Intro to Haskell Notes: Part 11

Adrian Brasoveanu®

October 14, 2013

Contents

1 Derived instances 1
1.1 Deriving Eq o oo e 2
1.2 Deriving Showand Read 3
1.3 Deriving Ordo 5
1.4 Deriving Enum and Bounded 6

2 Type synonyms 8

3 Recursive data types 8
3.1 Listsasrecursivedatatypes 8
3.2 Manually deriving instancesof Show L o o oo oo 10
3.3 Defining infix functions forour datatypes. oL oL 11

4 A more complex recursive data type: Binary search trees 12
4.1 Defining binary search trees and manually deriving Show for them 13
42 Insertingelementsintrees o o 13
43 Buildingatreefromalist o oo 14
4.4 Searching forelementsintrees 0 oL 15

1 Derived instances
We already explained the basics of typeclasses:

e a typeclass is like an interface that defines a particular kind of behavior

e a type can be made an instance of a typeclass if it supports that behavior

For example, the Int type is an instance of the Eg typeclass because integers can be equated. In
particular, this means that Int values can be used with the equality = and non-equality # functions or
with any other functions that make use of (non-)equality internally.

Haskell typeclasses should not confused with classes in a language like Python, for example. In
Python, classes are a blueprint from which we can create objects of particular kinds that can do some
actions, that allow certain actions to be done to them, that can store variables internally and / or modify
external variables etc. Python classes are more like Haskell types.

In contrast, Haskell typeclasses are like interfaces (so maybe more like Python metaclasses): we
don’t make data from typeclasses, instead we first make our data type and then we think about what it

*Based primarily on Learn You a Haskell for Great Good! by Miran Lipovaca, http://learnyouahaskell.com/.

http://learnyouahaskell.com/

can act like. If it can act like something that can be equated, we make it an instance of the Eq typeclass.
If it can act like something that can be ordered, we make it an instance of the Ord typeclass etc.

We will see in a latter section how we can manually make our types instances of typeclasses by
implementing the ‘interface” functions associated with the typeclasses.

But for now we'll just focus on how Haskell can automatically make our type an instance of any of
the following typeclasses: Eq, Ord, Enum, Bounded, Show and Read.

Haskell automatically derives the behavior associated with these typeclasses if we use the deriving
keyword when making our data type. For example, consider this data type:

ghci 1> data Person = Person {firstName :: String, lastName :: String, age :: Int }

This data type describes persons. Let’s assume that no two people have the same combination of
first name, last name and age in our intended application, hence this is an appropriate way to model
‘person’ values.

1.1 Deriving Eq

If we have records for two people, i.e., we have two values of type Person, it makes sense to ask if they
represent the same person.

We can try to equate them and see if they’re equal or not, so it would make sense for this type to be
part of the Eq typeclass.

This is how we derive that our Person type is an instance of the Eq typeclasses, i.e., that it supports
(non-)equality behavior:

ghci 2> data Person = Person { firstName :: String, lastName :: String, age :: Int } deriving (Eq)

When we derive the Eg instance for a type and then try to compare two values of that type with the
= or # functions, Haskell will check:

o first, if the value constructors match; there’s only one value constructor here, so this is not an
issue;

e second, if all the data inside the value constructors can be matched; in particular, the values have
to be identical for each field firstName, lastName and age.

Thus, to derive an Eq instance for a type, the types of all the fields also have to be part of the Eg
typeclass.

This is not a problem for our Person type: both String and Int are members of the Eq typeclass.
Let’s test our Eq instance:

ghci 3> let mikeD = Person {firstName = "Michael",lastName = "Diamond",age = 43 }

ghci 4> let adRock = Person {firstName = "Adam", lastName = "Horovitz",age = 41}

ghci 5> let mca = Person { firstName = "Adam", lastName = "Yauch",age = 44 }

ghci 6> mca = adRock
False

ghci 7> mikeD = adRock
False

ghci 8> mikeD = mikeD
True

ghci 9> mikeD = Person {firstName = "Michael", lastName = "Diamond",age = 43}
True

