
1
2
−

f( 1
2 )

df( 1
2 )

dx

x2 =
1
2
−

1
4

−1
=

3
4

Check the value of f(x)

f(
3
4
) = (

3
4
− 1)2 =

1
16
6= 0

Difference in x’s: | 34 −
1
2 |=

1
4



Newton-Raphson Example

Again!!

x3 = x2 −
f(x2)
df(x2)

dx

=
3
4
−

f( 3
4 )

df( 3
4 )

dx

=
3
4
−

1
16

− 1
2

x2 =
3
4
+

1
8
= 7/8

Check the value of f(x)

f(
7
8
) = (

7
8
− 1)2 =

1
64

We are closer to 0 for the outcome.

Difference in x’s: | 34 −
7
8 |=

1
8



Newton-Raphson Example

Again!!

x4 = x3 −
f(x3)
df(x3)

dx

=
7
8
−

f( 7
8 )

df( 7
8 )

dx

=
7
8
−

1
64

− 1
4

x4 =
7
8
+

1
16
=

15
16

Check the value of f(x)

f(
15
16
) = (

15
16
− 1)2 =

�

1
256

�

We are closer to 0 for the outcome.

Difference in x’s: | 15
16 −

14
16 |=

1
16

We’ll stop here, but you keep going until the difference in x’s is small enough.



Multivariate Newton Raphson

Newton Raphson can be extended to a setting with multiple variables over which we
maximize a function.

Suppose that there are p variables, indexed βj, j= 1...p, over which we are maximizing
a function f

For this case,

df
dβj
≡ Uj(β) = 0

must equal zero for all j, where β represents the px1 vector of βj’s

A multi-variate first-order taylor-series expansion is written as:

Um = Um−1 + Jm−1
�

βm − βm−1
�

where:

Jm−1 is the Jacobian matrix of U at iteration m− 1

Um is the px1 vector of scoring values at iteration m.



Multivariate Newton Raphson (cont.)

As a reminder, the Jacobian is a pxp matrix with
dUj
dβk

is the jth row and kth column.

The element in the jth row and kth column of J is written as Jjk

Trying to hit Um = 0 (all scores equal to zero) using the first-order approximation, we
get:

0= Um−1 + Jm−1
�

βm − βm−1
�

Rearranging:

βm = βm−1 −
�

Jm−1
�−1

Um−1

Again, we iterate until a solution.



Multivariate Maximum Likelihood for Exponential Family

We now extend our earlier model to allow for a vector of covariates (which may
include constants)

g(µi) = xT
i β

Recall that µi links to to the mean of the distribution by θi

Taking the derivative of l with respect to some parameter βj

Uj =
dl

dβj
=

N
∑

i=1

dli
dθi

dθi

dµi

dµi

dβj

dli
dθi

is once again written as:

dli
dθi

=
d

dθi
(yib(θi) + c(θi) + d(yi))

= yib
′(θi) + c′(θi)

= b′(θi)
�

yi +
c′(θi)
b′(θi)

�

= b′(θi) (yi −µi)

The last step is since µi = E(Yi) = −
c′(θ )
b′(θ )



Multivariate Maximum Likelihood for Exponential Family

dθi
dµi

is the inverse of dµi
dθi

:

dµi

dθi
= −

c′′ (θi)b′ (θi)− c′ (θi)b′′ (θi)

b′ (θi)
2

= −b′ (θi)
c′′ (θi)− c′ (θi)

b′′(θi)
b′(θi)

b′ (θi)
2 = b′ (θi)Var (Yi)

Thus,
dθi

dµi
=

1
b′ (θ )Var (Yi)

Finally, since g(µi) = xT
i β , we have:

dg(µi)
dµi

dµi

dβj
= xij

⇒
dµi

dβj
=

xij

dg(µi)
dµi

Overall, we have that the derivative of the likelihood function (the "score") is:

Uj =
N
∑

i=1

(yi −µi)
Var (Yi)

xij

dg(µ)
dµ

= 0

To find the maximum likelihood estimates, Uj must be zero for all j.



Examples of Scoring Functions: Gaussian

Gaussian regression with the identity link:

Identity link: g(µi) = µi = xT
i β

Gaussian Distribution: Var(Yi) = σ

Thus, the score can be written as:

Uj =
N
∑

i=1

(yi −µi)
Var (Yi)

xij

dg(µ)
dµ

= 0

=
N
∑

i=1

�

yi − xT
i β
�

σ

xij

1
= 0

=
N
∑

i=1

�

yi − xT
i β
�

xij = 0

What does this remind you of?



Examples of Scoring Functions: Poisson

Recall the Poisson distribution:

f (y;θ ) =
θ y exp [−θ]

y!

