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1 Pattern matching

These notes discuss the Haskell syntax for function definitions. Given the central role that functions
play in Haskell, these aspects of Haskell syntax are fundamental.

Pattern matching consists of specifying patterns to which some data should conform, then checking
to see if it does and deconstructing the data according to those patterns.

When defining functions, you can define separate function bodies for different patterns. You can
pattern match on any data type — numbers, characters, lists, tuples, etc. This leads to very expressive
code that is also simple and readable.

Let’s make a really trivial function that checks if the number we supplied to it is a 7 or not.

ghci 1> let {lucky :: (Integral a) = a — String;
lucky 7 = "LUCKY NUMBER SEVEN!";
lucky x = "Sorry, you’re out of luck, pal!"}

When you call lucky, the patterns will be checked from top to bottom and when the argument of
the function conforms to a pattern, the corresponding function body will be used.

The only way a number can conform to the first pattern here is if it is 7. If it’s not, it falls through to
the second pattern, which matches anything and binds it to x.

ghci 2> lucky 7
"LUCKY NUMBER SEVEN!"

ghci 3> lucky 19

"Sorry, you’re out of luck, pal!"

This function could have also been implemented by using an if statement. Optional hw exercise:
do that.

But what if we wanted a function that says the numbers from 1 to 5 and says “Not between 1 and 5”
for any other number? Without pattern matching, we’d have to make a pretty convoluted if then else
tree. However, with pattern matching:

ghci 4> let {sayMe :: (Integral a) = a — String;
sayMe 1 = "One!";
sayMe 2 = "Two!";
sayMe 3 = "Three!";
sayMe 4 = "Four!";
sayMe 5 = "Five!";
sayMe x = "Not between 1 and 5"}

ghci 5> sayMe 1

n One ! n




ghci 6> sayMe 5

"Five!"

ghci 7> sayMe 6
"Not between 1 and 5"

Note that if we moved the last pattern (the catch-all one) to the top, it would always say “Not
between 1 and 5”, because it would catch all the numbers and they wouldn’t have a chance to fall
through and be checked for any other patterns.

The Haskell syntax for functions is much cleaner when we’re not in ghci. For example, you could
create a file sayMe.hs in your working ghci directory (run the command :!pwd in ghci to determine
that directory if you're using a Linux or Mac machine) and type the following code in:

sayMe' :: (Integral a) = a — String
sayMe’ 1 = "One!"

sayMe' 2 = "Two!"

sayMe' 3 = "Three!"

sayMe' 4 = "Four!"

sayMe' 5 = "Five!"

sayMe’ x = "Not between 1 and 5"

Note that we do not use a let keyword, semicolons or curly braces; white space (block indentation)
is however significant. To load the function in ghci, just run the following command:

ghci 8> :[sayMe

ghci 9> sayMe' 5

"Fivel!"

ghci 10> sayMe’ 6
"Not between 1 and 5"

1.1 Implementing factorial again

Remember the factorial function we implemented previously? We defined the factorial of a number n
as product [1..n].

ghci 11> let factorial’ n = product [1..n]

ghci 12> factorial’ 3
6




ghci 13> factorial’ 6
720

We can also define a factorial function recursively, the way it is usually defined in mathematics. We
start by saying that the factorial of 0 is 1. Then we state that the factorial of any positive integer is that
integer multiplied by the factorial of its predecessor.

