
Intro to Haskell Notes: Part 2

Adrian Brasoveanu∗

September 29, 2013

Contents

1 Types: Basics 1

2 Common types 3
2.1 Int . 3
2.2 Integer . 3
2.3 Float . 4
2.4 Double . 4
2.5 Bool . 4
2.6 Char . 4
2.7 String . 4
2.8 Tuples . 5

3 Type variables 5

4 Typeclasses: Basics 5

5 Common typeclasses 6
5.1 Eq . 7
5.2 Ord . 7

5.2.1 The compare function and the Ordering type . 8
5.3 Show . 8
5.4 Read . 9

5.4.1 Type annotations . 10
5.5 Enum . 10
5.6 Bounded . 11
5.7 Num . 12
5.8 Integral . 13
5.9 Floating . 13

6 fromIntegral: converting integral numbers to general numbers 14

1 Types: Basics

We mentioned that Haskell has a static type system. The type of every expression is known at compile
time, which leads to safer code. If you write a program where you try to divide a boolean type with
some number, it won’t even compile. That’s good because it’s better to catch such errors at compile

∗Based primarily on Learn You a Haskell for Great Good! by Miran Lipovača, http://learnyouahaskell.com/.

1

http://learnyouahaskell.com/

time instead of having your program crash. Everything in Haskell has a type, so the compiler can
reason quite a lot about your program before compiling it.

Unlike Java or Pascal, Haskell has type inference. If we write a number, we don’t have to tell
Haskell it’s a number. It can infer that on its own, so we don’t have to explicitly write out the types of
our functions and expressions to get things done. We covered some of the basics of Haskell with only
a very superficial glance at types. However, understanding the type system is a very important part of
learning Haskell.

A type is a kind of label that every expression has. It tells us in which category of things that
expression fits. The expression True is a boolean, "hello" is a string, etc.

Now we’ll use ghci to examine the types of some expressions. We’ll do that by using the :t com-
mand: when followed by any valid expression, this command tells us its type.

ghci 1> : t ’a’
’a’ :: Char

ghci 2> : t True
True :: Bool

ghci 3> : t "HELLO!"
"HELLO!" :: [Char]

ghci 4> : t (True, ’a’)
(True, ’a’) :: (Bool, Char)

ghci 5> : t 4 ≡ 5
4 ≡ 5 :: Bool

We see that doing :t on an expression prints out the expression followed by :: and its type. :: is read
as “if of type”. Note: explicit types are always denoted with the first letter in capital case.

• ’a’ is of type Char

• True is of type Bool

• the type of "HELLO!" is [Char]; the square brackets denote a list, so we read that as being a list of
characters

• unlike lists, each tuple length has its own type: so the expression (True, ’a’) is of type (Bool,
Char), whereas an expression such as (’a’, ’b’, ’c’) is of type (Char, Char, Char)

• 4 ≡ 5 will always return False, so its type is Bool

Functions also have types. When writing our own functions, we can choose to give them an explicit
type declaration. This is generally considered to be good practice except when writing very short
functions.

From here on, we’ll give all the functions that we make type declarations. Remember the list com-
prehension we made previously that filters a string so that only caps remain? Here’s how it looks like
with a type declaration.

2

ghci 6> let removeNonUppercase st = [c | c← st, c ∈ [’A’ . . ’Z’]]

ghci 7> : t removeNonUppercase
removeNonUppercase :: [Char]→ [Char]

ghci 8> let {removeNonUppercase :: [Char]→ [Char];
removeNonUppercase st = [c | c← st, c ∈ [’A’ . . ’Z’]]}

removeNonUppercase has a type of [Char] → [Char], meaning that it maps from a string to a string.
That’s because it takes one string as a parameter and returns another as a result. The [Char] type is
synonymous with String, so it’s clearer if we write removeNonUppercase :: String→ String.

We didn’t have to give this function a type declaration because the compiler can infer by itself that
it’s a function from a string to a string (but we did anyway).

