Quantitative Methods in Linguistics - Lecture 8

Adrian Brasoveanu*

April 12, 2014

Contents

1 Recap 1
2 Fourth attempt: multiple linear regression 4
3 Graphical comparison of reg1, reg2 and reg3 16
4 ANOVA and model selection 18
5 Adding interactions 21
5.1 Interpreting interactions 23
6 More on interactions 28
6.1 Multicollinearity and variable centering 28
6.2 Another example of regression with interaction terms 30

1 Recap

Generating the 'dataset':

```
> x1 <- rnorm(100, 64, 3)
> x2 <- rbinom(100, 1, 0.5)
> y <- x1 * 2.5 + x2 * 6 + rnorm(100, 0, 4)
```

Scatter plot matrices (SPMs for short):

- smoothed histograms of the variables are displayed on the (upper-left / lower-right) diagonal
- the other panels display plots of all pairs of variables

```
> library("car")
> spm(~y + x1 + x2, smooth = FALSE, groups = as.factor(x2), var.labels = c(expression(y),
+ expression(x[1]), expression(x[2])))
```

[^0]


```
> reg0 <- lm(y ~ 1)
> summary(reg0)
Call:
lm(formula = y ~ 1)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-18.130 & -5.565 & 0.529 & 4.877 & 18.702
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 164.232 0.861 191 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.61 on 99 degrees of freedom
> reg2 <- lm(y ~ x2)
> summary(reg2)
Call:
lm(formula = y ~ x2)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-16.240 & -5.610 & 0.086 & 4.946 & 18.366
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr}(>|t|
(Intercept) 162.14 1.16 139.7 <2e-16 ***
x2 4.36 1.68 2.6 0.011 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.37 on 98 degrees of freedom
Multiple R-squared: 0.0646,Adjusted R-squared: 0.055
F-statistic: 6.77 on 1 and 98 DF, p-value: 0.0107
> anova(reg0, reg2)
Analysis of Variance Table
Model 1: y ~ 1
Model 2: y ~ x2
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 997341
2 98 6867 1 474 6.77 0.011 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> reg1 <- lm(y ~ x1)
> summary(reg1)
```

```
Call:
lm(formula = y ~ x1)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-13.011 & -3.323 & 0.028 & 3.405 & 11.586
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.546 11.524 0.48 0.63
x1 2.465 0.179 13.78 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.05 on 98 degrees of freedom
Multiple R-squared: 0.66,Adjusted R-squared: 0.656
F-statistic: 190 on 1 and 98 DF, p-value: <2e-16
> anova(reg0, reg1)
Analysis of Variance Table
Model 1: y ~ 1
Model 2: y ~ x1
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 997341
2 98 2498 1 4843 190<2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


2 Fourth attempt: multiple linear regression

Multiple linear regression: predicting y values based on both x_{1} values and x_{2} values. This is actually the true population model, i.e., the model we used to generate the data.

```
> y.x1.x2 <- data.frame(y, x1, x2)
> y.x1.x2[1:10,]
    y x1 x2
1 165.9 63.39 1
2 147.7 59.08 0
3 167.3 69.37 0
4 148.3 62.03 0
5 162.1 60.82 1
6 157.9 62.76 0
7 167.2 62.29 1
8 154.5 61.67 0
9 166.1 63.15 1
10 150.4 61.32 0
> sum(x2)
[1] 48
```



```
98 154.1 61.45 0
100 165.1 64.55 0
> split.y.x1.x2$"1"
            y x1 x2
1 165.9 63.39 1
5 162.1 60.82 1
7 167.2 62.29 1
9 166.1 63.15 1
13 161.1 62.30 1
15 151.6 57.46 1
16 175.5 66.75 1
18 168.1 63.23 1
21 170.4 66.91 1
22 166.9 64.26 1
24 159.0 60.98 1
26 154.8 59.18 1
27 166.0 62.07 1
33 170.0 64.93 1
35 174.4 67.13 1
36 167.5 64.07 1
38 154.5 59.59 1
39 163.8 62.82 1
41 150.9 60.42 1
42 176.5 68.17 1
4 4 ~ 1 5 6 . 0 ~ 6 2 . 5 4 ~ 1 )
45 174.5 65.09 1
46 179.7 68.39 1
49 165.0 64.70 1
53 162.0 63.21 1
54 165.5 63.76 1
56 182.9 67.27 1
58 159.2 60.06 1
61 165.3 64.92 1
62 150.3 58.56 1
63 163.5 64.90 1
65 171.9 65.25 1
66 164.4 60.81 1
67 177.9 66.69 1
68 179.6 68.47 1
71 170.2 66.88 1
73 158.7 63.53 1
78 161.3 64.68 1
79 158.5 61.98 1
80 171.4 68.00 1
82 162.8 62.67 1
83 176.2 65.97 1
86 170.0 63.91 1
87 158.6 60.87 1
89 170.0 64.07 1
91 176.3 66.42 1
95 168.5 65.91 1
99 179.6 70.46 1
```