Poisson has a very cool property:

E(Yi) = Var(Yi) = θi

Assuming the identity link: g(µi) = µi = xT
i β = θi

Thus, the score can be written as:

Uj =
N
∑

i=1

(yi −µi)
Var (Yi)

xij

dg(µi)
dµi

= 0

=
N
∑

i=1

�

yi − xT
i β
�

xij

xT
i β

= 0

We will use this a bit later when continuing the Poisson example



Multivariate Maximum Likelihood for Exponential Family

The last piece for multivariate estimation of GLM models is the information matrix, J,
which is made up of the elements Jjk

J is also called the "Fisher Information Matrix", named after Ronald Fisher.

Accuracy or (information given by X) around the maximum likelihood solution is defined by
the curvature of the likelihood function at these points. This is why we call it information.

The element Jjk is simply the covariance between score functions

Jjk = E
�

UjUk

�

Importantly, for GLM models, Jjk is also the Jacobian matrix of the scoring functions
(or, the Hessian matrix for the log-likelihood function)

Thus, the information matrix is used in optimization, as well in variance-covariance
estimation.



Information Matrix

Using the formula for Uj, E
�

UjUk

�

can be written as:

E
�

UjUk

�

= E

 

N
∑

i=1

(yi −µi)
Var (Yi)

xij

dg(µi)
dµi

N
∑

l=1

(yl −µl)
Var (Yl)

xik
dg(µl)

dµl

!

Expanding the summation into the square and cross-products

E
�

UjUk

�

= E





N
∑

i=1

(yi −µi)
2

Var (Yi)
2

xijxik
�

dg(µi)
dµi

�2



+ E

 

N
∑

i=1

N
∑

l6=i

(yi −µi)
Var (Yi)

xij

dg(µi)
dµi

(yl −µl)
Var (Yl)

xlk
dg(µl)

dµl

!

Since the expectation is only applied to random data (y’s)

E
�

UjUk

�

=





N
∑

i=1

E (yi −µi)
2

Var (Yi)
2

xijxik
�

dg(µi)
dµi

�2





+

 

N
∑

i=1

N
∑

l6=i

1
Var (Yi)

xij

dg(µi)
dµi

1
Var (Yl)

xlk
dg(µl)

dµl

E [(yi −µi) (yl −µl)]

!

If observations are independent E [(yi −µi) (yl −µl)] = 0 for all i 6= l. Finally,

Jjk = E
�

UjUk

�

=
N
∑

i=1

1
Var (Yi)

xijxik
�

dg(µi)
dµi

�2



Examples of Information Matrix

We wish to simplify the following elements of the matrix J

Jjk = E
�

UjUk

�

=
N
∑

i=1

1
Var (Yi)

xijxik
�

dg(µi)
dµi

�2

For Gaussian, assuming an identity link, we get:

Jjk = E
�

UjUk

�

=
1
σ

N
∑

i=1

xijxik

For Poisson, assuming an identity link, Var (Yi) = xT
i β , we get:

Jjk = E
�

UjUk

�

=
N
∑

i=1

xijxik

xT
i β

Let’s now write out the entire procedure for Poisson and µi = β1xi1 + β2xi2, where
xi1 = 1 for all i (ie. a constant)

That is, µi = β1 + β2xi2



Examples of Information Matrix

Since xi1 = 1 for all i, J11 is written as:

J11 = E [U1U1] =
N
∑

i=1

1
β1 + β2xi2

J12 is written as:

J12 = E [U1U2] =
N
∑

i=1

xi2

β1 + β2xi2

J21 is written as:

J21 = E [U2U1] =
N
∑

i=1

xi2

β1 + β2xi2

J22 is written as:

J22 = E [U2U2] =
N
∑

i=1

x2
i2

β1 + β2xi2

On your own, you should write this for the Gaussian distribution under the same link
µi = β1 + β2xi2.



Examples of Information Matrix

Thus, we can write the matrix J

J=
�

J11 J12

J21 J22

�

=







N
∑

i=1

1
β1+β2xi2

N
∑

i=1

xi2
β1+β2xi2

N
∑

i=1

xi2
β1+β2xi2

N
∑

i=1

x2
i2

β1+β2xi2







Recalling that the score is written as:

Uj =
N
∑

i=1

�

yi − xT
i β
�

xij

xT
i β

= 0

A matrix U of scoring functions can be written as:

U=
�

U1

U2

�

=







N
∑

i=1

yi−β1−β2xi2
β1+β2xi2

N
∑

i=1

(yi−β1−β2xi2)xi2
β1+β2xi2







So, by Newton Raphson, we find our solution by iterating the following:
�

βnew
1
βnew

2

�

=
�

β1

β2

�

− J−1U

R uses "Iteratively Re-weighted Least Squares ", which is identical to this (though
approached differently)



Predictions in GLM Models

Predictions are central to applied applications

Predict clicking behavior on ads

Prediction intervals for stock prices

A vast majority of R commands use "predict()" to generate a vector of predictions

Example using Logit

glm_logit<-glm(nilf~age+educ,d,family=binomial(link="logit"))

glm_predict_1<-predict(glm_logit)

summary(glm_predict_1)

length(glm_predict_1)

nrow(d)

What do you notice about the predictions?



