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A Small Phrase Structure (PS) Grammar of English

Phrasal categories:
S: sentence, NP: noun phrase, VP: verb phrase

Syntactic categories (aka Parts of Speech):
Det: determiner, CN: common noun, TV: transitive verb

Phrase structure (PS) rules:
S → NP VP

NP → Det CN
VP → TV NP

Det → the
CN → kitten
CN → dog
TV → bit
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Derivations and Parse Trees

A derivation is the sequence of strings that results from
applying a sequence of PS rules, starting from a start symbol,
here S.

In a PSG derivation, only one symbol is rewritten per step.

Derivation 1
S⇒ NP VP⇒ NP TV NP⇒ NP TV Det CN⇒ NP bit Det CN
⇒ NP bit Det dog⇒ NP bit the dog⇒ . . .

Derivation 2
S⇒ NP VP⇒ NP TV NP⇒ NP TV Det CN⇒ Det CN TV Det
CN⇒ The CN TV Det CN⇒ The CN TV the CN⇒ . . .

The order in which symbols are rewritten does not matter in
these PSG derivations.
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Syntax Tree

Syntactic trees allow us to represent such equivalent
derivations in a simple way.

S

NP

Det

The

CN

kitten

VP

TV

bit

NP

Det

the

CN

dog

Crucially, the tree is assumed to be necessary for
interpretation, and different structures lead to different semantic
interpretations.
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Competence vs. Performance

With respect to language structure, we can distinguish between
• Competence: The linguistic knowledge that an (ideal)

speaker and/or hearer has; formalized using e.g. phrase
structure rules.

• Performance: The application of linguistic knowledge in
processing (comprehending or producing) language.

The distinction comes from Noam Chomsky’s seminal 1957
monograph Syntactic Structures.
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Competence vs. Performance

Competence:
• Typically studied by formal linguists.
• Which sentences are grammatical/ungrammatical and

what is the grammar that captures these facts?
• An idealization: grammatical sentences can be so long or

convoluted that no real person would have enough
memory or time to process them.

Performance:
• Typically studied by psycholinguists.
• Which sentences are hard to understand/generate and

why?
• How does linguistic knowledge interact with other cognitive

factors (memory, attention, age, etc.)?
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Competence vs. Performance as different levels of
analysis?

Recall Marr (1982) three levels of analysis:

• Computational theory: What is the goal of the computation
and the logical strategy needed to carry it out?

• Representation and algorithm: How can the computation
be implemented, and what input/output representations are
needed?

• Hardware implementation: What is the physical realization
of the algorithm?

Can view linguistic theory (competence) as making claims
about representation and computational level; psycholinguistics
(performance) as more concerned with algorithmic processes.
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Human sentence processing

In syntax, performance can be studied with respect to either:

• Understanding: How humans infer syntactic structure
(eventually, meaning) from a string of words.

• Generation: How humans go from meanings and/or
syntactic structures to produce sentences (along with
errors such as false starts, hesitations, fillers, spoonerisms,
etc.)

Both are rich areas; here we focus on modeling the Human
Sentence Processing Mechanism (HSPM), the cognitive device
involved in syntactic parsing for understanding.
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Incrementality

Parsing: Computing one or more structures for a string, given a
grammar.

Like word recognition, parsing is incremental: the HSPM must
build structures word by word as the input arrives (Tanenhaus
et al., 1995).

Problems occur if more than one structure is compatible with
the input either
• at the current point but not later (local ambiguity);
• for the input overall (global ambiguity).
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Global ambiguity

Given a grammar, strings that have more than one complete
syntax tree (parse) are said to have global structural ambiguity.

Examples:
1. She sat on the chair covered in dust.
2. He saw the man with the telescope.
3. Kids make nutritious snacks.
4. Milk drinkers are turning to powder.
5. Old school pillars are replaced by alumni.

Global ambiguity is a problem even for non-incremental
parsers.

Exs. 3-5 from http://www.fun-with-words.com/ambiguous_garden_path.html
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Local ambiguity

When only an initial substring is structurally ambiguous, the
sentence is said to have local structural ambiguity.

• Once the remainder of the string is known, only one tree
remains possible.

• Local ambiguity is a problem only for incremental parsers.

Example:

1. The athlete realized his potential . . .
a. . . . at the competition.
b. . . . could make him a world-class sprinter.
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Local ambiguity: Structure 1 (VP→ V NP)

S

NP

Det

The

N

athlete

VP

VP

V

realized

NP

Det

his

N

potential

PP

. . .

