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Terminology

Terminology for probability theory:

• experiment: process of observation or measurement; e.g.,
coin flip;

• outcome: result obtained through an experiment; e.g., coin
shows tails;

• sample space: set of all possible outcomes of an
experiment; e.g., sample space for coin flip: S = {H,T}.

Sample spaces can be finite or infinite.
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Terminology

Example: Finite Sample Space
Roll two dice, each with numbers 1–6. Sample space:

S1 = {〈x , y〉 : x ∈ {1,2, . . . ,6} ∧ y ∈ {1,2, . . . ,6}}

Alternative sample space for this experiment – sum of the dice:

S2 = {x + y : x ∈ {1,2, . . . ,6} ∧ y ∈ {1,2, . . . ,6}}

S2 = {z : z ∈ {2,3, . . . ,12}} = {2,3, . . . ,12}

Example: Infinite Sample Space
Flip a coin until heads appears for the first time:

S3 = {H,TH,TTH,TTTH,TTTTH, . . . }
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Events

Often we are not interested in individual outcomes, but in
events. An event is a subset of a sample space.

Example
With respect to S1, describe the event B of rolling a total of 7
with the two dice.

B = {〈1,6〉, 〈2,5〉, 〈3,4〉, 〈4,3〉, 〈5,2〉, 〈6,1〉}

5



Events

The event B can be represented graphically:
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Events

Often we are interested in combinations of two or more events.
This can be represented using set theoretic operations.
Assume a sample space S and two events A and B:

• complement A (also A′): all elements of S that are not in A;
• subset A ⊆ B: all elements of A are also elements of B;
• union A ∪ B: all elements of S that are in A or B;
• intersection A ∩ B: all elements of S that are in A and B.

These operations can be represented graphically using Venn
diagrams.
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Venn Diagrams

A

B A

Ā A ⊆ B

BA A B

A ∪ B A ∩ B
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Axioms of Probability

Events are denoted by capital letters A,B,C, etc. The
probability of an event A is denoted by p(A).

Axioms of Probability

1 The probability of an event is a nonnegative real number:
p(A) ≥ 0 for any A ⊆ S.

2 p(S) = 1.
3 If A1,A2,A3, . . . , is a set of mutually exclusive events of S,

then:

p(A1 ∪ A2 ∪ A3 ∪ . . . ) = p(A1) + p(A2) + p(A3) + . . .
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Probability of an Event

Theorem: Probability of an Event
If A is an event in a sample space S and O1,O2, . . . ,On, are the
individual outcomes comprising A, then p(A) =

∑n
i=1 p(Oi)

Example
Assume all strings of three lowercase letters are equally
probable. Then what’s the probability of a string of three
vowels?

There are 26 letters, of which 5 are vowels. So there are
N = 263 three letter strings, and n = 53 consisting only of
vowels. Each outcome (string) is equally likely, with probability
1
N , so event A (a string of three vowels) has probability
p(A) = n

N = 53

263 ≈ 0.00711.
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Rules of Probability

Theorems: Rules of Probability

1 If A and A are complementary events in the sample space
S, then p(A) = 1− p(A).

2 p(∅) = 0 for any sample space S.
3 If A and B are events in a sample space S and A ⊆ B, then

p(A) ≤ p(B).
4 0 ≤ p(A) ≤ 1 for any event A.
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Addition Rule

Axiom 3 allows us to add the probabilities of mutually exclusive
events. What about events that are not mutually exclusive?

Theorem: General Addition Rule
If A and B are two events in a sample space S, then:

p(A ∪ B) = p(A) + p(B)− p(A ∩ B)

Ex: A = “has glasses”, B = “is blond”.
p(A) + p(B) counts blondes with glasses
twice, need to subtract once. A B
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Conditional Probability

Definition: Conditional Probability, Joint Probability
If A and B are two events in a sample space S, and p(A) 6= 0
then the conditional probability of B given A is:

p(B|A) =
p(A ∩ B)

p(A)

p(A ∩ B) is the joint probability of A and B, also written p(A,B).