Since Person is now in Eq, we can automatically use it as the a for all functions that have an Eq a
class constraint in their type signature. Consider, for example, the elem function:

ghci 10> let beastieBoys = [mca, adRock, mikeD |

ghci 11> mikeD € beastieBoys
True

1.2 Deriving Show and Read

The Show and Read typeclasses are for things that can be converted to and from strings, respectively.
Just as for Eq above, if the value constructors of our type have fields, the types of the fields have to

also be part of the Show and Read typeclasses if we want our type to be a member of these typeclasses.
So let’s make our Person type a member of Show and Read as well:

ghci 12> data Person = Person { firstName :: String, lastName :: String, age :: Int }
deriving (Eq, Show, Read)

Now we can display a person in ghci:

ghci 13> let mikeD = Person { firstName = "Michael", lastName = "Diamond",age = 43}

ghci 14> mikeD
Person { firstName = "Michael", lastName = "Diamond",age = 43 }

ghci 15> Person {firstName = "Elmo", lastName = "NA",age = 0}
Person {firstName = "Elmo", lastName = "NA",age = 0}

ghci 16> "mikeD is: " H-show mikeD
"mikeD is: Person {firstName = \"Michael\", lastName = \"Diamond\", age = 43}"

Had we tried to display a person in ghci before deriving a Show instance for our Person type,
Haskell would have complained saying it doesn’t know how to represent a person as a string.

Read is pretty much the inverse typeclass of Show. Show is for converting values of our type to a
string, Read is for converting strings to values of our type.

When we use the read function though, we have to use an explicit type annotation to tell Haskell
which type we want to get as a result. If we don’t make the type explicit, Haskell won’t know which
type we want.

ghci 17> read "Person {firstName =\"Elmo\", lastName =\"NA\", age = 0}" : Person
Person {firstName = "Elmo", lastName = "NA",age = 0}

Compare with the call without a specified type:

ghci 18> read "Person {firstName =\"Elmo\", lastName =\"NA\", age = O}"

If we use the result of our read later on in a way that Haskell can infer that it should read it as a
person, we don’t have to use type annotation:

ghci 19> read "Person {firstName =\"Elmo\", lastName =\"NA\", age = 0}" = mikeD
False

We can also read parameterized types, but we have to fill in the type parameters. For example, we
can’t do:

ghci 20> read "Just ’£’°" :: Maybea

But we can do:

ghci 21> read "Just ’£’" :: Maybe Char
Just >£°

1.3 Deriving Ord

We can also derive instances for the Ord typeclass, which is the class of types whose values can be
ordered.

If we compare two values of the same type that were made using different value constructors,
the value which was made with the constructor that’s defined first is considered smaller.

For example, consider the following definition of the Bool type:

(1) data Bool = False | True deriving (Ord)

Because the False value constructor is specified first and the True value constructor is specified after
it, True is greater than False:

ghci 22> True ‘compare’ False
GT

ghci 23> True < False
False

ghci 24> True > False
True

The same reasoning applies to the definition of the Maybe a type:

o the Nothing value constructor is specified before the Just value constructor, so a value of Nothing
is always smaller than a value of Just something;

o but if we compare two Just values, then the result depends on the values inside of them.

ghci 25> Nothing < Just 100
True

ghci 26> Nothing > Just (—49999)
False

ghci 27> Just 50 < Just 100
True

ghci 28> Just 50 > Just 100
False

ghci 29> Just 3 ‘compare” Just 2
GT

But we can’t do something like Just (x3) < Just (%2), because (x3) and (*2) are functions, which
aren’t instances of Ord.

ghci 30> Just (x3) < Just (x2)

1.4 Deriving Enum and Bounded

We can easily use algebraic data types to make enumerations and the Enum and Bounded typeclasses
help us with that.
Consider the following data type:

ghci 31> data Day = Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday

Because all the value constructors are nullary / have an arity of 0 / take no parameters / have no
fields, we can easily make Day part of the Enum typeclass. Recall that the Enum typeclass is for things
that have predecessors and successors.

We can also make it part of the Bounded typeclass, which is for things that have a lowest possible
value and a highest possible value.

