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Terminology

Terminology for probability theory:

• experiment: process of observation or measurement; e.g., coin
flip;

• outcome: result obtained through an experiment; e.g., coin
shows tails;

• sample space: set of all possible outcomes of an experiment;
e.g., sample space for coin flip: S = {H,T}.

Sample spaces can be finite or infinite.



Terminology

Example: Finite Sample Space

Roll two dice, each with numbers 1–6. Sample space:

S1 = {(x , y) : x ∈ {1, 2, . . . , 6} ∧ {y = 1, 2, . . . , 6}}

Alternative sample space for this experiment – sum of the dice:

S2 = {x + y : x ∈ {1, 2, . . . , 6} ∧ {y = 1, 2, . . . , 6}}

S2 = {z : z = 2, 3, . . . , 12}

Example: Infinite Sample Space

Flip a coin until heads appears for the first time:

S3 = {H,TH,TTH,TTTH,TTTTH, . . . }



Events

Often we are not interested in individual outcomes, but in events.
An event is a subset of a sample space.

Example

With respect to S1, describe the event B of rolling a total of 7
with the two dice.

B = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}



Events

The event B can be represented graphically:
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Events

Often we are interested in combinations of two or more events.
This can be represented using set theoretic operations. Assume a
sample space S and two events A and B :

• complement Ā (also A′): all elements of S that are not in A;

• subset A ⊆ B: all elements of A are also elements of B ;

• union A ∪ B: all elements of S that are in A or B ;

• intersection A ∩ B: all elements of S that are in A and B .

These operations can be represented graphically using Venn
diagrams.



Venn Diagrams

A

B A

Ā A ⊆ B

BA A B

A ∪ B A ∩ B



Axioms of Probability

Events are denoted by capital letters A,B ,C , etc. The probability
of and event A is denoted by P(A).

Axioms of Probability

1 The probability of an event is a nonnegative real number:
P(A) ≥ 0 for any A ⊆ S .

2 P(S) = 1.

3 If A1,A2,A3, . . . , is a sequence of mutually exclusive events of
S , then:

P(A1 ∪ A2 ∪ A3 ∪ . . . ) = P(A1) + P(A2) + P(A3) + . . .



Probability of an Event

Theorem: Probability of an Event

If A is an event in a sample space S and O1,O2, . . . ,On, are the
individual outcomes comprising A, then P(A) =

∑n
i=1 P(Oi)

Example

Assume all strings of three lowercase letters are equally probable.
Then what’s the probability of a string of three vowels?

There are 26 letters, of which 5 are vowels. So there are N = 263

three letter strings, and n = 53 consisting only of vowels. Each
outcome (string) is equally likely, with probability 1

N , so event A (a

string of three vowels) has probability P(A) = n
N = 53

263
= 0.00711.



Rules of Probability

Theorems: Rules of Probability

1 If A and Ā are complementary events in the sample space S ,
then P(Ā) = 1− P(A).

2 P(∅) = 0 for any sample space S .

3 If A and B are events in a sample space S and A ⊆ B , then
P(A) ≤ P(B).

4 0 ≤ P(A) ≤ 1 for any event A.



Addition Rule

Axiom 3 allows us to add the probabilities of mutually exclusive
events. What about events that are not mutually exclusive?

Theorem: General Addition Rule
If A and B are two events in a sample space S , then:

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

Ex: A = “has glasses”, B = “is blond”.
P(A) + P(B) counts blondes with glasses
twice, need to subtract once. A B



Conditional Probability

Definition: Conditional Probability, Joint Probability

If A and B are two events in a sample space S , and P(A) 
= 0 then
the conditional probability of B given A is:

P(B |A) = P(A ∩ B)

P(A)

P(A ∩ B) is the joint probability of A and B , also written P(A,B).

Intuitively, P(B|A) is the probability that B
will occur given that A has occurred.
Ex: The probability of being blond given
that one wears glasses: P(blond|glasses).