Intuitively, p(B|A) is the probability that B
will occur given that A has occurred.
Ex: The probability of being blond given
that one wears glasses: p(blond|glasses).

A B
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Conditional Probability

Example
A manufacturer knows that the probability of an order being
ready on time is 0.80, and the probability of an order being
ready on time and being delivered on time is 0.72.

What is the probability of an order being delivered on time,
given that it is ready on time?

R: order is ready on time; D: order is delivered on time.
p(R) = 0.80, p(R,D) = 0.72. Therefore:

p(D|R) =
p(R,D)

p(R)
=

0.72
0.80

= 0.90

14



Conditional Probability

Example
Consider sampling an adjacent pair of words (bigram) from a
large text T . Let BI = the set of bigrams in T (this is our sample
space), A = “first word is run” = {〈run,w2〉 : w2 ∈ T} ⊆ BI and
B = “second word is amok” = {〈w1,amok〉 : w1 ∈ T} ⊆ BI.

If p(A) = 10−3.5, p(B) = 10−5.6, and p(A,B) = 10−6.5, what is
the probability of seeing amok following run, i.e., p(B|A)? How
about run preceding amok, i.e., p(A|B)?

p(“run before amok”) = p(A|B) =
p(A,B)

p(B)
=

10−6.5

10−5.6 = .126

p(“amok after run”) = p(B|A) =
p(A,B)

p(A)
=

10−6.5

10−3.5 = .001

[How do we determine p(A), p(B), p(A,B) in the first place?]
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(Con)Joint Probability and the Multiplication Rule

From the definition of conditional probability, we obtain:

Theorem: Multiplication Rule
If A and B are two events in a sample space S and p(A) 6= 0,
then:

p(A,B) = p(A)p(B|A)

Since A ∩ B = B ∩ A, we also have that:

p(A,B) = p(B)p(A|B)

16



Marginal Probability and the Rule of Total Probability

Theorem: Marginalization (a.k.a. Rule of Total Probability)
If events B1,B2, . . . ,Bk constitute a partition of the sample
space S and p(Bi) 6= 0 for i = 1,2, . . . , k , then for any event A
in S:

p(A) =
k∑

i=1

p(A,Bi) =
k∑

i=1

p(A|Bi)p(Bi)

B1,B2, . . . ,Bk form a
partition of S if they are
pairwise mutually exclusive
and if
B1 ∪ B2 ∪ . . . ∪ Bk = S.

B
B B

B

B B
B

1

2

3 4

5

6

7
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Marginalization

Example
In an experiment on human memory, participants have to
memorize a set of words (B1), numbers (B2), and pictures (B3).
These occur in the experiment with the probabilities
p(B1) = 0.5, p(B2) = 0.4, p(B3) = 0.1.

Then participants have to recall the items (where A is the recall
event). The results show that p(A|B1) = 0.4, p(A|B2) = 0.2,
p(A|B3) = 0.1. Compute p(A), the probability of recalling an
item.

By the theorem of total probability:

p(A) =
∑k

i=1 p(Bi)p(A|Bi)
= p(B1)p(A|B1) + p(B2)p(A|B2) + p(B3)p(A|B3)
= 0.5 · 0.4 + 0.4 · 0.2 + 0.1 · 0.1 = 0.29
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Joint, Marginal & Conditional Probability

Example
Proportions for a sample of University of Delaware students
1974, N = 592. Data adapted from Snee (1974).

hairColor
eyeColor black brunette blond red

blue .03 .14 .16 .03 .36
brown .12 .20 .01 .04 .37

hazel/green .03 .14 .04 .05 .27
.18 .48 .21 .12
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Joint, Marginal & Conditional Probability

Example

These are the joint probabilities p(eyeColor,hairColor).