How do we write out the type of a function that takes several parameters? Here’s a simple function
that takes three integers and adds them together:

ghci 9> let {addThree :: Int→ Int→ Int→ Int;
addThree x y z = x + y + z}

ghci 10> : t addThree
addThree :: Int→ Int→ Int→ Int

The parameters are separated with → and there’s no special distinction between the parameters
and the return type. The return type is the last item in the declaration and the parameters are the first
three.

Later on we’ll see why they’re all just separated with → instead of having some more explicit
distinction between the return types and the parameters like Int, Int, Int→ Int or something.

If you want to give your function a type declaration but are unsure as to what it should be, you can
always just write the function without it and then check it with :t. Functions are expressions too, so :t
works on them without a problem.

2 Common types

2.1 Int

Int stands for integer. It’s used for whole numbers. 7 can be an Int, but 7.2 cannot. Int is bounded,
which means that it has a minimum and a maximum value; we’ll see these values on a 64-bit Linux
machine very soon.

2.2 Integer

Integer also stands for integer. The main difference is that it’s not bounded so it can be used to represent
really really big numbers. Int, however, is more efficient.

3

ghci 11> let { factorial :: Integer→ Integer;
factorial n = product [1 . . n]}

ghci 12> factorial 50
30414093201713378043612608166064768844377641568960512000000000000

2.3 Float

Float is a real floating point with single precision.

ghci 13> let {circumference :: Float→ Float;
circumference r = 2 ∗ pi ∗ r}

ghci 14> circumference 4.0
25.132742

2.4 Double

Double is a real floating point with double the precision.

ghci 15> let {circumference′ :: Double→ Double;
circumference′ r = 2 ∗ pi ∗ r}

ghci 16> circumference′ 4.0
25.132741228718345

2.5 Bool

Bool is a boolean type. It can have only two values: True and False.

2.6 Char

Char represents a character. It’s denoted by single quotes.

2.7 String

A list of characters [Char] is a String. It’s denoted by double quotes.

4

2.8 Tuples

Tuples are types but they are dependent on their length as well as the types of their components, so
there is theoretically an infinite number of tuple types, which is too many to cover in this tutorial.

Note that the empty tuple () (called ‘unit’) is also a type, and it has only one value, symbolized the
same way: ().

3 Type variables

What do you think is the type of the head function? head takes a list of any type and returns the first
element, so what could it be? Let’s check:

ghci 17> : t head
head :: [a]→ a

What is this a? It cannot be a type since types are always written with an initial capital letter. a is a
type variable. That means that a can be of any type (this is much like generics in other languages).

Using type variables allows us to easily write very general functions – if the functions don’t use
any specific behavior of the types in them.

Functions that have type variables are called polymorphic functions. The type declaration of head
states that it takes a list of any type and returns one element of that type.

Although type variables can have names longer than one character, we usually give them names of
a, b, c, d . . .

Remember fst? It returns the first component of a pair. Let’s examine its type.

ghci 18> : t fst
fst :: (a, b)→ a

We see that fst takes a tuple which contains two types and returns an element which is of the same
type as the pair’s first component. That’s why we can use fst on a pair that contains any two types.

Note that just because a and b are different type variables, they don’t have to be different types, but
they can. This is just as in classical first-order logic: two distinct variables don’t have to have different
values relative to a variable assignment, but they can.

However, fst does require the type of the first component and the type of the return value to be the
same.

4 Typeclasses: Basics

A typeclass is a sort of interface that defines some behavior. If a type is a part of a typeclass, that means
that it supports and implements the behavior the typeclass describes.

For example, what is the type signature of the ≡ operator? The equality operator ≡ is a function;
so are +, ∗, −, / and pretty much all operators.