```
> nrow(split.y.x1.x2$"1")
[1] 48
> reg3.0 <- lm(y ~ x1, data = split.y.x1.x2$"0")
> summary(reg3.0)
Call:
lm(formula = y ~ x1, data = split.y.x1.x2$"0")
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-10.259 & -1.687 & 0.393 & 2.651 & 10.830
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -16.303 13.209 -1.23 0.22
x1 2.755 0.204 13.52 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.03 on 50 degrees of freedom
Multiple R-squared: 0.785,Adjusted R-squared: 0.781
F-statistic: 183 on 1 and 50 DF, p-value: <2e-16
> reg3.1 <- lm(y ~ x1, data = split.y.x1.x2$"1")
> summary(reg3.1)
Call:
lm(formula = y ~ x1, data = split.y.x1.x2$"1")
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q Median & 3Q & Max
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.118 12.098 0.51 0.62
x1 2.508 0.189 13.27 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.73 on 46 degrees of freedom
Multiple R-squared: 0.793,Adjusted R-squared: 0.788
F-statistic: }176\mathrm{ on 1 and 46 DF, p-value: <2e-16
> plot(split.y.x1.x2$"0"$x1, split.y.x1.x2$"0"$y, pch = 20, col = "red",
+ xlim = range(x1), ylim = range(y), xlab = expression(x[1]), ylab = "y",
+ main = expression(paste("Plot of y against ", x[1], " and ", x[2],
+ " (red: ", x[2] == 0, ", blue: ", x[2] == 1, ")")))
> abline(reg3.0, col = "red")
> points(split.y.x1.x2$"1"$x1, split.y.x1.x2$"1"$y, pch = 20, col = "blue")
> abline(reg3.1, col = "blue")
> abline(lm(y ~ x1), col = "black")
```

Plot of y against x_{1} and $x_{2}\left(\right.$ red: $x_{2}=0$, blue: $x_{2}=1$)

Scatterplot matrices that do the same kind of plots:

```
> scatterplotMatrix(~y + x1, smooth = FALSE, reg.line = FALSE, var.labels = c(expression(y),
+ expression(x[1])))
```


We can add regression lines for each plot

```
> scatterplotMatrix(~y + x1, smooth = FALSE, var.labels = c(expression(y),
+ expression(x[1])))
```


We can group the observations based on a factor:

```
> spm(~y + x1, smooth = FALSE, groups = as.factor(x2), by.groups = FALSE,
+ var.labels = c(expression(y), expression(x[1])))
```


We can add regression lines for each group:

```
> spm(~y + x1, smooth = FALSE, groups = as.factor(x2), by.groups = TRUE,
+ var.labels = c(expression(y), expression(x[1])))
```


And here's the full regression with both predictors, and the corresponding 3D plots:

```
> reg3 <- lm(y ~ x1 + x2)
> par(mfrow = c(2, 1), mai = c(0.62, 0.62, 0.62, 0.22))
> library("scatterplot3d")
> s3d <- scatterplot3d(x1, x2, y, highlight.3d = TRUE, col.axis = "blue",
+ col.grid = "lightblue", pch = 20, xlab = expression(x[1]), ylab = expression(x[2]),
+ angle = 65, las = 2)
> s3d$plane3d(reg3, lty.box = "solid", col = "darkred", lwd = 2)
> s3d <- scatterplot3d(x1, x2, y, highlight.3d = TRUE, col.axis = "blue",
+ col.grid = "lightblue", pch = 20, type = "h", xlab = expression(x[1]),
+ ylab = expression(x[2]), angle = 65, las = 2)
s3d$plane3d(reg3, lty.box = "solid", col = "darkred", lwd = 2)
```


X_{1}

X_{1}