Here’s what that looks like translated in Haskell terms.

ghci 14> let {factorial :: (Integral a) = a — a;
factorial 0 = 1;
factorial n = n x factorial (n — 1) }

ghci 15> factorial 0
1

ghci 16> factorial 3
6

ghci 17> factorial 53
4274883284060025564298013753389399649690343788366813724672000000000000

This is the first time we’ve defined a function recursively. Recursion is important in Haskell and
we’ll take a closer look at it later.
But in a nutshell, this is what happens if we try to get the factorial of, say, 3:

e ghci tries to compute 3 * factorial 2
e factorial 2 is 2 x factorial 1, so for now we have 3 x (2 * factorial 1)
e factorial 1is 1 « factorial 0, so we have 3 x (2 x (1 * factorial 0))

e now here comes the trick: we’ve defined factorial 0 to be just 1 and because it encounters that
pattern before the catch-all one, it just returns 1

e so the final result is equivalent to 3 * (2% (1% 1))

Had we written the second pattern on top of the first one, it would catch all numbers, including 0
and our calculation would never terminate.

That’s why order is important when specifying patterns and it’s always best to specify the most
specific ones first and then the more general ones later.

1.2 Pattern matching failures

Pattern matching can also fail. If we define a function like this:



ghci 18> let { charName :: Char — String;
charName *a’ = "Albert";
charName b’ = "Broseph";
charName ’c’> = "Cecil"}

And then try to call it with an input that we didn’t expect, this is what happens:

ghci 19> charName ’a’
"Albert"

ghci 20> charName b’
"Broseph"

ghci 21> charName *h’

ghci complains that we have non-exhaustive patterns, and rightfully so. When making patterns,
we should always include a catch-all pattern so that our program doesn’t crash if we get some unex-
pected input.

ghci 22> let { charName' :: Char — String;
charName' *a’> = "Albert";
charName' >b’> = "Broseph";
charName' >c’ = "Cecil";
charName' _ = "I don’t know this."}

ghci 23> charName' >a’
"Albert"

ghci 24> charName' b’
"Broseph"

ghci 25> charName' *h?
"I don’t know this."

2 Pattern matching on tuples

What if we wanted to make a function that takes two vectors in a 2D space (that are in the form of
pairs) and adds them together?
To add two vectors together, we add their x components and their y components separately.



Here’s how we would have done it if we didn’t know about pattern matching:

ghci 26> let {addVectors' :: (Num a) = (a,a) — (a,a) — (a,a);
addVectors' a b = (fst a + fst b,snd a + snd b) }

ghci 27> addVectors’ (1,2.3) (1,1)
(2.0,3.3)

Well, that works, but there’s a better way to do it. Let’s modify the function so that it uses pattern
matching.

ghci 28> let {addVectors :: (Num a) = (a,a) — (a,a) — (a,a);
addVectors (x1,y1) (x2,y2) = (x1+x2,y1+y2)}

Note that this is already a catch-all pattern. The type of addVectors (in both cases) is addVectors ::
(Num a) = (a,a) — (a,a) — (a,a), so we are guaranteed to get two pairs as parameters.

ghci 29> :t addVectors
addVectors :: Num a = (a,a) — (a,a) — (a,a)

ghci 30> addVectors (1,2) (3,4.2)
(4.0,6.2)

2.1 Generalizing fst and snd

fst and snd extract the components of pairs. But what about triples? There are no provided functions
that do that but we can make our own.

ghci 31> let {first:: (a,b,c) — a;
first (x,—,_) = x;
second :: (a,b,c) — b;
second (_,y,-) =y;
third :: (a,b,c) — ¢;
third (_, _,z) =z}

The _ means the same thing as it does in list comprehensions: we don’t care what that part is.

ghci 32> first (1,2,3)
1




ghci 33> second (1,2,3)
2

ghci 34> third (1,2,3)
3

Note the error if we apply these functions to pairs:

ghci 35> first (1,2)

3 Pattern matching in list comprehensions

ghci 36> let xs = [(1,3),(4,3), (2,4), (5,3),(5,6), (3,1)]

ghci 37> [a+b | (a,b) < xs]
[4,7,6,8,11,4]

Should a pattern match fail, we just move on to the next element in the input list. Consider this
example:

ghci 38> let xS = [("abc", "def"), ("ghi", n n)’ ("ABC", "DEF"), (u n’ "GHI"), ("the", "end")]

ghci39> [[y] +". "H[z] +"." | ((y:ys), (z:25)) ¢ xs]
["a. d.","A. D.","t. e."]