If a function is comprised only of special characters (like all the above operators), it’s considered an
infix function by default. So if we want to examine its type, pass it to another function or call it as a
prefix function, we have to put it in parentheses.

ghci 19> : t (≡)
(≡) :: Eq a⇒ a→ a→ Bool

5

Everything before the⇒ symbol is called a class constraint. We can read the previous type decla-
ration like this: the equality function takes any two values that are of the same type and returns a Bool.
The type of those two values must be a member of the Eq class (this was the class constraint).

The Eq typeclass provides an interface for testing for equality. Any type where it makes sense to
test for equality between two values of that type should be a member of the Eq class. All standard
Haskell types except for IO (the type for dealing with input and output) and for functions are part of
the Eq typeclass.

For example, the elem function has a type of (Eq a) ⇒ a → [a] → Bool because it uses ≡ over a list
to check whether some value we’re looking for is in it.

ghci 20> : t elem
elem :: Eq a⇒ a→ [a]→ Bool

5 Common typeclasses

Eq

Ord
Num

Show Read

FloatingRealFrac

Real Fractional

Bounded

RealFloat

FunctorMonadPlus

Monad

Integral

Enum

Int, Integer Float, Double

Float, Double

Float, Double

Float, Double
(), Bool, Char, Ordering,

Int, Integer, Float,
Double

Int, Integer,
Float, Double

All except IO,
IOError, (->)

All except
IO, (->)

All except
IO, (->)

All except
IO, (->)

Int, Integer,
Float, Double

Int, Char, Bool, ()
Ordering,tuples

IO, [], Maybe

IO, [], Maybe IO, [], Maybe

Figure 1: Haskell typeclasses (based on http://commons.wikimedia.org/wiki/File:Classes.svg).

6

http://commons.wikimedia.org/wiki/File:Classes.svg

5.1 Eq

Eq is used for types that support equality testing. The functions its members implement are ≡ and 6≡.
So if there’s an Eq class constraint for a type variable in a function, it uses≡ or 6≡ somewhere inside

its definition.
All the types we mentioned previously except for functions are part of Eq, so they can be tested for

equality.

ghci 21> 5 ≡ 5
True

ghci 22> 5 6≡ 5
False

ghci 23> ’a’ ≡ ’a’
True

ghci 24> "Ho Ho" ≡ "Ho Ho"
True

ghci 25> 3.432 ≡ 3.432
True

5.2 Ord

Ord is for types that have a natural ordering defined over them. All the types we covered so far
except for functions are part of Ord. To be a member of Ord, a type must first have membership in the
prestigious and exclusive Eq club – see Figure 1 above.

ghci 26> :! hoogle -- info Ord
Prelude class Eq a => Ord a

The Ord class is used for totally ordered datatypes.

Instances of Ord can be derived for any user-defined datatype whose constituent types are
in Ord. The declared order of the constructors in the data declaration determines the or-
dering in derived Ord instances. The Ordering datatype allows a single comparison to
determine the precise ordering of two objects.

Minimal complete definition: either compare or <=. Using compare can be more efficient
for complex types.

From package base class Eq a => Ord a

For example, Ord covers all the standard comparing functions such as >, <, > and 6.

7

ghci 27> : t (>)

(>) :: Ord a⇒ a→ a→ Bool

ghci 28> "Abracadabra"< "Zebra"
True

ghci 29> 5 > 2
True

5.2.1 The compare function and the Ordering type

The compare function takes two Ord members of the same type and returns an element of type Ordering.

ghci 30> : t compare
compare :: Ord a⇒ a→ a→ Ordering

Ordering is a type (not a typeclass) with only three values – GT, LT and EQ – meaning ‘greater than’,
‘less than’ and ‘equal’, respectively.

ghci 31> "Abracadabra" ‘compare‘ "Zebra"
LT

ghci 32> 5 ‘compare‘ 3
GT

5.3 Show

Show says that its members can be presented as strings. All types covered so far except for functions
are part of Show.