hairColor
eyeColor black brunette blond red

blue .03 .14 .16 .03 .36
brown .12 .20 .01 .04 .37

hazel/green .03 .14 .04 .05 .27
.18 .48 .21 .12
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Joint, Marginal & Conditional Probability

Example

E.g., p(eyeColor = brown,hairColor = brunette) = .20.

hairColor
eyeColor black brunette blond red

blue .03 .14 .16 .03 .36
brown .12 .20 .01 .04 .37

hazel/green .03 .14 .04 .05 .27
.18 .48 .21 .12
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Joint, Marginal & Conditional Probability

Example

These are the marginal probabilities p(eyeColor).

hairColor
eyeColor black brunette blond red

blue .03 .14 .16 .03 .36
brown .12 .20 .01 .04 .37

hazel/green .03 .14 .04 .05 .27
.18 .48 .21 .12
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Joint, Marginal & Conditional Probability

Example

E.g., p(eyeColor = brown) =∑
hairColor

p(eyeColor = brown,hairColor) =

.12 + .20 + .01 + .04 = .37

hairColor
eyeColor black brunette blond red

blue .03 .14 .16 .03 .36
brown .12 .20 .01 .04 .37

hazel/green .03 .14 .04 .05 .27
.18 .48 .21 .12
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Joint, Marginal & Conditional Probability

Example

These are the marginal probabilities p(hairColor).

hairColor
eyeColor black brunette blond red

blue .03 .14 .16 .03 .36
brown .12 .20 .01 .04 .37

hazel/green .03 .14 .04 .05 .27
.18 .48 .21 .12
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Joint, Marginal & Conditional Probability

Example

E.g., p(hairColor = brunette) =∑
eyeColor

p(eyeColor,hairColor = brunette) =

.14 + .20 + .14 = .48

hairColor
eyeColor black brunette blond red

blue .03 .14 .16 .03 .36
brown .12 .20 .01 .04 .37

hazel/green .03 .14 .04 .05 .27
.18 .48 .21 .12
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Joint, Marginal & Conditional Probability

Example
To obtain the cond. prob. p(eyeColor|hairColor = brunette),
we do two things:

hairColor
eyeColor black brunette blond red

blue .03 .14 .16 .03 .36
brown .12 .20 .01 .04 .37

hazel/green .03 .14 .04 .05 .27
.18 .48 .21 .12
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Joint, Marginal & Conditional Probability

Example
To obtain the cond. prob. p(eyeColor|hairColor = brunette),
we do two things:

i. reduction: we consider only the probabilities in the
brunette column;

hairColor
eyeColor black brunette blond red

blue .14
brown .20

hazel/green .14
.48
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Joint, Marginal & Conditional Probability

Example
To obtain the cond. prob. p(eyeColor|hairColor = brunette),
we do two things:

ii. normalization: we divide by the marginal p(brunette),
since all the probability mass is now concentrated here.

hairColor
eyeColor black brunette blond red

blue .14/.48
brown .20/.48

hazel/green .14/.48
.48
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Joint, Marginal & Conditional Probability

Example
E.g., p(eyeColor = brown|hairColor = brunette) = .20/.48.

hairColor
eyeColor black brunette blond red

blue .14/.48
brown .20/.48

hazel/green .14/.48
.48
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Joint, Marginal & Conditional Probability

Example
Moreover:
p(eyeColor = brown|hairColor = brunette) 6=
p(hairColor = brunette|eyeColor = brown)

Consider p(hairColor|eyeColor = brown):

hairColor
eyeColor black brunette blond red

blue .03 .14 .16 .03 .36
brown .12 .20 .01 .04 .37

hazel/green .03 .14 .04 .05 .27
.18 .48 .21 .12
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Joint, Marginal & Conditional Probability

Example
To obtain p(hairColor|eyeColor = brown), we reduce,

hairColor
eyeColor black brunette blond red

blue
brown .12 .20 .01 .04 .37

hazel/green

and we normalize.
hairColor

eyeColor black brunette blond red
blue

brown .12/.37 .20/.37 .01/.37 .04/.37 .37
hazel/green
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Joint, Marginal & Conditional Probability