```
> par(mfrow = c(1, 1), mai = c(1.02, 0.82, 0.82, 0.42))
```

```
> par(mfrow = c(2, 1), mai = c(0.62, 0.62, 0.62, 0.22))
> library("scatterplot3d")
> s3d <- scatterplot3d(x2, x1, y, highlight.3d = TRUE, col.axis = "blue",
+ col.grid = "lightblue", pch = 20, xlab = expression(x[2]), ylab = expression(x[1]),
+ angle = 40, las = 2)
s3d$plane3d(lm(y ~ x2 + x1), lty.box = "solid", col = "darkred", lwd = 2)
s3d <- scatterplot3d(x2, x1, y, highlight.3d = TRUE, col.axis = "blue",
+ col.grid = "lightblue", pch = 20, type = "h", xlab = expression(x[2]),
+ ylab = expression(x[1]), angle = 40, las = 2)
s3d$plane3d(lm(y ~ x2 + x1), lty.box = "solid", col = "darkred", lwd = 2)
```



```
> par(mfrow = c(1, 1), mai = c(1.02, 0.82, 0.82, 0.42))
```


3 Graphical comparison of reg1, reg2 and reg3

```
> par(mfrow = c(2, 2))
> plot(x2, y, pch = 20, main = expression(paste("reg2: ", y, " ~ ",
+ x[2])))
> abline(reg2, lwd = 2, col = "darkred")
> plot(x1, y, pch = 20, main = expression(paste("reg1: ", y, " ~ ",
+ x[1])))
> abline(reg1, lwd = 2, col = "darkred")
> s3d <- scatterplot3d(x2, x1, y, highlight.3d = TRUE, col.axis = "blue",
+ col.grid = "lightblue", pch = 20, ylab = expression(x[1]), xlab = expression(x[2]),
+ main = expression(paste("reg3: ", y, " ~ ", x[1], " + ", x[2])))
> s3d$plane3d(lm(y ~ x2 + x1), lty.box = "solid", lwd = 2, col = "darkred")
s3d <- scatterplot3d(x1, x2, y, highlight.3d = TRUE, col.axis = "blue",
+ col.grid = "lightblue", pch = 20, xlab = expression(x[1]), ylab = expression(x[2]),
+ main = expression(paste("reg3: ", y, " ~ ", x[1], " + ", x[2])),
+ angle = 65)
s3d$plane3d(reg3, lty.box = "solid", lwd = 2, col = "darkred")
```


4 ANOVA and model selection

```
> anova(reg0, reg3)
Analysis of Variance Table
Model 1: y ~ 1
Model 2: y ~ x1 + x2
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 997341
2 97 1463 2 5878 195<2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> anova(reg0, reg2)
Analysis of Variance Table
Model 1: y ~ 1
Model 2: y ~ x2
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 997341
2 98 6867 1 474 6.77 0.011 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> anova(reg2, reg3)
Analysis of Variance Table
Model 1: y ~ x2
Model 2: y ~ x1 + x2
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 986867
2 97 1463 1 5404 358<2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> anova(reg0, reg2, reg3)
Analysis of Variance Table
Model 1: y ~ 1
Model 2: y ~ x2
Model 3: y ~ x1 + x2
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 997341
2 98 6867 1 474 31.4 1.9e-07 ****
3 97 1463 1 5404 358.3 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> anova(reg0, reg1)
```

```
Analysis of Variance Table
Model 1: y ~ 1
Model 2: y ~ x1
    Res.Df RSS Df Sum of \(\mathrm{Sq} \quad \mathrm{F} \operatorname{Pr}(>F)\)
\(1 \quad 997341\)
\(29824981 \quad 4843190<2 e-16\) ***
---
Signif. codes: \(0{ }^{\prime} * * * ' 0.001\) '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> anova(reg1, reg3)
Analysis of Variance Table
Model 1: y ~ x1
Model 2: y ~ \(\mathrm{x} 1+\mathrm{x} 2\)
    Res.Df RSS Df Sum of Sq F \(\operatorname{Pr}(>F)\)
1982498
\(2971463101035 \quad 68.6 \quad 6.6 e-13\) ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> anova(reg0, reg1, reg3)
Analysis of Variance Table
Model 1: y ~ 1
Model 2: y ~ x1
Model 3: y ~ x1 + x2
    Res.Df RSS Df Sum of Sq F \(\operatorname{Pr}(>F)\)
\(1 \quad 997341\)
\(29824981 \quad 4843 \quad 321.1<2 e-16 \quad * * *\)
\(3 \quad 9714631 \quad 1035 \quad 68.6 \quad 6.6 e-13\) ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