The most used function that deals with the Show typeclass is show: it takes a value whose type is a
member of Show and presents it to us as a String.

ghci 33> : t show
show :: Show a⇒ a→ String

ghci 34> show 3
"3"

ghci 35> show 5.334
"5.334"

8

ghci 36> show True
"True"

5.4 Read

Read is sort of the opposite typeclass of Show: the associated function read takes a String and returns a
type which is a member of Read.

ghci 37> : t read
read :: Read a⇒ String→ a

ghci 38> read "True" ∨ False
True

ghci 39> read "8.2"+ 3.8
12.0

ghci 40> read "5"− 2
3

ghci 41> read "[1,2,3,4]"++ [3]
[1, 2, 3, 4, 3]

All types covered so far are in this typeclass.
But what happens if we try to do just read "4"?

ghci 42> read "4"

ghci tells us that it doesn’t know what we want in return. Notice that in the previous uses of
read, we did something with the result afterwards. That way, ghci could infer what kind of result we
wanted out of our read. If we used it as a boolean, it knew it had to return a Bool.

But now, it only knows that we want some type that is part of the Read class, but it doesn’t know
which one. Let’s take another look at the type signature of read.

ghci 43> : t read
read :: Read a⇒ String→ a

It returns a type that’s part of Read but if we don’t try to use it in some way later, it has no way of
knowing which type. We can use explicit type annotations to help ghci figure it out.

9

5.4.1 Type annotations

Type annotations are a way of explicitly saying what the type of an expression should be. We do that
by adding :: at the end of the expression and then specifying a type.

ghci 44> read "5" :: Int
5

ghci 45> read "5" :: Float
5.0

ghci 46> (read "5" :: Float) ∗ 4
20.0

ghci 47> read "[1,2,3,4]" :: [Int]
[1, 2, 3, 4]

ghci 48> read "[1,2,3,4]" :: [Double]
[1.0, 2.0, 3.0, 4.0]

ghci 49> read "(3, ’a’)" :: (Int, Char)
(3, ’a’)

In most cases, the interpreter / compiler can infer the type of an expression by itself. But sometimes
it needs a little help from us, e.g., if it doesn’t know whether to return a value of type Int or Float for an
expression like read "5".

5.5 Enum

Enum members are sequentially ordered types: these types can be enumerated.
The main advantage of the Enum typeclass is that we can use its types in list ranges. They also have

defined successors and predecesors, which you can get with the succ and pred functions.
Types in this class: (), Bool, Char, Ordering, Int, Integer, Float and Double.

ghci 50> [’a’ . . ’e’]
"abcde"

ghci 51> [LT . . GT]

[LT, EQ, GT]

10

ghci 52> [3 . . 5]
[3, 4, 5]

ghci 53> succ ’B’
’C’

5.6 Bounded

Bounded members have an upper and a lower bound.

ghci 54> :! hoogle -- info Bounded
Prelude class Bounded a

The Bounded class is used to name the upper and lower limits of a type. Ord is not a
superclass of Bounded since types that are not totally ordered may also have upper and
lower bounds.

The Bounded class may be derived for any enumeration type; minBound is the first con-
structor listed in the data declaration and maxBound is the last. Bounded may also be
derived for single-constructor datatypes whose constituent types are in Bounded.

From package base class Bounded a

ghci 55> minBound :: Int
−9223372036854775808

ghci 56> maxBound :: Int
9223372036854775807

ghci 57> minBound :: Char
’\NUL’

ghci 58> maxBound :: Char
’\1114111’

ghci 59> minBound :: Bool
False

ghci 60> maxBound :: Bool
True

11

minBound and maxBound are interesting because they have a type of (Bounded a) ⇒ a. In a sense,
they are polymorphic constants.

ghci 61> : t minBound
minBound :: Bounded a⇒ a

ghci 62> : t maxBound
maxBound :: Bounded a⇒ a

All tuples are also part of Bounded if the components are also in it.

ghci 63> maxBound :: (Bool, Int, Char)
(True, 9223372036854775807, ’\1114111’)

5.7 Num

Num is a numeric typeclass. Its members have the property of being able to act like numbers.

ghci 64> :! hoogle -- info Num
Prelude class (Eq a, Show a) => Num a

Basic numeric class.