The athlete realized his potential at the competition.
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Local ambiguity: Structure 2 (VP→ V S)

S

NP

Det

The

N

athlete

VP

V

realized

S

NP

Det

his

N

potential

VP

. . .

The athlete realized his potential could make him a
world-class sprinter.
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Garden Paths

• Both structures are compatible with the input from realized
through potential; only the next word disambiguates.

• In many cases local ambiguity causes no apparent
difficulty; other times it causes a garden path.

• A garden path is said to occur when the processor
apparently commits to a single (wrong) structure early on,
causing a “dead end” parse when later input is inconsistent
with that structure. Processor must backtrack and revise
the structure.

• Garden path sentences result in longer reading times and
reverse eye-movements.

• Some garden paths are so strong that the parser fails to
recover from them.
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Garden Paths

More examples of garden paths:

(1) .
¯

I convinced her children are noisy. .
¯

Until the police
arrest the drug dealers control the street. .

¯
The old

man the boat. .
¯

We painted the wall with cracks. .
¯Fat people eat accumulates. .

¯
The cotton clothing is

usually made of grows in Mississippi. .
¯

The prime
number few.

Examples from http://www.fun-with-words.com/ambiguous_garden_path.html
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Dimensions of Parsing

In addition to incrementality, three properties common to all
parsers are important when designing a model of the HSPM:

• Directionality: The parser can process a sentence
bottom-up (from the words up) or top-down (from the
phrasal categories down). Evidence that the HSPM
combines both strategies.

• Parallelism: A serial parser maintains only one structure at
a time; a parallel parser pursues all/several. Still
controversial: Evidence for both serialism and limited
parallelism.

• Interactivity: The parser can be encapsulated (with access
to only syntactic information) or interactive (with access to
semantics and context). Evidence for limited interactivity.
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Review: Types of Parsers

There are several types of parsers:
• Recursive descent parser: Top-down, serial (depth-first)
• Shift-reduce parser: Bottom-up, serial (depth-first)
• CKY chart parser: Bottom-up, parts of which can be

parallelized
• Various chart parsers that combine TD and BU features,

with some serial and some parallizable sub-processes.
We consider two types of parsers as models for the HSPM: a
bottom-up parallel chart parser and a left-corner chart parser.
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A Bottom-Up Parallel Parser

The parser constructs a chart, a compact representation of all
the analyses of a sentence. Edges correspond to recognized
phrases.

Goal: find an S edge that spans the whole sentence. Example:
The dogkittens bite the

cndet tv det cn

npnp

vp

s
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Properties of the Model

Simple, but complete chart parser with the following properties:

• bottom-up: parsing is driven by the addition of words to the
chart; chart is expanded upwards from lexical to phrasal
categories;

• limited incrementality: when a new word appears, all
possible edges are added to the chart; then the system
quiesces (ie, no more rules fire) and Experimenter is
triggered to send the next word;

• parallelism: all chart edges are added at the same time
(default Cogent behavior); multiple analyses are pursued.
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Incrementality

• The bottom-up parser processes each word as it
appears—a limited form of incrementality.

• A fully incremental parser should maintain a fully
connected parse structure at all times. This is not
guaranteed by the bottom-up parser.

Consider processing “The girl gave the dog a bone”:

S → NP VP
NP → Det CN
VP → TV NP
VP → DV NP NP

Det → the | a
CN → girl | dog | bone
TV → bit
DV → gave
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Disconnected structures

There are 4 disconnected structures before the rule
VP→ DV NP NP applies, reducing the number to 2.

The gave the dog a bone

det cncndet det cndv

np npnp

vp

girl

The gave the dog a bone

det cncndet det cndv

np np np

girl
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Argument for connectivity

Consider the garden path sentence “the old man the boats”.
• Assume a serial bottom-up parser (or limited parallel—key

is that the correct structure is not considered initially).
• At what point does this parser realize its initial analysis is

incorrect?
• At what point (intuitively) does a human realize this?
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Argument for connectivity

The bottom-up parser doesn’t realize its mistake until it reaches
the end of the sentence, and cannot create a full parse:

the

det det

np

The old man boats

np

adj cn cn

But humans recognize a problem at the second the: they have
an expectation about what should come next, and it is violated.
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Left Corner Parsing

Left corner parsing is more cognitively plausible: each word is
immediately integrated into a single evolving structure which
makes predictions about what will come next.

A left-corner parser’s chart contains active edges: incomplete
constituents (phrasal categories) representing predictions.

Ex: NP/CN is an incomplete constituent that will become a
complete NP if a CN is seen next.