Example
So p(hairColor = brunette|eyeColor = brown) = .20/.37,

hairColor
eyeColor black brunette blond red

blue
brown .12/.37 .20/.37 .01/.37 .04/.37 .37

hazel/green

but p(eyeColor = brown|hairColor = brunette) = .20/.48.

hairColor
eyeColor black brunette blond red

blue .14/.48
brown .20/.48

hazel/green .14/.48
.48
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Conditional Probability: p(A|B) vs p(B|A)

Example 1: Disease Symptoms (from Lindley 2006)

• Doctors studying a disease D noticed that 90% of patients
with the disease exhibited a symptom S.

• Later, another doctor sees a patient and notices that she
exhibits symptom S.

• As a result, the doctor concludes that there is a 90%
chance that the new patient has the disease D.

But: while p(S|D) = .9, p(D|S) might be very different.
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Conditional Probability: p(A|B) vs p(B|A)

Example 2: Forensic Evidence (from Lindley 2006)

• A crime has been committed and a forensic scientist
reports that the perpetrator must have attribute P. E.g., the
DNA of the guilty party is of type P.

• The police find someone with P, who is charged with the
crime. In court, the forensic scientist reports that attribute P
only occurs in a proportion α of the population.

• Since α is very small, the court infers that the defendant is
highly likely to be guilty, going on to assess the chance of
guilt as 1− α since an innocent person would only have a
chance α of having P.

But: while p(P|innocent) = α, p(innocent|P) might be
much bigger.
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Conditional Probability: p(A|B) vs p(B|A)

Example 3: Significance Tests (from Lindley 2006)

• As scientistis, we often set up a straw-man/null hypothesis.
E.g., we may suppose that a chemical has no effect on a
reaction and then perform an experiment which, if the
effect does not exist, gives numbers that are very small.

• If we obtain large numbers compared to expectation, we
say the null is rejected and the effect exists.

• “Large” means numbers that would only arise a small
proportion α of times if the null hypothesis is true.

• So we say that we have confidence 1− α that the effect
exists, and α (often .05) is the significance level of the test.

But: while p(effect|null) = α, p(null|effect) might
be bigger.

35



Bayes’ Theorem:

Relating p(A|B) and p(B|A)
We can infer something about a disease from a symptom, but
we need to do it with some care – the proper inversion is
accomplished by the Bayes’ rule

Bayes’ Theorem

p(B|A) =
p(A|B)p(B)

p(A)

• Derived using mult. rule: p(A,B) = p(A|B)p(B) = p(B|A)p(A).

• Denominator p(A) can be computed using theorem of total

probability: p(A) =
k∑

i=1
p(A|Bi )p(Bi ).

• Denominator is a normalizing constant: ensures p(B|A) sums to
1. If we only care about relative sizes of probabilities, we can
ignore it: p(B|A) ∝ p(A|B)p(B).
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Bayes’ Theorem

Example
Consider the memory example again. What is the probability
that an item that is correctly recalled (A) is a picture (B3)?

By Bayes’ theorem:

p(B3|A) = p(B3)p(A|B3)∑k
i=1 p(Bi )p(A|Bi )

= 0.1·0.1
0.29 = 0.0345

The process of computing p(B|A) from p(A|B) is sometimes
called Bayesian inversion.
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Bayes’ Theorem

Example
A fair coin is flipped three times. There are 8 possible
outcomes, and each of them is equally likely.