And while we're at it, let’s also make it an instance of all the other typeclasses we discussed up
until now and see what we can do with it.

ghci 32> data Day = Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday
deriving (Eq, Ord, Show, Read, Bounded, Enum)

Because it’s part of the Show and Read typeclasses, we can convert values of this type to and from
strings:

ghci 33> Wednesday
Wednesday

ghci 34> show Wednesday
"Wednesday"

ghci 35> read "Saturday" :: Day
Saturday

Because it’s part of the Eq and Ord typeclasses, we can equate or compare days:

ghci 36> Saturday = Sunday
False

ghci 37> Saturday = Saturday
True

ghci 38> Saturday > Friday
True

ghci 39> Saturday < Friday
False

ghci 40> Monday ‘compare’ Wednesday
LT

Day is also a member of Bounded, so we can get the lowest and highest day:

ghci 41> minBound :: Day
Monday

ghci 42> maxBound :: Day
Sunday

And it’s also an instance of Enum, so we can get predecessors and successors of days and we can
make list ranges:

ghci 43> succ Monday
Tuesday

ghci 44> pred Saturday
Friday

ghci 45> [Thursday .. Sunday]
[Thursday, Friday, Saturday, Sunday |

ghci 46> [minBound .. maxBound)| :: [Day]
[Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday]

2 Type synonyms

We mentioned previously that the [Char] and String types are equivalent and interchangeable. That’s
implemented with type synonyms.

Type synonyms don’t really do anything per se, they're just a way of giving different names to
certain types so that they make more sense to someone reading our code and documentation.

Here’s how the standard library defines String as a synonym for [Char|:

(2) type String = [Char|

Thus, type synonyms are introduced with the type keyword. The keyword might be misleading
because we’re not actually making a new type (we do that with the data keyword), we're simply
making an alias for an already existing type.

If we make a function that converts a string to uppercase and call it tolpperString, for example, we
can give it a type declaration of toUpperString :: [Char| — [Char| or toUpperString :: String — String.
Both of these are essentially the same, only the latter is nicer to read.

Type synonyms can also be parameterized. For example, if we want a type that represents an
association list but still want it to be general so that we can use any type as the keys and values, we
can do this:

ghci 47> type AssocList kv = [(k,v)]

AssocList is a type constructor that takes two types and produces a concrete type, e.g., AssocList Int String.

Recall that concrete types are fully applied types and values always belong to a concrete type.

Now that we have our parametrized type synonym, we can provide a very general but still read-
able type signature for a lookup function that gets a value by looking up a key in an association list:
(Eq k) = k — AssocList k v — Maybe v. Optional hw question: why do we use Maybe v instead of
simply v as our return type?

3 Recursive data types

We’ve seen that a value constructor in an algebraic data type can have several fields (or none at all),
and each field must be of some concrete type.

With that in mind, we can make types whose constructors have fields that are of the same type.
Using that, we can create recursive data types, i.e., recursive data structures, where one value of a type
contains more values of that same type, which in turn contain more values of the same type and so on.

3.1 Lists as recursive data types
Think about this list: [5]. That’s just syntactic sugar for 5: []:
o there’s a value on the left side of the : operator, namely 5;
e but on the right side, we have another list; in this case, it’s an empty list.
Now consider the list [4,5]. That desugars to 4: (5: []). Looking at the first :, we see that:
e it also has an element on its left side, namely 4;
e and ithasalist (5:[]) on its right side.

And the same goes for a list like 3: (4: (5:(6:[]))), which could be written either like that, or as
3:4:5:6:[] (because : is right-associative), or even more simply as [3,4,5,6].
Based on the above example, we can provide a general, recursive characterization of what a list is:

e alist can be an empty list, or

e it can be an element prepended (by means of the constructor :) to another list; this list can be
empty or not.

Let’s use algebraic data types to implement our own list type:

ghci 48> data List a = Empty | Cons a (List a)
deriving (Show, Read, Eq, Ord)

This reads just like our recursive definition of lists above: it’s either an empty list or a combination
of a head value and a list. We combine a value and list to form another list by means of the value
constructor Cons, of arity 2.

If you're confused about this data type definition, you might find it easier to understand if we use
record syntax.

ghci 49> data List a = Empty | Cons {listHead :: a, listTuil :: List a }
deriving (Show, Read, Eq, Ord)

The Cons constructor has two fields: one field is of type a and the other is of type List a or, using the
usual Haskell notation, [a].