NP/CN ≈ dotted rule in active chart parsing: NP→Det . CN
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Rules of Left Corner Parsing

1. Projection: For a completed edge Y and a grammar rule
X → Y Z , add an active edge X/Z , where Y and X/Z
span the same part of the string.

2. Completion: For an active edge X/Y and a completed
edge Y that are adjacent, add a completed edge X that
spans the width of both.

3. Composition: For two adjacent active edges X/Y and
Y/Z , add an active edge X/Z that spans the width of both.

Rule 3 is not necessary for LC parsing, but is necessary for a
fully incremental version (i.e., to ensure a single connected
structure).
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Example of a Left Corner Chart

The kittens bite

cndet tv

np

det cn

dogthe

s

s/cn

s/np

s/vp

np/cn vp/np np/cn
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Serial Parsing

If parsing was fully parallel, all analyses of a sentence would be
equally available; there would be no garden paths.

Since there are garden paths, the literature provides two
alternative ways to explain them:

• Ranked parallel models: Multiple structures are pursued in
parallel; they are ranked in order of preferences; garden
paths occur if a low-ranked structure turns out to be
correct;

• Serial models: Only one structure is pursued; if it turns out
to be incorrect, then a garden path occurs.
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Serial Parsing

Serial left-corner parser with backtracking:

• Single structure evolves over time, following a “left corner”
(LC) version of the grammar.

• At each point of ambiguity, the parser has to chose one
way that the structure will evolve.

• If the structure turns out to be incorrect, the parser has to
backtrack.

• At the last point of ambiguity, the incorrect structure is
disassembled, and another alternative is pursued instead.
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A Serial Model of Left Corner Parsing

Computational requirements:

• operator selection: At each stage of processing, the parser
has to select what to do: elaborate the current structure,
read the next word, or backtrack.

• depth-first search: Elaborate the current structure as far as
possible before alternatives are considered. This requires
inhibition of some edges in the chart.

• backtracking: If this is to occur, previous states of the
parser must be recoverable. This requires a buffer to store
those choice points and ability to remove edges from the
chart.
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Properties of the Model

Properties of the left corner model:

• This model can parse garden path sentences such as the
old man the boats.

• Extensive backtracking may occur for such sentences; full
parse is found only if the Choice Point stack size is
sufficient.

Potential problems:

• Backtracking requires that parse failure is detected, and
that the parser knows where the sentence boundaries are.

• Operator evaluations are fixed; context or experience is not
taken into account; no attempt to minimize backtracking.

• “The horse raced past the barn fell.” vs. “The cow milked
after the storm fell.”
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Summary

• Parsing models must build structure incrementally and
account for ambiguity resolution and garden paths.

• A chart can be used to represent partial syntactic structure.
• Left-corner parsing model achieves full incrementality and

makes predictions, using operator selection to model serial
parsing and backtracking.

• Haven’t yet clearly explained why some parses are
preferred or some locally ambiguous sentences (but not
others) cause garden paths.
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Jurafsky (1996)

Presents a probabilistic parallel model of human sentence
processing that

explains garden paths and disambiguation.

considers several types of ambiguities and sources of
information to resolve them.

32



Lexical category ambiguity

Ambiguity resolved without trouble (fires = N or V):

(2) .
¯
The warehouse fires destroyed all the buildings.
.
¯
The warehouse fires a dozen employees each year.

Ambiguity leads to garden path (complex= N or Adj, houses= N
or V, etc.):

(3) .
¯
#The complex houses married and single students.
.
¯
#The old man the boats.

Note: # means garden path.
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Attachment ambiguity

Prepositional phrase can attach to NP or VP.

(4) I saw the man with the glasses.

VP

V

saw

NP

NP

the man

PP

with NP

the glasses

VP

VP

V

saw

NP

the man

PP

with NP

the glasses

(4) #The landlord painted the walls with cracks.
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Disambiguation

Main assumptions of Jurafsky (1996):

Observed preferences in interpretation of ambiguous
sentences reflect probabilities of different syntactic structures.

Garden path effects are merely extreme cases of processing
preferences. Examples from several types of ambiguity:

Lexical category ambiguity

Attachment ambiguity

Main clause vs. reduced relative clause ambiguity
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A probabilistic parallel parser

Jurafsky, 1996 adopts methods from statistical natural
language processing in a parallel parsing model.

Each full or partial parse is assigned a probability.

Parses are pruned from the search space if their probability is a
factor of α below the most probable parse (beam search).

Other pruning methods are possible, e.g., maintain a fixed
number of parses at all times.
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Computing parse probabilities

Jurafsky, 1996 focuses on two sources of information:

Construction probabilities: probability of syntactic tree.