We test if we can remove the intercept, and we can - since we actually did not generate the data with an intercept:

```
> reg4 <- lm(y ~ -1 + x1 + x2)
> reg3 <- lm(y ~ x1 + x2)
> summary(reg4)$coef
    Estimate Std. Error t value Pr(>|t|)
x1 2.504 0.008293 301.892 2.674e-147
x2 6.375 0.771391 8.264 6.920e-13
> summary(reg3)$coef
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.298 9.0204 -0.9199 3.599e-01
x1 2.631 0.1390 18.9285 2.454e-34
x2 6.508 0.7856 8.2848 6.637e-13
> anova(reg4, reg3)
```

```
Analysis of Variance Table
```

```
Model 1: \(\mathrm{y}^{\sim}-1+\mathrm{x} 1+\mathrm{x} 2\)
Model 2: y ~ x1 + x2
    Res.Df RSS Df Sum of \(\mathrm{Sq} \quad \mathrm{F} \operatorname{Pr}(>F)\)
1981476
\(2 \quad 97146311012.8 \quad 0.85 \quad 0.36\)
```

The reg3 model with an intercept accounts for more of the variation, but this difference is nonsignificant. The difference between the residual sums of squares for the two models divided by the residual sum of squares of the first model gives us a frequently used effect size - partial eta-squared η^{2} :

```
> anova(reg4, reg3)$RSS
[1] 1476 1463
> anova.4.3 <- anova(reg4, reg3)
> (partial.eta.sq <- (anova.4.3$RSS[1] - anova.4.3$RSS[2])/anova.4.3$RSS[1])
[1] 0.008649
```

We write:

```
> text.1 <- paste("Including the intercept did not significantly improve the fit of the model:\nF(",
+ anova.4.3$Res.Df[1] - anova.4.3$Res.Df[2], ", ", anova.4.3$Res.Df[2],
+ ") = ", round(anova.4.3$F[2], 2), ", p = ", round(anova.4.3$"Pr(>F)"[2],
+ 2), ", partial eta-squared = ", round(partial.eta.sq, 2),
+ ".", sep = "")
> cat(text.1)
Including the intercept did not significantly improve the fit of the model:
F(1, 97) = 0.85, p = 0.36, partial eta-squared = 0.01.
```


What if we actually have an intercept?

```
> y2 <- 25 + x1 * 2.5 + x2 * 6 + rnorm(100, 0, 4)
> reg4.y2 <- lm(y2 ~ -1 + x1 + x2)
> reg3.y2 <- lm(y2 ~ x1 + x2)
> summary(reg4.y2)$coef
    Estimate Std. Error t value Pr(>|t|)
x1 2.888 0.009643 299.542 5.747e-147
x2 5.835 0.896924 6.505 3.293e-09
> summary(reg3.y2)$coef
```

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	30.915	10.0554	3.074	$2.739 \mathrm{e}-03$
x1	2.413	0.1550	15.570	$3.940 \mathrm{e}-28$
x 2	5.336	0.8757	6.093	$2.238 \mathrm{e}-08$

The intercept is now significant:

```
> anova(reg4.y2, reg3.y2)
```

```
Analysis of Variance Table
Model 1: y2 ~ -1 + x1 + x2
Model 2: y2 ~ x1 + x2
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 98 1995
2 97 1818 1 177 9.45 0.0027 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

We can examine the smaller model reg1 to see if the intercept is significant there. It might be, but that would probably be a consequence of using the incorrect number of predictors:

```
> summary(update(reg1, . ~ . - 1))
Call:
lm(formula = y ~ x1 - 1)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-13.125 & -3.202 & -0.124 & 3.489 & 11.349
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
x1 2.5508 0.0078 327 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.03 on 99 degrees of freedom
Multiple R-squared: 0.999,Adjusted R-squared: 0.999
F-statistic: 1.07e+05 on 1 and 99 DF, p-value: <2e-16
> anova(reg1, update(reg1, . ~ . - 1))
Analysis of Variance Table
Model 1: y ~ x1
Model 2: y ~ x1 - 1
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 98 2498
2 99 2504 -1 -5.9 0.23 0.63
```


5 Adding interactions

We can add an interaction term to the reg3 model:

```
> reg5 <- lm(y ~ x1 + x2 + x1:x2)
> summary(reg5)
Call:
lm(formula = y ~ x1 + x2 + x1:x2)
```