4 Lists in pattern matching

Lists themselves can be used in pattern matching. We can match with the empty list [| or any pattern
that involves : and the empty list, but since [1, 2, 3] is just syntactic sugar for 1:2:3:[], we can also use
this pattern.

A pattern like x : xs will bind the head of the list to x and the rest of it to xs, even if there’s only one
element so xs ends up being an empty list.

The x : xs pattern is used a lot, especially with recursive functions. But patterns that have : in them
only match against lists of length 1 or more.

If you want to bind, say, the first three elements to variables and the rest of the list to another
variable, you can use something like x : 7 : z: zs. It will only match against lists that have three elements
or more.

Note: we can’t use -4 in pattern matches (ambiguous patterns).



4.1 Implementing the /ead function

Now that we know how to pattern match against lists, let’s make our own implementation of the head
function.

ghci 40> let {head' :: [a] — 4;
head’ [] = error "Can’t call head on an empty list, dummy!";
head’ (x: _) = x}

ghci 41> head’ [4,5,6]
4

ghci 42> head’ "Hello"
’H’

ghci 43> head’ []
s % xException : Can't call head on an empty list, dummy!

Note that if you want to bind to several variables (even if one of them is just _ and doesn’t actually
bind at all), we have to put them in parentheses.

Also note the error function that we used: it takes a string and generates a runtime error, using that
string as information about what kind of error occurred.

ghci 44> :t error
error:: [Char] — a

ghci 45> :ierror
error:: [Char] — a -- Defined in ‘GHC.Err’

ghci 46> :!hoogle -- info error
Prelude error :: [Char] -> a

error stops execution and displays an error message.

From package base error :: [Char] -> a

Note that error causes the program to crash, so use it sparingly.

4.2 Another example: pattern matching with lists of different lengths

Let’s make a trivial function that tells us some of the first elements of the list in (in)convenient English
form.



ghci 47> let {tell :: (Show a) = [a] — String;
tell [] = "The list is empty";
tell (x:[]) = "The list has one element: " -H show x;
tell (x:y:[]) = "The list has two elements: " -H show x H " and " H show y;
tell (x:y: _) = "This list is long. The first two elements are: "
+-show x + " and " -H show y}

ghci 48> tell []
"The list is empty"

ghci 49> tell "h"
"The list has one element: ’h’"

ghci 50> tell "he"
"The list has two elements: ’h’ and ’e’"

ghci 51> tell "hello"
"This list is long. The first two elements are: ’h’ and ’e’"

This function is safe because it takes care of the empty list, a singleton list, a list with two elements
and a list with more than two elements.

Note that (x:[]) and (x:y:[]) could be rewriten as [x] and [x,y] — we don’t need parentheses in
this case.

We can’t rewrite (x:y: _) with square brackets because it matches any list of length 2 or more.

4.3 Implementing length again

We already implemented our own length function using list comprehension. Now we’ll do it by using
pattern matching and a little recursion:

ghci 52> let {length’' :: (Num b) = [a] — b;
length’ [] = 0;
length' (_:xs) =1+ length’ xs}

This is similar to the factorial function we wrote earlier. First we defined the result of a known
input — the empty list. This is also known as the edge condition (a.k.a. the base condition).

Then in the second pattern we take the list apart by splitting it into a head and a tail. We say that
the length is equal to 1 plus the length of the tail. We use _ to match the head because we don’t actually
care what it is.