Valence probabilities: probability of particular syntactic
categories as arguments for specific verbs.

Assumes that construction probabilities and valence
probabilities

are independent, so

P(parse) = P(constructions) * P(valence)

can be estimated from a large treebank using relative
frequencies.
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Probabilistic Context-free Grammars
P(constructions) is computed as Ppcfg(parse).

Example (Manning and Schütze, 1999)
S→ NP VP 1.0 NP→ NP PP 0.4
PP→ P NP 1.0 NP→ astronomers 0.1
VP→ V NP 0.7 NP→ ears 0.18
VP→ VP PP 0.3 NP→ saw 0.04
P→ with 1.0 NP→ stars 0.18
V→ saw 1.0 NP→ telescopes 0.1

• The rule A→ B C with probability p means
P(expansion is B C | left-hand side is A) = p

• so, probabilities of all rules with the same LHS sum to one;
• Ppcfg(parse) =

∏
Ppcfg(rulei) of all rules applied in the

parse.
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Probabilistic Context-free Grammars

Example (Manning and Schütze, 1999)
S1.0

NP0.1

astronomers

VP0.7

V1.0

saw

NP0.4

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears

P(t1) = 1.0 ·0.1 ·0.7 ·1.0 ·0.4 ·0.18 ·1.0 ·1.0 ·0.18 = 0.0009072
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Probabilistic Context-free Grammars

Example (Manning and Schütze, 1999)
S1.0

NP0.1

astronomers

VP0.3

VP0.7

V1.0

saw

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears

P(t2) = 1.0 ·0.1 ·0.3 ·0.7 ·1.0 ·0.18 ·1.0 ·1.0 ·0.18 = 0.0006804
t1 more probable than t2 according to construction probabilites.
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Subcategorization frames

Construction probabilities account for different tree shapes
being (dis)preferred overall. But: rating studies show different
verbs have different attachment preferences (“A
Competence-based Theory of Syntactic Closure”).

(1) The women discussed the dogs on the beach.

a. The women discussed the dogs that were on the beach.
(90%)

b. The women discussed the dogs while on the beach. (10%)

(2) The women kept the dogs on the beach.

a. The women kept the dogs that were on the beach. (5%)
b. The women kept them (the dogs) on the beach. (95%)

The arguments required by a verb are its subcategorization
frame or valence. Different valence preferences create different
attachment preferences.
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Valence Probabilities

Note: For Jurafsky, arguments and valence are actually defined
semantically, not syntactically; the semantic arguments of the
verb are those phrases that are semantically necessary to
complete the verb phrase. But in most cases (except, e.g.,
passive sentences), these are just the same as the syntactic
arguments of the verb, i.e., the other syntactic categories inside
the verb phrase.
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Valence Probabilities

Verb subcat frame: the other categories in the verb phrase.
• Ex. In VP→ V NP PP, the subcat frame for the V is NP PP.
• Ex. Subcategorization frames of the verb keep:

NP AP keep the pricesNP reasonableAP
NP VP keep his foesNP guessingVP
NP VP keep their eyesNP peeledVP
NP PRT keep the peopleNP inPRT
NP PP keep his nervesNP from janglingPP

Valence probabilities tell us how likely each of these frames is.
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Valence Probabilities

Like PCFG probs, valence probs are estimated from treebank.

discuss 〈NP PP〉 .24
〈NP〉 .76

keep 〈NP XP[pred +]〉 .81
〈NP〉 .19

Proportion of cases of ‘discuss’ where arguments are

NP PP: ’discuss the dogsNP with gustoPPVP’

NP: ’discuss the dogs with fleasPPNPVP’
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Modeling Results

Garden path or disambiguation can be caused

by construction probabilities alone (if no verb arguments
involved)

primarily by valence probabilities

by both Model assumes that

probabilities of tree fragments are computed incrementally
(left-to-right)

garden paths caused when incorrect structure is much more
probable; weak disambiguation preferences when both
structures are similar in probability.
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Modeling Garden Path Effects

Garden path caused by construction probabilities:
S→ NP . . . 0.92 N→ houses 0.00055
NP→ Det Adj N 0.28 Adj→ complex 0.00086
Det→ the 0.71

S

NP

Det

the

Adj

complex

N

houses

. . .

p(t1) = 8.5 · 10−8 (preferred)
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Modeling Garden Path Effects

Garden path caused by construction probabilities:
NP→ Det N 0.63 V→ houses 0.000052
S→ [NP VP[V . . . 0.48 Det→ the 0.71
N→ complex 0.000029

S

NP

Det

the

N

complex

VP

V

houses

. . .