Minimal complete definition: all except negate or (-)

From package base class (Eq a, Show a) => Num a

Let’s examine the type of a number.

ghci 65> : t 20
20 :: Num a⇒ a

It appears that whole numbers are also polymorphic constants. They can act like any type that’s a
member of the Num typeclass.

ghci 66> 20 :: Int
20

ghci 67> 20 :: Integer
20

ghci 68> 20 :: Float
20.0

12

ghci 69> 20 :: Double
20.0

Those are types that are in the Num typeclass. If we examine the type of ∗, we’ll see that it accepts
all numbers.

ghci 70> : t (∗)
(∗) :: Num a⇒ a→ a→ a

It takes two numbers of the same type and returns a number of that type. That’s why (5 :: Int) ∗ (6 ::
Integer) will result in a type error whereas 5 ∗ (6 :: Integer) will work just fine and produce an Integer
because 5 can act like an Integer or an Int.

ghci 71> (5 :: Int) ∗ (6 :: Integer)

ghci 72> 5 ∗ (6 :: Integer)
30

ghci 73> : t 5 ∗ (6 :: Integer)
5 ∗ (6 :: Integer) :: Integer

To join Num, a type must already be friends with Show and Eq.

5.8 Integral

Integral is also a numeric typeclass. Num includes all numbers, including real numbers and integral
numbers. Integral includes only integral (whole) numbers, i.e., Int and Integer.

ghci 74> :! hoogle -- info Integral
Prelude class (Real a, Enum a) => Integral a

Integral numbers, supporting integer division.

Minimal complete definition: quotRem and toInteger

From package base class (Real a, Enum a) => Integral a

5.9 Floating

Floating includes only floating point numbers, so Float and Double.

13

ghci 75> :! hoogle -- info Floating
Prelude class Fractional a => Floating a

Trigonometric and hyperbolic functions and related functions.

Minimal complete definition: pi, exp, log, sin, cos, sinh, cosh, asin, acos, atan, asinh, acosh
and atanh

From package base class Fractional a => Floating a

6 fromIntegral: converting integral numbers to general numbers

A very useful function for dealing with numbers is fromIntegral. It has a type declaration of fromIntegral ::
(Num b, Integral a)⇒ a→ b.

ghci 76> : t fromIntegral
fromIntegral :: (Integral a, Num b)⇒ a→ b

From its type signature, we see that it takes an integral number and turns it into a more general
number. That’s useful when you want integral and floating point types to work together nicely.

For instance, the length function has a type declaration of length :: [a] → Int instead of having a
more general type of (Num b)⇒ length :: [a]→ b.

ghci 77> : t length
length :: [a]→ Int

If we try to get the length of a list and then add it to 3.2, we’ll get an error because we tried to add
together an Int and a floating point number. To get around this, we use fromIntegral.

ghci 78> length [1, 2, 3, 4] + 3.2

ghci 79> fromIntegral (length [1, 2, 3, 4]) + 3.2
7.2

Notice that fromIntegral has several class constraints in its type signature. That’s completely valid
and as you can see, the class constraints are separated by commas inside the parentheses.

ghci 80> : t fromIntegral
fromIntegral :: (Integral a, Num b)⇒ a→ b

14

	Types: Basics
	Common types
	Int
	Integer
	Float
	Double
	Bool
	Char
	String
	Tuples

	Type variables
	Typeclasses: Basics
	Common typeclasses
	Eq
	Ord
	The compare function and the Ordering type

	Show
	Read
	Type annotations

	Enum
	Bounded
	Num
	Integral
	Floating

	fromIntegral: converting integral numbers to general numbers