For each outcome, we can count the number of heads and the
number of switches (i.e., HT or TH subsequences):

outcome probability #heads #switches
HHH 1/8 3 0
THH 1/8 2 1
HTH 1/8 2 2
HHT 1/8 2 1
TTH 1/8 1 1
THT 1/8 1 2
HTT 1/8 1 1
TTT 1/8 0 0
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Bayes’ Theorem

Example
The joint probability p(#heads,#switches) is therefore:

#heads
#switches 0 1 2 3

0 1/8 0 0 1/8 2/8
1 0 2/8 2/8 0 4/8
2 0 1/8 1/8 0 2/8

1/8 3/8 3/8 1/8

Let us use Bayes’ theorem to relate the two conditional
probabilities:

p(#switches = 1|#heads = 1)

p(#heads = 1|#switches = 1)
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Bayes’ Theorem

Example

#heads
#switches 0 1 2 3

0 1/8 0 0 1/8 2/8
1 0 2/8 2/8 0 4/8
2 0 1/8 1/8 0 2/8

1/8 3/8 3/8 1/8

Note that:
p(#switches = 1|#heads = 1) = 2/3
p(#heads = 1|#switches = 1) = 1/2
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Bayes’ Theorem

Example

#heads
#switches 0 1 2 3

0 1/8 0 0 1/8 2/8
1 0 2/8 2/8 0 4/8
2 0 1/8 1/8 0 2/8

1/8 3/8 3/8 1/8

The joint probability p(#switches = 1,#heads = 1) = 2
8 can

be expressed in two ways:

p(#switches = 1|#heads = 1) · p(#heads = 1) = 2
3 ·

3
8 = 2

8
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Bayes’ Theorem

Example

#heads
#switches 0 1 2 3

0 1/8 0 0 1/8 2/8
1 0 2/8 2/8 0 4/8
2 0 1/8 1/8 0 2/8

1/8 3/8 3/8 1/8

The joint probability p(#switches = 1,#heads = 1) = 2
8 can

be expressed in two ways:

p(#heads = 1|#switches = 1) ·p(#switches = 1) = 1
2 ·

4
8 = 2

8
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Bayes’ Theorem

Example

#heads
#switches 0 1 2 3

0 1/8 0 0 1/8 2/8
1 0 2/8 2/8 0 4/8
2 0 1/8 1/8 0 2/8

1/8 3/8 3/8 1/8

Bayes’ theorem is a consequence of the fact that we can reach
the joint p(#switches = 1,#heads = 1) in these two ways:

• by restricting attention to the row #switches = 1

• by restricting attention to the column #heads = 1
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Bayes’ Theorem and Significance Tests

Example: Selenium and cancer (from Lindley 2006)

• A clinical trial tests the effect of a selenium-based treatment on
cancer.

• We assume the existence of a parameter φ such that: if φ = 0,
selenium has no effect on cancer; if φ > 0, selenium has a
beneficial effect; finally, if φ < 0, selenium has a harmful effect.

• The trial would not have been set up if the negative value was
reasonably probable, i.e., p(φ < 0|cancer) is small.

• The value φ = 0 is of special interest: it is the null value. The
hypothesis that φ = 0 is the null hypothesis.

• The non-null values of φ are the alternative hypothese(s), and
the procedure to be developed is a test of the null hypothesis.

• The null hypothesis is a straw man that the trial attempts to
reject: we hope the trial will show selenium to be of value.
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Bayes’ Theorem and Significance Tests

Example: Selenium and cancer (from Lindley 2006)

• Assume the trial data is a single number d : the difference in
recovery rates between the patients receiving selenium and
those on the placebo.

• Before seeing the data d provided by the trial, the procedure
selects values of d that in total have small probability if φ = 0.

• We declare the result “significant” if the actual value of d
obtained in the trial is one of them.

• The small probability is the significance level α. The trial is
significant at the α level if the actually observed d is in this set.

• Assume the actual d is one of these improbable values. Since
improbable events happen (very) rarely, doubt is cast on the
assumption that φ = 0, i.e., that the null hypothesis is true.

• That is: either an improbable event has occurred or the null
hypothesis is false.
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Bayes’ Theorem and Significance Tests

Example: Selenium and cancer (from Lindley 2006)

• The test uses only one probability α of the form p(d |φ = 0), i.e.,
the probability of data when the null is true.