p(t2) = 3.2 · 10−10 (grossly dispreferred)
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Modeling Ambiguity

Ambiguous construction, no garden path:
S→ NP . . . 0.92 N→ fires 0.00017
NP→ Det N N 0.28

S

NP

Det

the

N

warehouse

N

fires

. . .

p(t1) = 4.2 · 10−5 (preferred)
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Modeling Ambiguity

Ambiguous construction, no garden path:
NP→ Det N 0.63 V→ fires 0.000036
S→ [NP VP[V . . . 0.48

S

NP

Det

the

N

warehouse

VP

V

fires

. . .

p(t2) = 1.1 · 10−5 (mildly dispreferred)
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Modeling Valence Preferences

Disambiguation using valence probabilities, no garden path:
p(keep, 〈NP XP[pred +]〉) = 0.81
VP→ V NP XP 0.15

VP

V

keep

NP

the dogs

PP

on the beach

p(t1) = 0.15 · 0.81 = 0.12 (preferred)
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Modeling Valence Preferences

Disambiguation using valence probabilities, no garden path:
p(keep, 〈NP〉) = 0.19 VP→ V NP 0.39

NP→ NP XP 0.14

VP

V

keep

NP

NP

the dogs

PP

on the beach

p(t2) = 0.19 · 0.39 · 0.14 = 0.01 (mildly dispreferred)
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Modeling Valence Preferences

Disambiguation using valence probabilities, no garden path:
p(discuss, 〈NP PP〉) = 0.24
VP→ V NP XP 0.15

VP

V

discuss

NP

the dogs

PP

on the beach

p(t1) = 0.15 · 0.24 = 0.036 (mildly dispreferred)
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Modeling Valence Preferences

Disambiguation using valence probabilities, no garden path:
p(discuss, 〈NP〉) = 0.76 VP→ V NP 0.39

NP→ NP XP 0.14

VP

V

discuss

NP

NP

the dogs

PP

on the beach

p(t2) = 0.76 · 0.39 · 0.14 = 0.041 (preferred)
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Combining valence and construction probabilities

Consider the following examples:

(5) .
¯
#The horse raced past the barn fell.
(= ‘The horse that was raced past the barn fell.’)
.
¯
The horse found in the woods died.
(= ‘The horse that was found in the woods died.’)

Another case of different subcategorization preferences:

X raced >> X raced Y

X found Y >> X found
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Combining valence and construction probabilities

Garden path caused by construction probabilities and valence
probabilities:1

p(race, 〈agent〉) = 0.92

S

NP

the horse

VP

raced

p(t1) = 0.92 (preferred)

1Since the upcoming examples require passive sentences, we’re now
using the semantic notion of valence.
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Combining valence and construction probabilities

Garden path caused by construction probabilities and valence
probabilities:
p(race, 〈agent, theme〉) = 0.08
NP→ NP XP 0.14

S

NP

NP

the horse

VP

raced

. . .

p(t2) = 0.0112 (grossly dispreferred)
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Combining valence and construction probabilities

Disambiguation using construction probabilities and valence
probabilities, no garden path:
p(find, 〈agent〉) = 0.38

S

NP

the horse

VP

found

p(t1) = 0.38 (preferred)
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Combining valence and construction probabilities

Disambiguation using construction probabilities and valence
probabilities, no garden path:
p(find, 〈agent, theme〉) = 0.62
NP→ NP XP 0.14

S

NP

NP

the horse

VP

found

. . .

p(t2) = 0.0868 (mildly dispreferred)
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Setting the Beam Width

Crucial assumption: if the relative probability of a tree falls
below a certain value, then it will be pruned.

sentence probability ratio
the complex houses . . . 267:1
the horse raced . . . 82:1
the warehouse fires . . . 3.8:1
the horse found . . . 3.7:1

Assumption: a garden path occurs if the probability ratio is
higher than 5:1.
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Open Issues

• Incrementality: Can we make more fine-grained predictions
of the time course of ambiguity resolution?

• Coverage: Jurafsky used hand-crafted examples. Will this
model work when considering the fully array of sentences
in a real corpus?

• Crosslinguistics: does this model work for languages other
than English?
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Summary

• Different kinds of ambiguity: phrase attachment; lexical
category;

• rating studies provide evidence for subcat frame
preferences;

• modeling assumptions:
• parser with bounded parallelism;
• pruning of improbable analyses (beam search);
• independent combination of PCFG and valence

probabilities;

• Beam width: ratio of the probability of the preferred
analysis to the dispreferred analysis; needs to be
determined empirically.

• Model accounts for human parse preferences in several
well-known examples.
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