Remember that Cons is just another word for the Haskell prepending operator :, which is really a
constructor that takes a value and another list and returns a list.

We can already use our new list type. So let’s see some examples using the second definition, i.e.,
the one with record syntax and therefore with a more explicit annotation.

ghci 50> Empty
Empty

We will call our Cons constructor in an infix manner to emphasize its similarity to the prepending
operator :.

ghci 51> 5’Cons’ Empty
Cons {listHead = 5, listTnil = Empty }

ghci 52> 4‘Cons’ (5 ‘Cons’ Empty)
Cons {listHead = 4, listTail = Cons {listHead = 5, listTail = Empty } }

ghci 53> 3 “Cons’ (4 ‘Cons’ (5 ‘Cons’ Empty))
Cons {listHead = 3,listTail = Cons {listHead = 4,listTail = Cons {listHead = 5, listTail =
Empty}}}

Now let’s see the same examples with the first definition. We first switch back to it:

ghci 54> data List a = Empty | Cons a (List a)
deriving (Show, Read, Eq, Ord)

ghci 55> Empty
Empty

ghci 56> 5’Cons’ Empty
Cons 5 Empty

ghci 57> 4 “Cons’ (5‘Cons’ Empty)
Cons 4 (Cons 5 Empty)

ghci 58> 3 “Cons’ (4 ‘Cons’ (5 ‘Cons’ Empty))
Cons 3 (Cons 4 (Cons 5 Empty))

We will make extensive use of recursive data types to implement the logical systems we need for
natural language semantics.

3.2 Manually deriving instances of Show

We called our Cons constructor in an infix manner so that we can more easily see that is exactly like the
prepending operator :. And since Empty is like [], we can easily see the parallel between more complex
examples, e.g., 4 ‘Cons’ (5‘Cons’ Empty), and their standard Haskell representations, e.g., 4: (5:[]).
But when our custom lists are displayed in ghci, Cons is still displayed as a prefix operator. If we
want it displayed as an infix, we can manually derive an instance of Show for our List a type.
To do that, we first declare our data type without deriving an instance of Show for it:

ghci 59> data List a = Empty | Cons a (List a)
deriving (Read, Eq, Ord)

We will now manually derive an instance of Show.

We manually derive an instance of a typeclass by defining the “interface” functions associated
with that typeclass.

In the case of Show, there is only one function: show. The function definition is provided after the
instance keyword, as shown below:

ghci 60> instance (Show a) = Show (List a) where {
show Empty = "#";
show (Cons x xs) = show x + " ," -+ show xs }

10

The curly braces after where surrounding the definition block, as well as the semicolon separating
the different clauses of the definition are not needed when we’re not working in ghci directly. Only
proper block alignment is required when we manually derive instances in a script / module:

(3) instance (Show a) = Show (List a) where
show Empty = "#"
show (Cons x xs) = show x H "," + show xs

Note that we require the type a of list elements to also be an instance of the Show type class.
This is because the function show has to be able to take list elements as arguments, as shown in the
show (Cons x xs) clause above.

Here are the same examples as above, only this time displayed in the particular manner we speci-
fied:

ghci 61> Empty
#

ghci 62> 5’Cons’ Empty
5,#

ghci 63> 4 Cons’ (5‘Cons’ Empty)
4,5,#

ghci 64> 3'Cons’ (4‘Cons’ (5 ‘Cons’ Empty))
3,4,5,#

We will make extensive use of such Show instances in many of our implementations of natural
language semantics systems: we will want the formulas, trees, derivations etc. to be displayed in a
familiar format.

3.3 Defining infix functions for our data types

We can define functions to automatically be infix operators by assigning them names consisting only
of special characters.

For example, let’s make a function that adds two lists together. This is how +- is defined for normal
lists:

(4) infixr5 H
(+4+) :: [a] = [a] — [a]
[J+Hys=ys
(x:xs) Hys = x: (xs + ys)

So we'll just steal that for our own list. We’ll name the function 4 so that it is an infix by default:

ghci 65> let {infixr 5 +;
(A) [a] = [a] = [a];
[] Hys=ys;
(x:x8) H ys =x:(xs + ys) }

11

We notice a new syntactic construct, the fixity declarations. When we define functions as operators,
we can use that to set their precedence level and their associativity behavior (but we don’t have to).