```
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-10.259 & -2.302 & 0.118 & 2.651 & 10.830
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr (>|t|)
(Intercept) -16.303 12.758 -1.28 0.20
x1 2.755 0.197 14.00 <2e-16 ***
\begin{tabular}{lrrrr}
\(x 2\) & 22.421 & 17.932 & 1.25 & 0.21 \\
\(x 1: x 2\) & -0.247 & 0.278 & -0.89 & 0.38
\end{tabular}
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.89 on 96 degrees of freedom
Multiple R-squared: 0.802,Adjusted R-squared: 0.796
F-statistic: }130\mathrm{ on 3 and 96 DF, p-value: <2e-16
```

A shorter way of writing the same model formula:

```
> reg5 <- lm(y ~ x1 * x2)
> summary(reg5)
Call:
lm(formula = y ~ x1 * x2)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-10.259 & -2.302 & 0.118 & 2.651 & 10.830
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr (>|t|)
(Intercept) -16.303 12.758 -1.28 0.20
x1 2.755 0.197 14.00 <2e-16 ***
lrrrr
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.89 on 96 degrees of freedom
Multiple R-squared: 0.802,Adjusted R-squared: 0.796
F-statistic: 130 on 3 and 96 DF, p-value: <2e-16
```

The interaction (product) term is not significant:

```
> anova(reg3, reg5)
Analysis of Variance Table
Model 1: y ~ x1 + x2
Model 2: y ~ x1 * x2
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 97 1463
2 
```

In fact, the intercept and the interaction term together are not significant - as expected, given that we did not use either of them when we generated the data. We see here the advantage of using F-tests, which enables us to do arbitrary nested-model comparisons - we are not forced to compare models that only differ in one parameter, as we would be with t-tests:

```
> anova(reg4, reg5)
Analysis of Variance Table
Model 1: y ~ -1 + x1 + x2
Model 2: y ~ x1 * x2
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 98 1476
2 
```


5.1 Interpreting interactions

What is the interpretation of the interaction term, i.e., what exactly is the difference between the reg3 and reg5 models?
> reg3

Call:
$\operatorname{lm}(f o r m u l a=y ~ ~ x 1+x 2)$

```
Coefficients:
```

(Intercept)	x1	x2
-8.30	2.63	6.51

```
> reg5
```

Call:
$\operatorname{lm}(f o r m u l a=y ~ ~ x 1 * x 2)$
Coefficients:

(Intercept)	x 1	x 2	$\mathrm{x} 1: \mathrm{x} 2$
-16.303	2.755	22.421	-0.247

Both models fit two $y \sim x_{1}$ regression lines, one for each of the two x_{2} groups. But in reg3, the two regression lines have the same slope, while in reg5 they have different slopes. The difference between the two slopes in the reg5 model is given by the interaction term.
(1) reg3: $y=\beta_{0}+\beta_{1} \cdot x_{1}+\beta_{2} \cdot x_{2}$
a. the first regression line (for the $x_{2}=0$ group): intercept $=\beta_{0}$, slope $=\beta_{1}$
b. the second regression line (for the $x_{2}=1$ group): intercept $=\beta_{0}+\beta_{2}$, slope $=\beta_{1}$

```
> par(mfrow = c(2, 1))
> plot(split.y.x1.x2$"0"$x1, split.y.x1.x2$"0"$y, pch = 20, col = "red",
+ xlim = range(x1), ylim = range(y), xlab = expression(x[1]), ylab = "y",
+ main = expression(paste("reg3-based plot of y against ", x[1],
+ " and ", x[2], " (red: ", x[2] == 0, ", blue: ", x[2] == 1,
```

```
+ ")")))
> points(split.y.x1.x2$"1"$x1, split.y.x1.x2$"1"$y, pch = 20, col = "blue")
> abline(reg3$coef[1], reg3$coef[2], col = "red", lwd = 2)
> abline(reg3$coef[1] + reg3$coef[3], reg3$coef[2], col = "blue", lwd = 2)
> s3d <- scatterplot3d(x1, x2, y, highlight.3d = TRUE, col.axis = "blue",
+ col.grid = "lightblue", pch = 20, angle = 65, xlab = expression(x[1]),
+ ylab = expression(x[2]), main = expression(paste("reg3 based plot of y against ",
+ x[1], " and ", x[2])))
s3d$plane3d(reg3$coef, lty.box = "solid", col = "darkred", lwd = 2)
```

reg3-based plot of y against x_{1} and x_{2} (red: $x_{2}=0$, blue: $x_{2}=1$)

reg3 based plot of y against x_{1} and x_{2}

X_{1}