Predictions in GLM Models

There are two issues

The vector of predictions is, by default, the same length as the vector of feasible output

The predictions are on the scale of the link function, not the response

Two solutions (respectively):

Define "newdata" as the original dataset, in this case "d".

Use option type="response".

Example using Logit

glm_predict_2<-predict(glm_logit,newdata=d,type="response")

summary(glm_predict_2)

length(glm_predict_2)

nrow(d)

d$nilf_predict<-as.numeric(glm_predict_2)

You can also extract standard errors of the predictions

glm_predict_3<-predict(glm_logit,newdata=d,type="response", se=TRUE)

Command is similar for "lm" but without option for type.



Inference in GLM Models

For inference regarding one parameter, use t-test as you would with OLS

Central limit theorem works for GLMs

The variance-covariance matrix of β ’s is J−1

For joint-tests:

Use F-test and F-distribution for normal regression

Use "Likelihood Ratio" test and Chi-square distribution for all others

Likelihood Ratios are a simple comparison of the "maximal model", i.e. the best we
could do given the data, and the actual model:

D= 2
�

l(βmax; y)− l(bβ; y)
�

D is also called "deviance", and a summary of which is provided in regression results.

l(βmax; y) is constructed by basically using yi for µi in the likelihood function, and then
calculating likelihood.



Derivation of Deviance

Deviance is defined as follows

D= 2
�

l(bβmax; y)− l(bβ; y)
�

The questions:

Where does the 2 come from?

How do we use this for inference?

Write a second-order taylor series expansion of the likelihood function around some
estimate bβ:

l(β; y) = l(bβ; y) +
�

β − bβ
�

U(bβ)−
1
2

�

β − bβ
�T

J
�

bβ
� �

β − bβ
�

What is the value of U(bβ) if bβ is the solution to maximum likelihood?

U(bβ) = 0



Deriving Deviance

Thus, we have:

l(β; y) = l(bβ; y)−
1
2

�

β − bβ
�T

J
�

bβ
� �

β − bβ
�

Rearranging

2
�

l(bβ; y)− l(β; y)
�

=
�

bβ − β
�T

J
�

bβ
� �

bβ − β
�

∼ χ2(p)

This is where the two comes from. To related deviance to this, recall that

D = 2
�

l(bβmax; y)− l(bβ; y)
�

= 2
�

l(bβmax; y)− l(βmax; y)
�

− 2
�

l(bβ; y)− l(β; y)
�

+ 2 (l(βmax; y)− l(β; y))

∼ χ2(m) − χ2(p) + K

If K is small, then we have:

D∼ χ2(m− p)



Likelihood Ratio Test

The likelihood ratio tests does exactly as the name suggests - compares the likelihood
of two different models.

Suppose that bβ are the estimates from the full unrestricted model, and bβA is an
alternate set of parameter estimates that impose restrictions on the model.

Deviance for unrestricted model:

D = 2
�

l(bβmax; y)− l(bβ; y)
�

Deviance for restricted model:

DA = 2
�

l(bβmax; y)− l(bβA; y)
�

Subtract D from DA:

∆D= DA −D= 2
�

l(bβ; y)− l(bβA; y)
�

Then compare this value to χ2(r, p), which is the value from a chi-squared distribution,
where:

r is the number of restrictions.

p is the preferred probability of false rejection (note that programs, including R, may require
the confidence level as opposed to probability of false rejection).



LR Test in R

There are a few ways to execute the LR test in R.

Can calculate the likelihood ratio directly.

Using our previous Poisson example for hours worked, let’s test for the joint effect of all
education dummy categories.

poissonreg<-glm(hourslw~age+educ,subd,family=poisson(link="log"))

summary(poissonreg)

poissonreg2<-glm(hourslw~age,subd,family=poisson(link="log"))

summary(poissonreg2)

LR<-(poissonreg2$deviance-poissonreg$deviance)

Then, we compare the LR to the Chi-square distribution

chi_crit<-qchisq(.95, df=4)

ifelse(LR>chi_crit,"Reject the restrictions", "Fail to reject the restrictions")

Or, you can construct the P-value for false rejection

pchisq(LR, 4, lower.tail = FALSE)



LR Test in R

There are a few ways to execute the LR test in R.

The best is using the "lrtest" command from the "lmtest" library in R.

Using our previous Poisson example for hours worked, let’s test for the joint effect of all
education dummy categories.

library(lmtest)

poissonreg<-glm(hourslw~age+educ,subd,family=poisson(link="log"))

summary(poissonreg)

lrtest(poissonreg,"educ")

The results indicate the two models being tested, the log-likelihood for each, and the
p-value from the LR test.

Small p-values indicate that one can reject the joint restrictions.