A B



Conditional Probability

Example

A manufacturer knows that the probability f an order being ready
on time is 0.80, and the probability of an order being ready on
time and being delivered on time is 0.72.

What is the probability of an order being delivered on time, given
that it is ready on time?

R : order is ready on time; D: order is delivered on time.
P(R) = 0.80, P(R ,D) = 0.72. Therefore:

P(D|R) = P(R ,D)

P(R)
=

0.72

0.80
= 0.90



Conditional Probability

Example

Consider sampling an adjacent pair of words (bigram) from a large
text T . Let BI = the set of bigrams in T (this is our sample
space), A = “first word is run” = {(run,w2) : w2 ∈ T} ⊆ BI and
B = “second word is amok” = {(w1, amok) : w1 ∈ T} ⊆ BI.
If P(A) = 10−3.5, P(B) = 10−5.6, and P(A,B) = 10−6.5, what is
the probability of seeing amok following run? Run preceding amok?

P(“run before amok”) = P(A|B) = P(A,B)

P(B)
=

10−6.5

10−5.6
= .126

P(“amok after run”) = P(B|A) = P(A,B)

P(A)
=

10−6.5

10−3.5
= .001

[How do we determine P(A), P(B), P(A,B) in the first place?]



Conditional Probability

From the definition of conditional probability, we obtain:

Theorem: Multiplication Rule

If A and B are two events in a sample space S and P(A) 
= 0, then:

P(A,B) = P(A)P(B |A)

Since A ∩ B = B ∩ A, we also have that:

P(A,B) = P(B)P(A|B)



Independence

Definition: Independent Events

Two events A and B are independent iff:

P(A,B) = P(A)P(B)

Intuition: two events are independent if knowing whether one event
occurred does not change the probability of the other.

Note that the following are equivalent:

P(A,B) = P(A)P(B) (1)

P(A|B) = P(A) (2)

P(B |A) = P(B) (3)



Independence

Example
A coin is flipped three times. Each of the eight outcomes is equally likely.
A: heads occurs on each of the first two flips, B: tails occurs on the third
flip, C : exactly two tails occur in the three flips. Show that A and B are
independent, B and C dependent.

A = {HHH ,HHT} P(A) = 1
4

B = {HHT ,HTT ,THT ,TTT} P(A) = 1
2

C = {HTT ,THT ,TTH} P(C ) = 3
8

A ∩ B = {HHT} P(A ∩ B) = 1
8

B ∩ C = {HTT ,THT} P(B ∩ C ) = 1
4

P(A)P(B) = 1
4 · 1

2 = 1
8 = P(A ∩ B), hence A and B are independent.

P(B)P(C ) = 1
2 · 3

8 = 3
16 
= P(B ∩ C ), hence B and C are dependent.



Conditional Independence

Definition: Conditionally Independent Events

Two events A and B are conditionally independent given event C
iff:

P(A,B |C ) = P(A|C )P(B |C )

Intuition: Once we know whether C occurred, knowing about A or
B doesn’t change the probability of the other.

Show that the following are equivalent:

P(A,B |C ) = P(A|C )P(B |C ) (4)

P(A|B ,C ) = P(A|C ) (5)

P(B |A,C ) = P(B |C ) (6)



Conditional Independence

Example

In a noisy room, I whisper the same number n ∈ {1, . . . , 10} to
two people A and B on two separate occasions. A and B
imperfectly (and independently) draw a conclusion about what
number I whispered. Let the numbers A and B think they heard be
na and nb, respectively.

Are na and nb independent (a.k.a. marginally independent)? No.
E.g., we’d expect P(na = 1|nb = 1) > P(na = 1).