• Importantly: α is not the probability of the actual difference d
observed in the trial, but the (small) probability of the set of
extreme values.

• Thus, a significance test does not use only the observed value
d , but also those values that might have occurred but did not.

• Determining what might have occurred is the major source of
problems with null hypothesis significance testing (NHST). See
Kruschke (2011), ch. 11, for more details.
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Bayes’ Theorem and Significance Tests

Example: Selenium and cancer (from Lindley 2006)
The test uses only p(d |φ = 0), but its goal is to make inferences
about the inverse probability p(φ = 0|d), i.e., the probability of the
null given the data. Two Bayesian ways (Kruschke 2011, ch. 12):

• Bayesian model comparison: we want the posterior odds, i.e.,
odds after the trial, of the null relative to the alternative(s):

o(φ=0|d) = p(φ=0|d)
p(φ6=0|d) =

p(d|φ=0)p(φ=0)
p(d)

p(d|φ6=0)p(φ 6=0)
p(d)

= p(d|φ=0)p(φ=0)
p(d|φ 6=0)p(φ6=0) = p(d|φ=0)

p(d|φ 6=0)o(φ=0)

• Bayesian parameter estimation: we compute the posterior
probability of all the (relevant) values of the parameter φ and
examine it to see if the null value is credible:

compute p(φ|d) = p(d|φ)p(φ)
p(d) , then check whether the null value is in

the interval of φ values with the highest posterior probability.
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Independence

Definition: Independent Events
Two events A and B are independent iff:

p(A,B) = p(A)p(B)

Intuition: two events are independent if knowing whether one
event occurred does not change the probability of the other.

Note that the following are equivalent:

p(A,B) = p(A)p(B) (1)
p(A|B) = p(A) (2)
p(B|A) = p(B) (3)

48



Independence

Example
A coin is flipped three times. Each of the eight outcomes is equally
likely. A: heads occurs on each of the first two flips, B: tails occurs on
the third flip, C: exactly two tails occur in the three flips. Show that A
and B are independent, B and C dependent.

A = {HHH,HHT} p(A) = 1
4

B = {HHT,HTT,THT,TTT} p(A) = 1
2

C = {HTT,THT,TTH} p(C) = 3
8

A ∩ B = {HHT} p(A ∩ B) = 1
8

B ∩ C = {HTT,THT} p(B ∩ C) = 1
4

p(A)p(B) = 1
4 ·

1
2 = 1

8 = p(A ∩ B), hence A and B are independent.
p(B)p(C) = 1

2 ·
3
8 = 3

16 6= p(B ∩ C), hence B and C are dependent.
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Independence

Example
A simple example of two attributes that are independent: the
suit and value of cards in a standard deck: there are 4 suits
{♦,♠,♣,♥} and 13 values of each suit {2, · · · ,10,J,Q,K,A},
for a total of 52 cards.

Consider a randomly dealt card:
• marginal probability it’s a heart:

p(suit = ♥) = 13/52 = 1/4
• conditional probability it’s a heart given that it’s a queen:

p(suit = ♥|value = Q) = 1/4
• in general, p(suit|value) = p(suit), hence suit and value

are independent
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Independence

Example
We can verify independence by cross-multiplying marginal
probabilities too. For every suit s ∈ {♦,♠,♣,♥} and value
v ∈ {2, · · · ,10,J,Q,K,A}:

• p(suit = s,value = v) = 1
52 (in a well-shuffled deck)

• p(suit = s) = 13
52 = 1

4

• p(value = v) = 4
52 = 1

13

• p(suit = s) · p(value = v) = 1
4 ·

1
13 = 1

52

Independence comes up when we construct mathematical
descriptions of our beliefs about more than one attribute: to
describe what we believe about combinations of attributes, we
often assume independence and simply multiply the separate
beliefs about individual attributes to specify the joint beliefs.
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Conditional Independence

Definition: Conditionally Independent Events
Two events A and B are conditionally independent given event
C iff:

p(A,B|C) = p(A|C)p(B|C)

Intuition: Once we know whether C occurred, knowing about A
or B doesn’t change the probability of the other.