```
> par(mfrow = c(1, 1))
```

(2) reg5: $y=\beta_{0}+\beta_{1} \cdot x_{1}+\beta_{2} \cdot x_{2}+\beta_{3} \cdot x_{1} \cdot x_{2}$,
equivalently: $y=\beta_{0}+\left(\beta_{1}+\beta_{3} \cdot x_{2}\right) \cdot x_{1}+\beta_{2} \cdot x_{2}$
a. the first regression line (for the $x_{2}=0$ group): intercept $=\beta_{0}$, slope $=\beta_{1}$
b. the second regression line (for the $x_{2}=1$ group): intercept $=\beta_{0}+\beta_{2}$, slope $=\beta_{1}+\beta_{3}$

```
> par(mfrow = c(2, 1))
plot(split.y.x1.x2$"0"$x1, split.y.x1.x2$"0"$y, pch = 20, col = "red",
+ xlim = range(x1), ylim = range(y), xlab = expression(x[1]), ylab = "y",
+ main = expression(paste("reg5-based plot of y against ", x[1],
        " and ", x[2], " (red: ", x[2] == 0, ", blue: ", x[2] == 1,
            ")")))
points(split.y.x1.x2$"1"$x1, split.y.x1.x2$"1"$y, pch = 20, col = "blue")
abline(reg5$coef[1], reg5$coef[2], col = "red", lwd = 2)
abline(reg5$coef[1] + reg5$coef[3], reg5$coef[2] + reg5$coef[4], col = "blue",
    lwd = 2)
s3d <- scatterplot3d(x1, x2, y, highlight.3d = TRUE, col.axis = "blue",
    col.grid = "lightblue", pch = 20, angle = 65, xlab = expression(x[1]),
    ylab = expression(x[2]), main = expression(paste("reg5 based plot of y against ",
        x[1], " and ", x[2])))
s3d$plane3d(c(reg5$coef[1], reg5$coef[2], 0), lty.box = "solid", col = "darkred",
lwd = 2)
s3d$plane3d(c(reg5$coef[1] + reg5$coef[3], reg5$coef[2] + reg5$coef[4],
+ 1), lty.box = "solid", col = "gray10", lwd = 2)
```

reg5-based plot of y against x_{1} and x_{2} (red: $x_{2}=0$, blue: $x_{2}=1$)

reg5 based plot of y against x_{1} and x_{2}

X_{1}

```
> par(mfrow = c(1, 1))
```

But in our case, allowing for different slopes for the two regression lines does not significantly reduce the error because we generated the data without an interaction term.

```
> anova(reg3, reg5)
Analysis of Variance Table
Model 1: y ~ x1 + x2
Model 2: y ~ x1 * x2
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 97 1463
2 
```


6 More on interactions

6.1 Multicollinearity and variable centering

Multicollinearity: two or more predictor variables in a multiple regression model are highly correlated.
In this case, the coefficient estimates may change erratically in response to small changes in the model or the data.

Multicollinearity does not reduce the predictive power or reliability of the model as a whole; it only affects the estimates and SEs of individual predictors.

That is, a multiple regression model with correlated predictors can indicate how well the entire bundle of predictors predicts the response variable, but it may not give valid results about any individual predictor, or about which predictors are redundant.

Adding product terms predictor $_{1} \cdot$ predictor $_{2}$, predictor $_{1} \cdot$ predictor $_{1}$ etc. can induce multicollinearity.
For example:

- when all the predictor $_{1}$ and predictor $_{2}$ values are positive, high values produce high products predictor $_{1}$. predictor $_{2}$ and low values produce low products predictor $_{1} \cdot$ predictor $_{2}$
- hence, the product variable is highly correlated with (at least one of) the component variables

```
> predictor1 <- c(2, 4, 5, 6, 7, 7, 8, 9, 9, 11)
> predictor2 <- c(13, 10, 8, 9, 7, 6, 3, 4, 10, 13)
> predictor1_predictor2 <- predictor1 * predictor2
> (predictor1.predictor2 <- data.frame(predictor1, predictor2, predictor1_predictor2,
+ row.names = letters[1:10]))
predictor1 predictor2 predictor1_predictor2
a 2 13 26
b 4 10}4
c 5 8 40
d 6 9 54
e 7 7 49
f 7 6 42
g 8 3 24
h 9 4 36
i 9 10 90
j 11 13 143
```

```
> cor(predictor1, predictor2)
```

[1] -0. 2507
Here are the correlations with higher-order (interaction) terms:

```
> cor(predictor1, predictor1_predictor2)
```

[1] 0.6616
> cor(predictor2, predictor1_predictor2)
[1] 0.5406
> cor(predictor1, predictor1~2)
[1] 0.976
> cor(predictor2, predictor2~2)
[1] 0.9814

Centering the variable remedies this because the low end of both scales now has large absolute values, so the product becomes large at the low end of the scale.