Also note that we’ve taken care of all possible patterns of a list: the first pattern matches an empty
list and the second one matches anything that isn’t an empty list.



ghci 53> length’ []
0

ghci 54> length’ "hello"
B

ghci 55> length' "hello world"
11

Let’s see what happens if we call length’ on "ham".

ghci 56> length’ "ham"
3

o first, it will check if it's an empty list; because it isn't, it falls through to the second pattern

e it matches on the second pattern and there it says that the length is 1 + length’ "am", because we
broke it into a head and a tail and discarded the head

e length’ "am" is similarly 1+ length’ "m"; so right now we have 1+ (1 + length’ "m")
o length’ "m" is 1 + length’ "" (equivalently, 1+ length’ []), and we’ve defined length’ [] to be 0
e sointheend wehave 1+ (1+ (1+0))

4.4 Implementing sum

Assume that the sum of an empty list is 0. We write that down as a pattern. And we also know that
the sum of a list is the head plus the sum of the rest of the list.

ghci 57> let {sum’ :: (Num a) = [a] — a;
sum’ [] =0;
sum’ (x:xs) = x + sum’ xs}

ghci 58> sum’ []
0

ghci 59> sum’ [1..10]
55

ghci 60> sum’ [1..100]
5050

10



5 As-patterns

As-patterns are a useful way of breaking something up according to a pattern and binding it to names
while still keeping a reference to the whole thing. We do that by putting a name and an @ in front of a
pattern.

For instance, the pattern xs@(x : y : ys) will match exactly the same thing as x : i : ys, but you can
easily get the whole list via xs instead of repeating yourself by typing out x : y : ys in the function body
again.

ghci 61> let {firstLetter :: String — String;
firstLetter "" = "Empty string, whoops!";
firstLetter all@(x : xs) = "The first letter of " H-all H " is " H [x]}

ghci 62> firstLetter "Dracula"
"The first letter of Dracula is D"

ghci 63> firstLetter "Tonsil"
"The first letter of Tonsil is T"

ghci 64> firstLetter "tonsil"
"The first letter of tonsil is t"

ghci 65> firstLetter ""
"Empty string, whoops!"

ghci 66> firstLetter [ ]
"Empty string, whoops!"

6 Guards

While patterns are a way of making sure a value conforms to some form and deconstructing it, guards
are a way of testing whether an argument (or several arguments) satisfy a property or not.

This is very similar to an if statement, but guards are a lot more readable when we have several
cascaded conditions we want to check. And they play really nicely with patterns.

6.1 A BMI function

We're going to make a simple function that lists the range of a particular BMI (body mass index). The
BMI is weight (in kg) divided by height (in m) squared. If a BMI is less than 18.5, it’s in the underweight
range. If it's anywhere between 18.5 to 25, it’s in the normal range. 25 to 30 is overweight and more
than 30 is obese.
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ghci 67> let {bmiTell :: (Floating a, Ord a) = a — String;
bmiTell bmi
| bmi < 18.5 = "underweight range"
| bmi < 25.0 = "normal range"
| bmi < 30.0 = "overweight range"
| otherwise = "obese range"}

Guards are indicated by pipes that follow a function’s name and its parameters. Usually, they're
indented a bit to the right and lined up. Note that there’s no = right after the function name and its
parameters, before the first guard. Haskell newbies get syntax errors because they sometimes put it
there.

One way to remember that the =, i.e., the specification of the function value, follows the guard is to
think of the guard as a presupposition that the argument of the function needs to satisfy before anything
gets computed, i.e., before the function is actually applied to that argument (or arguments, as the case
may be). If the presuppositional requirement / guard is satisfied, we can go ahead and compute the
value of the function, i.e., we can go ahead and assign a semantic value to the functional expression.

A guard is a boolean expression. If it evaluates to True, then the corresponding function body is
used. If it evaluates to False, checking drops through to the next guard and so on.

ghci 68> bmiTell 24.3

"normal range"

If we call this function with 24.3, it will first check if that’s smaller than or equal to 18.5. Because
it isnt, it falls through to the next guard. The check is carried out with the second guard and because
24.3 is less than 25.0, the second string is returned.

ghci 69> bmiTell 34.0
"obese range"

This is very reminiscent of a big if then else tree in imperative languages, only it is more readable.
While big if else trees are usually frowned upon, sometimes a problem is defined in such a discrete
way that you can’t get around them. Guards are a nice alternative for this.