Show that the following are equivalent:

p(A,B|C) = p(A|C)p(B|C) (4)
p(A|B,C) = p(A|C) (5)
p(B|A,C) = p(B|C) (6)
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Conditional Independence

Example
In a noisy room, I whisper the same number n ∈ {1, . . . ,10} to
two people A and B on two separate occasions. A and B
imperfectly (and independently) draw a conclusion about what
number I whispered. Let the numbers A and B think they heard
be na and nb, respectively.

Are na and nb independent (a.k.a. marginally independent)?
No. E.g., we’d expect p(na = 1|nb = 1) > p(na = 1).

Are na and nb conditionally independent given n? Yes: if you
know the number that I actually whispered, the two variables
are no longer correlated.
E.g., p(na = 1|nb = 1,n = 2) = p(na = 1|n = 2)
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Conditional Independence Example & the Chain Rule

The Anderson (1990) memory model: A is the event that an
item is needed from memory; A depends on contextual cues Q
and usage history HA, but Q is independent of HA given A.

Show that p(A|HA,Q) ∝ p(A|HA)p(Q|A).

Solution:

p(A|HA,Q) =
p(A,HA,Q)

p(HA,Q)

=
p(Q|A,HA)p(A|HA)p(HA)

p(Q|HA)p(HA)
[chain rule]

=
p(Q|A,HA)p(A|HA)

p(Q|HA)

=
p(Q|A)p(A|HA)

p(Q|HA)

∝ p(Q|A)p(A|HA)
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Random Variables

Definition: Random Variable
If S is a sample space with a probability measure and X is a
real-valued function defined over the elements of S, then X is
called a random variable.

We symbolize random variables (r.v.s) by capital letters
(e.g., X ), and their values by lower-case letters (e.g., x).

Example
Given an experiment in which we roll a pair of 4-sided dice, let
the random variable X be the total number of points rolled with
the two dice.

E.g. X = 5 ‘picks out’ the set {〈1,4〉, 〈2,3〉, 〈3,2〉, 〈4,1〉}.

Specify the full function denoted by X and determine the probabilities
associated with each value of X .
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Random Variables

Example
Assume a balanced coin is flipped three times. Let X be the
random variable denoting the total number of heads obtained.

Outcome Probability x
HHH 1

8 3
HHT 1

8 2
HTH 1

8 2
THH 1

8 2

Outcome Probability x
TTH 1

8 1
THT 1

8 1
HTT 1

8 1
TTT 1

8 0

Hence, p(X = 0) = 1
8 , p(X = 1) = p(X = 2) = 3

8 ,
p(X = 3) = 1

8 .
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Probability Distributions

Definition: Probability Distribution
If X is a random variable, the function f (x) whose value is
p(X = x) for each value x in the range of X is called the
probability distribution of X .
Note: the set of values x (‘the support’) = the domain of f = the range of X .

Example
For the probability function defined in the previous example:

x f (x)

0 1
8

1 3
8

2 3
8

3 1
8
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Probability Distributions

A probability distribution is often represented as a probability
histogram. For the previous example, this is actually a bar
graph/chart since the variable is discrete:

0 1 2 3
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(
x)
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Probability Distributions

Any probability distribution function (or simply: probability
distribution) f of a random variable X is such that:

1 f (x) ≥ 0, ∀x ∈ Domain(f )

2
∑

x∈Domain(f ) f (x) = 1.
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Distributions over Infinite Sets

Example: geometric distribution
Let X be the number of coin flips needed before getting heads,
where ph is the probability of heads on a single flip. What is the
distribution of X?