```
> predictor1c <- predictor1 - mean(predictor1)
> predictor2c <- predictor2 - mean(predictor2)
> predictor1c_predictor2c <- predictor1c * predictor2c
> (predictor1c.predictor2c <- data.frame(predictor1c, predictor2c, predictor1c_predictor2c,
+ row.names = letters[1:10]))
    predictor1c predictor2c predictor1c_predictor2c
\begin{tabular}{llll}
a & -4.8 & 4.7 & -22.56
\end{tabular}
\begin{tabular}{llll} 
b & -2.8 & 1.7 & -4.76
\end{tabular}
c-1.8 -0.3 0.54
d -0.8 0.7 -0.56
e 0.2 -1.3 -0.26
f 0.2 -2.3 -0.46
g 1.2 -5.3 -6.36
h 2.2 -4.3 -9.46
i 2.2 1.7 3.74
j 4.2 4.7 19.74
> cor(predictor1c, predictor2c)
[1] -0.2507
```

And here are the correlations with the higher-order terms:

```
> cor(predictor1c, predictor1c_predictor2c) # oops, centering doesn't always work
```

[1] 0.7194
> cor(predictor2c, predictor1c_predictor2c) \# desired effect
[1] 0.1845

```
> cor(predictor1c, predictor1c^2) # desired effect
```

[1] -0.2215
> cor(predictor2c, predictor2c^2) \# desired effect
[1] -0.07475

6.2 Another example of regression with interaction terms

We discuss now another example of multiple regression with interaction terms. ${ }^{1}$

```
> icecream <- read.csv(paste("http://dl.dropbox.com/u/10246536/Web/RTutorialSeries/",
+ "dataset_multipleRegression_interactions.csv", sep = ""))
> head(icecream)
    DATE CONSUME PRICE INC TEMP
1
2 2 0.374 0.282 79 56
3
4
5
6
```

This dataset contains the following variables related to ice cream consumption:

- DATE: time period (1-30)
- CONSUME: ice cream consumption in pints per capita
- PRICE: per-pint price of ice cream in dollars
- INC: weekly family income in dollars
- TEMP: mean temperature in degrees F

Task: determine how much of the variance in ice cream consumption can be predicted by:

- per-pint price
- weekly family income
- mean temperature
- the interaction PRICE \cdot INC between per-pint price and weekly family income

For example, the extent to which increasing the price decreases the ice cream consumption might be moderated by income: the higher the income, the smaller the consumption decrease for the same price increase.

That is, the extent to which PRICE affects CONSUME is a function of INC. In its simplest form, the effect of PRICE is a linear function of INC - which is why modeling interactions is tantamount to adding product terms:
(3) The effect of PRICE on CONSUME is a linear function of INC:

$$
\text { CONSUME }=\beta_{0}+\left(\beta_{1}+\beta_{2} \cdot \mathrm{INC}\right) \cdot \operatorname{PRICE}+\beta_{3} \cdot \mathrm{INC}+\beta_{4} \cdot \mathrm{TEMP}
$$

[^1](4) The same regression model reexpressed with explicit interaction terms: CONSUME $=\beta_{0}+\beta_{1} \cdot \operatorname{PRICE}+\beta_{3} \cdot$ INC $+\beta_{4} \cdot$ TEMP $+\beta_{2} \cdot$ INC \cdot PRICE $)$

```
> attach(icecream)
> library("car")
> spm(~CONSUME + PRICE + INC + TEMP, smooth = FALSE)
```


We can add the PRICE • INC interaction manually by creating the product vector and adding it as an additional predictor:

```
> PRICE_INCi <- PRICE * INC
> interactionModel <- lm(CONSUME ~ PRICE + INC + TEMP + PRICE_INCi)
> summary(interactionModel)
Call:
lm(formula = CONSUME ~ PRICE + INC + TEMP + PRICE_INCi)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-0.05753 & -0.01636 & -0.00085 & 0.01687 & 0.07189
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.329813 3.105350 -2.04 0.053 .
PRICE 23.354020 11.479635 2.03 0.053 .
INC 0.078076 0.036427 2.14 0.042 *
TEMP [1NCi 0.002823 0.000417 6.77 5.3e-07 ***
PRICE_INCi -0.278600 0.134440 -2.07 0.049 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.0309 on 24 degrees of freedom
Multiple R-squared: 0.741,Adjusted R-squared: 0.698
F-statistic: 17.2 on 4 and 24 DF, p-value: 8.97e-07
```

Or we can let the lm function do it for us:

```
> summary(lm(CONSUME ~ PRICE + INC + TEMP + PRICE:INC))
Call:
lm(formula = CONSUME ~ PRICE + INC + TEMP + PRICE:INC)
Residuals:
    Min 1Q Median 3Q Max
-0.05753 -0.01636 -0.00085 0.01687 0.07189
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.329813 3.105350 -2.04 0.053
PRICE 23.354020 11.479635 2.03 0.053.
INC 0.078076 0.036427 2.14 0.042 *
TEMP 0.002823 0.000417 6.77 5.3e-07 ***
PRICE:INC -0.278600 0.134440 -2.07 0.049 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.0309 on 24 degrees of freedom
Multiple R-squared: 0.741,Adjusted R-squared: 0.698
F-statistic: 17.2 on 4 and 24 DF, p-value: 8.97e-07
```

We see that the interaction is significant:

```
> noInteractionModel <- lm(CONSUME ~ PRICE + INC + TEMP)
> summary(noInteractionModel)
Call:
lm(formula = CONSUME ~ PRICE + INC + TEMP)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-0.05940 & -0.01567 & 0.00523 & 0.01716 & 0.07052
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.087744 0.244740 0.36 0.723
PRICE -0.386358 0.783086 -0.49 0.626
INC 0.002618 0.001076 2.43 0.023 *
TEMP 0.003119 0.000417 7.48 7.8e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.0329 on 25 degrees of freedom
Multiple R-squared: 0.695,Adjusted R-squared: 0.658
F-statistic: }19\mathrm{ on 3 and 25 DF, p-value: 1.26e-06
> anova(noInteractionModel, interactionModel)
Analysis of Variance Table
Model 1: CONSUME ~ PRICE + INC + TEMP
Model 2: CONSUME ~ PRICE + INC + TEMP + PRICE_INCi
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 25 0.0271
2 24 0.0230 1 0.00411 4.29 0.049 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> detach(icecream)
```


References

Abelson, R.P. (1995). Statistics as Principled Argument. L. Erlbaum Associates.
Baayen, R. Harald (2008). Analyzing Linguistic Data: A Practical Introduction to Statistics Using R. Cambridge University Press.
Braun, J. and D.J. Murdoch (2007). A First Course in Statistical Programming with R. Cambridge University Press.
De Veaux, R.D. et al. (2005). Stats: Data and Models. Pearson Education, Limited.
Diez, D. et al. (2013). OpenIntro Statistics: Second Edition. CreateSpace Independent Publishing Platform. URL: http://www.openintro.org/stat/textbook.php.
Faraway, J.J. (2004). Linear Models With R. Chapman \& Hall Texts in Statistical Science Series. Chapman \& Hall/CRC.
Gelman, A. and J. Hill (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Analytical Methods for Social Research. Cambridge University Press.
Gries, S.T. (2009). Quantitative Corpus Linguistics with R: A Practical Introduction. Taylor \& Francis.

Gries, S.T. (2013). Statistics for Linguistics with R: A Practical Introduction, 2nd Edition. Mouton De Gruyter.
Johnson, K. (2008). Quantitative methods in linguistics. Blackwell Pub.
Kruschke, John K. (2011). Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/Elsevier.
Miles, J. and M. Shevlin (2001). Applying Regression and Correlation: A Guide for Students and Researchers. SAGE Publications.
Wright, D.B. and K. London (2009). Modern regression techniques using R: A practical guide for students and researchers. SAGE.
Xie, Yihui (2013). Dynamic Documents with R and knitr. Chapman and Hall/CRC.

[^0]: *These notes have been generated with the 'knitr' package (Xie 2013) and are based on many sources, including but not limited to: Abelson (1995), Miles and Shevlin (2001), Faraway (2004), De Veaux et al. (2005), Braun and Murdoch (2007), Gelman and Hill (2007), Baayen (2008), Johnson (2008), Wright and London (2009), Gries (2009), Kruschke (2011), Diez et al. (2013), Gries (2013).

[^1]: ${ }^{1}$ Based on http://www.r-bloggers.com/r-tutorial-series-regression-with-interaction-variables/; http: //rtutorialseries.blogspot.com/2010/01/r-tutorial-series-regression-with.html.