Many times, the last guard is otherwise, which is just another word for True (it’s defined as otherwise =
True) and therefore catches everything.

Thus, guards are very similar to patterns, only patterns check if the input has a particular form
while guards check if the input satisfies boolean conditions.

If all the guards of a function evaluate to False and we haven’t provided an otherwise catch-all guard,
evaluation falls through to the next pattern. That’s how patterns and guards work together. If no
suitable guards or patterns are found, an error is thrown.

6.2 Guards with multi-argument functions: reimplementing bmiTell

We can use guards with functions that take as many parameters as we want. Instead of having the user
calculate his own BMI before calling the function, let's modify this function so that it takes a height and
weight and calculates it for us.

12



ghci 70> let {bmiTell :: (RealFloat a) = a — a — String;
bmiTell weight height
| weight / height T2 < 18.5 = "underweight range"
| weight / height 12 < 25.0 = "normal range"
| weight / height T2 < 30.0 = "overweight range"
| otherwise = "obese range"}

6.3 Implementing the max function

Another very simple example: let’s implement our own max function. If you remember, it takes two
things that can be compared and returns the larger of them. This is how we can define it with guards:

ghci 71> let {max':: (Orda) = a —a — a;
max' a b
la>b=a
| otherwise = b}

ghci 72> max' 25
5

Guards can also be written inline, but the definition is less readable. Here’s an example:

ghci 73> let {max":: (Orda) = a —a — a;max" ab|a>b=a | otherwise = b}

ghci 74> max" 25
5

6.4 Implementing the compare function

ghci 75> let { myCompare :: (Ord a) = a — a — Ordering;
a ‘myCompare’ b
|a>b=GT
|la=b=EQ
| otherwise = LT}

ghci 76> 3 ‘myCompare’ 2
GT

Not only can we call functions in infix form with backticks, we can also define them using backticks
if that’s more readable.

13



7 where bindings

In the previous section, we defined a BMI calculator function in which we repeated the expression
weight / height 1 2 three times. It would be better if we could calculate it once, bind it to a name and
then use that name instead of the expression. We can modify our function like this:

ghci 77> let {bmiTell :: (Floating a, Ord a) = a — a — String;
bmiTell weight height
| bmi < 18.5 = "underweight range"
| bmi < 25.0 = "normal range"
| bmi < 30.0 = "overweight range"
| otherwise = "obese range"
where bmi = weight / height 12}

ghci 78> bmiTell 85 1.90

"normal range"

We put the keyword where after the guards (when you're not using ghci, indent it as much as the
pipes are indented) and then we define names or functions. These names / function are visible across
the guards.

Now we don’t have to repeat ourselves, which improves readability. Moreover, if we decide that
we want to calculate BMIs a bit differently (e.g., using pounds and inches), we only have to change it
once. Finally, this can make our program faster since our bmi function is calculated only once.

We could go a bit overboard and present our function like this:

ghci 79> let {bmiTell :: (Floating a, Ord a) = a — a — String;
bmiTell weight height
| bmi < skinny = "underweight range"
| bmi < normal = "normal range"
| bmi < fat = "overweight range"
| otherwise = "obese range"
where {
bmi = weight / height 1 2;
skinny = 18.5;
normal = 25.0;
fat = 30.0} }

ghci 80> bmiTell 85 1.90

"normal range"

The names we define in the where section of a function are only visible to that function, so we don’t
have to worry about them becoming part of the namespace of other functions. But overusing where
bindings might decrease the readability of our function instead of increasing it — it’s just like overusing
footnotes / endnotes in a paper.