Thus, a fixity declaration states how tightly the operator binds and whether it’s left-associative
or right-associative.

For instance, *’s fixity is infixl 7 and +'s fixity is infixl 6:

ghci 66> :i (%)
class Num a where ... (x)::a —a — a... --Defined in ‘GHC.Num’ infixl 7 *

ghci 67> :i(+)
class Num a where (+)::a —+a —a... --Defined in ‘'GHC.Num’ infixl 6 +

This means that both operators are left-associative, e.g., 4 * 3 % 2 is equivalent to (4 x 3) % 2, and that
* binds tighter than + because it has a higher precedence level, e.g., 5+ 4 % 3 is equivalent to 5+ (4 % 3).
Our concatenation operator 4 works as expected:

ghci 68> "hello, " 4 "new function!"
"hello, new function!"

4 A more complex recursive data type: Binary search trees

We are now going to implement binary search trees:

o these trees are fundamentally the same kind of structures we need to define formulas in the var-
ious formal semantics systems we will study, and also to define syntactic structures for English
expressions;

o but the terminal nodes in these binary search trees will be much simpler (we’ll just have num-
bers), so that we can focus on the hierarchical tree structure itself.

Binary search trees are binary trees whose elements are ordered in a particular way to facilitate
search:

o they are structures whose non-terminal elements / nodes point to two elements, one on the left
and one on the right;

e and the element on the left, i.e., the left daughter node, is always smaller than mother node
(relative to some background ordering), while the right daughter node is always bigger than the
mother node (relative to the same background ordering);

o each of the daughter nodes can also point to two other nodes or simply to the ‘'empty tree’; in
effect, each node has up to two sub-trees.

Binary search trees are used to implement various data structures to make them more efficient to
access and modify.

For example, the sets and maps made available by the Data.Set and Data.Map modules are imple-
mented using trees, only instead of regular binary search trees, they use balanced binary search trees,
which are always balanced: their left and right sides are always (about) the same size, which makes
them very efficient to manipulate.

12

But we'll just implement binary search trees and won’t worry about balancing them.

The important thing about binary search trees is that all the elements in the left sub-tree of, say, 5
are going to be smaller than 5, while elements in its right sub-tree are going to be bigger.

So if we need to find if 8 is in our tree, we’d start at 5 and then because 8 is greater than 5, we’d go
right, and so on and so forth. At every decision point, we only need to explore one path.

Now if this were a normal list (or a tree, but so “‘unbalanced’ / degenerate as to basically be a list),
it would take us more steps on average to see if 8 is in there.

4.1 Defining binary search trees and manually deriving Show for them

Now let’s give a recursive definition of binary trees. A tree is:
e an empty tree, or
e a node that contains some value (its ‘label’) and has two sub-trees.

It’s a perfect fit for a recursive data type:

ghci 69> data Tree a = EmptyTree | Node a (Tree a) (Tree a)
deriving (Read, Eq)

We want to display trees in a readable manner, so we will manually define the Show instance:

ghci 70> instance (Show a) = Show (Tree a) where {
show EmptyTree = "-";
show (Node x left right) = " [" - show left H-
"M show x H-" " H
show right + "1" }

4.2 Inserting elements in trees

Instead of manually building a tree, we're going to make a function that takes a tree and an element
and inserts the element in the tree:

e we do this by comparing the value we want to insert and the root node: if the value is smaller
than the root note, we go left, and if it’s bigger we go right;

o we do the same for every subsequent node until we reach an empty tree;

e once we've reached an empty tree, we just insert a node with that value instead of the empty tree.

In imperative languages with mutable data structures like C, i.e., with data structures that can be
destructively updated in place, we’d do this by modifying the pointers and values inside the tree.

Since Haskell is a purely functional language, once an object is created (and assigned to a name),
it cannot be destructively updated: it is simply the semantic value of an expression and we have no
variables and variable assignments that we ‘update’.

So we can’t change our tree because it is a persistent, immutable data structure:

e we have to make a new sub-tree each time we decide to go left or right in our binary search tree;

e and at the end, the insertion function returns a completely new tree;

13

o but this doesn’t mean that the entire tree is actually duplicated in memory: there are ways to effi-
ciently implement such manipulations of immutable data structures — see Chris Okasaki, Purely
functional data structures (Cambridge University Press, 1999) for a detailed introduction.