Assume flips are independent, so:

p(Tn−1H) = p(T)n−1p(H)

Therefore:
p(X = n) = (1− ph)n−1ph
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Distributions

So far, we have discussed discrete distributions.
• Sample space S is finite or countably infinite (integers).
• Distribution is a probability mass function, defines

probability of r.v. having a particular value.
• Ex: p(X = n) = (1− θ)n−1θ (Geometric distribution):

(Image from http://eom.springer.de/G/g044230.htm)
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Distributions

We will also see continuous distributions.
• Support is uncountably infinite (real numbers).
• Distribution is a probability density function, defines

relative probabilities of different values (sort of).
• Ex: p(X = x) = λe−λx (Exponential distribution):

(Image from Wikipedia)
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Expectation

The notion of mathematical expectation derives from games of
chance. It’s the product of the amount a player can win and the
probability of wining.

Example
In a raffle, there are 10,000 tickets. The probability of winning is
therefore 1

10,000 for each ticket. The prize is worth $4,800.

Hence the expectation per ticket is $4,800
10,000 = $0.48.

In this example, the expectation can be thought of as the
average win per ticket.
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Expectation

This intuition can be formalized as the expected value (or
mean) of a random variable:

Definition: Expected Value
If X is a random variable and f (x) is the value of its probability
distribution at x , then the expected value of X is:

E(X ) =
∑

x

x · f (x)
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Expectation

Example
A fair coin is flipped three times. Let X be the number of heads.
Then the probability distribution of X is:

f (x) =


1
8 for x = 0
3
8 for x = 1
3
8 for x = 2
1
8 for x = 3

The expected value of X is:

E(X ) =
∑

x

x · f (x) = 0 · 1
8

+ 1 · 3
8

+ 2 · 3
8

+ 3 · 1
8

=
3
2
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Expectation

The notion of expectation can be generalized to cases in which
a function g(X ) is applied to a random variable X .

Theorem: Expected Value of a Function
If X is a random variable and f (x) is the value of its probability
distribution at x , then the expected value of g(X ) is:

E [g(X )] =
∑

x

g(x)f (x)
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Expectation

Example
Let X be the number of points rolled with a balanced (6-sided)
die. Find the expected value of X and of g(X ) = 2X 2 + 1.

The probability distribution for X is f (x) = 1
6 . Therefore:

E(X ) =
∑

x

x · f (x) =
6∑

x=1

x · 1
6

=
21
6

E [g(X )] =
∑

x

g(x)f (x) =
6∑

x=1

(2x2 + 1)
1
6

=
94
6
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Summary

• Sample space S contains all possible outcomes of an
experiment; events A and B are subsets of S.

• rules of probability: p(Ā) = 1− p(A).
if A ⊆ B, then p(A) ≤ p(B).
0 ≤ p(B) ≤ 1.

• addition rule: p(A ∪ B) = p(A) + p(B)− p(A,B).
• conditional probability: p(B|A) = p(A,B)

p(A) .
• independence: p(A,B) = p(A)p(B).
• marginalization: p(A) =

∑
Bi

p(Bi)p(A|Bi).

• Bayes’ theorem: p(B|A) = p(B)p(A|B)
p(A) .

• any value of an r.v. ‘picks out’ a subset of the sample
space.

• for any value of an r.v., a distribution returns a probability.
• the expectation of an r.v. is its average value over a

distribution.
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Discrete vs. Continuous

Discrete distributions (p(·) is a probability mass function):
• 0 ≤ p(Y = y) ≤ 1 for all y ∈ S
•
∑
y

p(Y = y) =
∑
y

p(y) = 1

• p(y) =
∑
x

p(y |x)p(x) (Law of Total Prob.)

• E [Y ] =
∑
y

y · p(y) (Expectation)

Continuous distributions (p(·) is a probability density function):
• p(y) ≥ 0 for all y

•
∞∫
−∞

p(y)dy = 1 (if the support of the dist. is R)

• p(y) =
∫

x p(y |x)p(x)dx (Law of Total Prob.)
• E [X ] =

∫
x x · p(x)dx (Expectation)
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