Importantly, where bindings aren’t shared across function bodies of different patterns. If we want
several patterns of one function to access some shared name, we have to define it globally with a let

14



binding (see next section).
Note that when we don’t work in ghci, all the names declared in a where block have to be aligned

in the exact same way. If we don’t align them, Haskell gets confused because it doesn’t know they’re
all part of the same block.

7.1 Pattern matching in where bindings

We can also use pattern matching in where bindings. For example, we could have rewritten the where
section of our previous function as:

ghci 81> let {bmiTell :: (Floating a, Ord a) = a — a — String;

bmiTell weight height
| bmi < skinny = "underweight range"
| bmi < normal = "normal range"

| bmi < fat = "overweight range"
| otherwise = "obese range"
where {
bmi = weight / height 1 2;
(skinny, normal, fat) = (18.5,25.0,30.0) } }

ghci 82> bmiTell 85 1.90
"normal range"

7.2 Another example: extracting initials

Let’s make another fairly trivial function where we get a first and a last name and give someone back
their initials.

ghci 83> let {initials :: String — String — String;
initials firstname lastname = [f] H". " H [I]H"."
where { (f: _) = firstname; (I: _) = lastname } }

ghci 84> initials "John" "Doe"
N3, Bl,7

We could have done this pattern matching directly in the function’s parameters — it's shorter and
clearer actually, see below. But we wanted to show that it’s possible to do it in where bindings as well.

ghci 85> let {initials' :: String — String — String;
initials' firstname@(f: _) lastname@(l: _) = [f] H". "+ [I] H"."}

ghci 86> initials’ "John" "Doe"
"J. D.

15



We can even drop the as-patterns without any serious loss in readability:

ghci 87> let {initials’ :: String — String — String;
initials” (f: _) (I _) = [f]+#". "H[]]+H"."}

ghci 88> initials” "John" "Doe"
"J. D."

7.3 Defining functions in where bindings

Just like we’ve defined constants in where blocks, we can also define functions. Let’s make a function
that takes a list of weight-height pairs and returns a list of BMls.

ghci 89> let {calcBmis :: (Floating a) = [(a,a)] — [a];
calcBmis xs = [bmi w h | (w, h) < xs]
where bmi weight height = weight / height 12}

ghci 90> calcBmis [(80,1.75), (75,1.80) ]
[26.122448979591837,23.148148148148145]

The reason we had to introduce bmi as a function in this example is because we can’t just calculate
one BMI from the function’s parameters. We have to examine the list passed to the function and there’s
a different BMI for every pair in there.

Finally, note that where bindings can also be nested. It's a common idiom to make a function and
define some helper function in its where clause and then to also give that function a helper function in
its own where clause.

8 let bindings

A let binding is very similar to a where binding. A where binding is a syntactic construct that binds
variables at the end of a function and the whole function (or a whole pattern-matching subpart) can
see these variables, including all the guards.

A let binding binds variables anywhere and is an expression itself, but its scope is tied to where the
let expression appears. So if it’s defined within a guard, its scope is local and it will not be available
for another guard. But it can also take global scope over all pattern-matching clauses of a function
definition if it is defined at that level.

The form is let bindings in expression. The names that you define in the let part are accessible to
the expression after the in part. For example, this is how we could define a function that gives us a
cylinder’s surface area based on its height and radius:
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ghci 91> let {cylinder :: (Floating a) = a — a — a;
cylinder r h =
let sideArea = 2 * pi x r x h; topArea = pi*r 12
in sideArea + 2 * topArea }

ghci 92> cylinder 2 7
113.09733552923255

The names should be aligned in the same way when we do not use ghci, i.e.,, when we do not add
the curly braces and the semicolon to explicitly indicate the let bindings block.