Thus, the type of our insertion function is going to be @ — Tree a — Tree a: it takes an element and
a tree and returns a new tree that has that element inside.
We define two functions below:

o the first is a utility function for making a singleton tree, i.e., a tree with just one node;

o the other is the insertion function that inserts an element into a tree.

ghci 71> let {singleton ::a — Tree a;
singleton x = Node x EmptyTree EmptyTree }

The singleton function is just a shortcut for making a node that has a value / ‘label” and then two
empty sub-trees.

ghci 72> let {treelnsert :: (Ord a) = a — Tree a — Tree a;
treelnsert x EmptyTree = singleton x;
treelnsert x (Node r left right)
| x = r = Node x left right
| x <r = Node r (treelnsert x left) right
| x > r = Node r left (treelnsert x right) }

In the insertion function, we first have the edge condition as a pattern: if we reached an empty
sub-tree, that means we’re where we want and instead of the empty tree, we put a singleton tree with
our element.

If we're not inserting into an empty tree, then we have to check a couple of things:

o if the element we're inserting is equal to the root element, we just return a tree that’s identical to
the input tree

o if the element to be inserted is smaller than the root, we return a tree that has the same root value,
the same right sub-tree but instead of its left sub-tree, it has a tree with our value inserted into it

o we do the same, but the other way around, if the value to be inserted is bigger than the root
element

4.3 Building a tree from a list

Let’s build a tree. Instead of manually building one (although we could), we’ll use a fold to build up a
tree from a list.

Recall that pretty much everything that traverses a list one element at a time and returns some sort
of value can be implemented with a fold.

We're going to start with the empty tree and then approach the input list from the right and insert
its elements one by one into our accumulator tree.

ghci 73> let nums = [8,6,4,1,7,3,5]

14

ghci 74> let numsTree = foldr treelnsert EmptyTree nums

In the call to foldr:
o freelnsert is the folding function (it takes a tree and a list element and produces a new tree);
o EmptyTree is the starting accumulator;

o nums is the list we're folding over.

ghci 75> numsTree
[([[-1=]3[-4=]]5[[-6-]7 [-8-]]]

ghci 76> :t numsTree
numsTree :: Tree Integer

We see that the root node is 5 and then it has two sub-trees, one of which has 3 as its root node,
while the root of the other is 7 etc.

4.4 Searching for elements in trees

Now we're going to make a function that checks if an element is in the tree.

We first define the edge condition: if we’re looking for an element in an empty tree, then it’s cer-
tainly not there.

Note how this is the same as the edge condition when we search for elements in lists: if we're
looking for an element in an empty list, it’s not there.

If we’re looking for an element in a non-empty tree, then we have several cases:

o if the element in the root node is what we’re looking for, we're done;

e if not, we can take advantage of knowing that all the left elements are smaller than the root node;
so if the element we’re looking for is smaller than the root node, we check to see if it’s in the left
sub-tree;

e if it’s bigger, we check to see if it’s in the right sub-tree.

All we have to do is write up this description in code, which is particularly straightforward to do
in Haskell:

ghci 77> let {elemInTree :: (Ord a) = a — Tree a — Bool;
elemInTree x EmptyTree = False;
elemInTree x (Node r left right)
| x =r = True
| x <r = elemInTree x left
| x > r = elemInTree x right }

Here are some examples:

15

ghci 78>
True

8 ‘elemInTree’ numsTree

ghci 79>
False

100 ‘elemInTree’ numsTree

ghci 80>
True

1 ‘elemInTree’ numsTree

ghci 81>
False

10 ‘elemInTree’ numsTree

16

	Derived instances
	Deriving Eq
	Deriving Show and Read
	Deriving Ord
	Deriving Enum and Bounded

	Type synonyms
	Recursive data types
	Lists as recursive data types
	Manually deriving instances of Show
	Defining infix functions for our data types

	A more complex recursive data type: Binary search trees
	Defining binary search trees and manually deriving Show for them
	Inserting elements in trees
	Building a tree from a list
	Searching for elements in trees