We could have also defined the cylinder function with a where binding. So what are the main
differences between let and where bindings?

e let puts the bindings first and the expression that uses them later, whereas where is the other
way around

e more importantly, let bindings are expressions themselves while where bindings are just syntac-
tic constructs that cannot be interpreted on their own

Recall that when we discussed the if statement, we said that an if then else statement is an ex-
pression and it can occur almost anywhere, for example:

ghci 93> [if 5> 3 then "Woo" else "Boo",if ’a’ > ’b’ then "Foo" else "Bar"|
["WOO", IlBar"]

ghci 94> 4« (if 10 > 5 then 10 else 0) + 2
42

Since let bindings are expressions too, we can do the same with them. For example:

ghci 95> 4« (leta =9ina+1)+2
42

They can also be used to introduce functions in embedded expressions (in which case the function
names have local scope):

ghci 96> [let square x = x * x in (square 5,square 3, square 2) |
[(25,9,4)]

If we want to bind several variables inline, we can separate them with semicolons.

ghci 97> leta = 100;b = 200;c =300 ina*bx*c
6000000
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ghci 98> let foo = "Hey ";bar = "there!" in foo H- bar
"Hey there!"

We don’t have to put a semicolon after the last binding, but we can.

ghci 99> leta = 100;b = 200;c = 300;in a* b *c
6000000

ghci 100> let foo = "Hey ";bar = "there!";in foo H- bar
"Hey there!"

Similarly, we can but often do not have to enclose the bindings with curly braces (although we’ve
been doing this up until now).

8.1 Pattern matching with let bindings

Just like any construct in Haskell that is used to bind values to names, we can pattern match with let
bindings. E.g., we can dismantle a tuple into components and bind the components to names.

ghci 101> let (a,b,¢) = (1,2,3)

ghci 102> a
1

ghci 103> b
2

ghci 104> ¢
3

We can do all this inside another expression since let itself is an expression and it can be freely
embedded.

ghci 105> (let (a,b,¢) = (1,2,3) ina+ b+ ¢) * 100
600

8.2 let bindings in list comprehensions

We can also put let bindings inside list comprehensions. Let’s rewrite our previous example of cal-
culating lists of weight-height pairs to use a let inside a list comprehension instead of defining an
auxiliary function with a where.
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ghci 106> let { calcBmis :: (Floating a) = [(a,a)] — [a];
calcBmis xs = [bmi | (w,h) < xs,let bmi =w / h1 2]}

ghci 107> calcBmis [(80,1.87), (63,1.62)]
[22.877405702193368, 24.005486968449926 |

We include a let inside a list comprehension much like we would a predicate — only it doesn’t filter
the list, it just introduces a new binding. The names defined in a let inside a list comprehension are
visible to the output function (the part before the |) and all predicates and sections that come after of
the binding.

So we could make our function return only BMIs in the overweight and obese ranges:

ghci 108> let { calcBmis :: (Floating a) = [(a,a)] — [a];
calcBmis xs = [bmi | (w,h) < xs,let bmi = w / h12,bmi > 25.0] }

We omit the in part of a let binding when we use it in a list comprehension because the visibility
of the binding is already predefined there (but we could use a let in binding inside a predicate in a list
comprehension and the names would only be visible to that predicate).

The in part can also be omitted when defining functions and constants directly in ghci, like we’ve
been doing all this time. When we do that, the names are visible throughout the entire interactive
session.!

ghci 109> letzoot x yz = x*y + 2z

ghci 110> zoot 3 9 2
29

ghci 111> let boot x y z = x xy + z in boot 3 4 2
14

ghci 112> boot

Should we use let bindings all the time instead of where bindings? (there are functional program-
ming languages that have only let constructs). There are two kinds of situations in which where
bindings are preferable:

o where bindings have scope across guards (but inside a pattern-matching clause) automatically

IThere’s a good reasons for the similar behavior of let in list comprehensions and ghci: in both cases, we introduce let
bindings in a monadic, ‘sequential” environment — the list monad and the IO monad, respectively. So let bindings have the same
scopal behavior as (global) variable assignments in imperative languages.
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e where bindings define helper names / functions after the main function, so the main function’s
body is closer to its name and type declaration, which increases readability

9 case expressions

Many imperative languages have case syntax: we take a variable and execute blocks of code for specific
values of that variable. We might also include a catch-all block of code in case the variable has some
value for which we didn’t set up a case.

But Haskell takes this concept and generalizes it: case constructs are expressions, much like if
expressions and let bindings. And we can do pattern matching in addition to evaluating expressions
based on specific values of a variable.

Speaking of pattern matching: we already saw this when we discussed function definitions. Well,
that’s actually just syntactic sugar for case expressions. The two pieces of code below do the same
thing and are interchangeable:

ghci 113> let {head' :: [a] — a;
head’ [] = error "No head for empty lists!";
head' (x: _) = x}

ghci 114> head' "whassup"

’W,

ghci 115> head’ ""
*** Exception: No head for empty lists!

ghci 116> let {head” :: [a] — a;
head” xs = case xs of {
[] — error "No head for empty lists!";

(x: ) = x}}

ghci 117> head” "whassup"

‘w?

ghci 118> head” "
*** Exception: No head for empty lists!

Thus, the syntax for case expressions is as follows:

e case expression of pattern — result
pattern — result
pattern — result
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The expression is matched against the patterns. The pattern matching action is what we expect: the
first pattern that matches the expression is used. If we fall through the whole case expression and no
suitable pattern is found, a runtime error occurs.

Note that if we use both guards and case expressions in function definitions, the guards cannot
appear inside case expressions, they have to take scope over them.

This goes well with the informal characterization of guards as presuppositions: they need to be
specified before the function application is computed (i.e., the functional expression is evaluated /
assigned a semantic value), hence they need to be specified before any specification of the function
value. In contrast, case expressions are just a way to specify actual function values, i.e., what should
get computed assuming the guards / presuppositions are satisfied.

ghci 119> let {lessThanTwo :: (Integral a) = a — String;
lessThanTwo x
| x <2 = case x of {
0 — "zero";
1 — "one";
X — "negative number"}
| otherwise = "two or more"}

ghci 120> lessThanTwo 0

"ZeI'O"

ghci 121> lessThanTwo 1
n one n

ghci 122> lessThanTwo (—5)

"negative number"

ghci 123> lessThanTwo 5
"two or more"

9.1 Embedding case expressions

Whereas pattern matching on function parameters can only be done when defining functions, case
expressions can be used pretty much anywhere. For instance, they are useful for pattern matching
against something in the middle of an expression:

ghci 124> let {describeList :: [a] — String;
describeList xs = "The list is "+ case xs of {
[] = "empty.";
[x] — "a singleton list.";
xs — "a longer list."}}
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ghci 125> describeList ||
"The list is empty."

ghci 126> describeList [1]
"The list is a singleton list."

ghci 127> describeList [1..5]
"The list is a longer list."

Alternatively, we could have used a where binding and a function definition like so:

ghci 128> let {describeList' :: [a] — String;
describeList’ xs = "The list is " -+ what xs

where {
what [| = "empty.";
what [x] = "a singleton list.";

what xs = "a longer list."}}

ghci 129> describeList’ []
"The list is empty."

ghci 130> describeList’ [1]

"The list is a singleton list."

ghci 131> describeList’ [1..5]

"The list is a longer list."

But remember that a function definition with pattern matching is just syntactic sugar for a case
expression, so using a where binding and a function definition like we did above is just a roundabout

way of saying what we said more concisely with a case expression the first time around.

9.2 Improving readability: case expressions vs. where bindings

In this particular situation, going for a case expression directly improves readability because the case
expression appears at the end of the main function definition. Using where just adds more words

without improving readability.

But there are cases in which where bindings are more readable, e.g., if the case expression would
have to appear in the middle of the definition of the main function, or we would have to use multiple

large case expressions etc.
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