Are na and nb conditionally independent given n? Yes: if you know
the number that I actually whispered, the two variables are no
longer correlated.
E.g., P(na = 1|nb = 1, n = 2) = P(na = 1|n = 2)



Total Probability

Theorem: Rule of Total Probability

If events B1,B2, . . . ,Bk constitute a partition of the sample space
S and P(Bi) 
= 0 for i = 1, 2, . . . , k , then for any event A in S :

P(A) =
k∑

i=1

P(Bi)P(A|Bi)

B1,B2, . . . ,Bk form a
partition of S if they are
pairwise mutually exclusive
and if B1 ∪B2 ∪ . . .∪Bk = S .

B
B B

B

B B
B

1

2

3 4

5

6

7



Total Probability

Example

In an experiment on human memory, participants have to
memorize a set of words (B1), numbers (B2), and pictures (B3).
These occur in the experiment with the probabilities P(B1) = 0.5,
P(B2) = 0.4, P(B3) = 0.1.

Then participants have to recall the items (where A is the recall
event). The results show that P(A|B1) = 0.4, P(A|B2) = 0.2,
P(A|B3) = 0.1. Compute P(A), the probability of recalling an item.

By the theorem of total probability:

P(A) =
∑k

i=1 P(Bi )P(A|Bi)
= P(B1)P(A|B1) + P(B2)P(A|B2) + P(B3)P(A|B3)
= 0.5 · 0.4 + 0.4 · 0.2 + 0.1 · 0.1 = 0.29



Bayes’ Theorem

P(B |A) = P(A|B)P(B)

P(A)

(Derived using mult. rule: P(A,B) = P(A|B)P(B) = P(B|A)P(A))

• Denominator can be computed using theorem of total
probability: P(A) =

∑k
i=1 P(Bi)P(A|Bi).

• Denominator is a normalizing constant (ensures P(B |A) sums
to one). If we only care about relative sizes of probabilities, we
can ignore it: P(B |A) ∝ P(A|B)P(B).



Bayes’ Theorem

Example

Consider the memory example again. What is the probability that
an item that is correctly recalled (A) is a picture (B3)?

By Bayes’ theorem:

P(B3|A) = P(B3)P(A|B3)∑k
i=1 P(Bi )P(A|Bi )

= 0.1·0.1
0.29 = 0.0345

The process of computing P(B |A) from P(A|B) is sometimes
called Bayesian inversion.



Random Variables

Definition: Random Variable
If S is a sample space with a probability measure and X is a
real-valued function defined over the elements of S , then X is
called a random variable.

We symbolize random variables (r.v.s) by capital letters (e.g., X ),
and their values by lower-case letters (e.g., x).

Example

Given an experiment in which we roll a pair of 4-sided dice, let the
random variable X be the total number of points rolled with the
two dice.

E.g. X = 5 ‘picks out’ the set {(1, 4), (2, 3), (3, 2), (4, 1)}.
Specify the full function denoted by X and determine the probabilities

associated with each value of X .



Random Variables

Example

Assume a balanced coin is flipped three times. Let X be the
random variable denoting the total number of heads obtained.

Outcome Probability x

HHH 1
8 3

HHT 1
8 2

HTH 1
8 2

THH 1
8 2

Outcome Probability x

TTH 1
8 1

THT 1
8 1

HTT 1
8 1

TTT 1
8 0

Hence, P(X = 0) = 1
8 , P(X = 1) = P(X = 2) = 3

8 ,
P(X = 3) = 1

8 .



Probability Distributions

Definition: Probability Distribution

If X is a random variable, the function f (x) whose value is
P(X = x) for each value x in the range of X is called the
probability distribution of X .
Note: the set of values x (‘the support’) = the domain of f = the range of X .

Example

For the probability function defined in the previous example:

x f (x)

0 1
8

1 3
8

2 3
8

3 1
8



Probability Distributions

A probability distribution is often represented as a probability
histogram. For the previous example:

0 1 2 3
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(
x)



Probability Distributions

Any probability distribution function (or simply: probability
distribution) f of a random variable X is such that:

1 f (x) ≥ 0, ∀x ∈ Domain(f )

2
∑

x∈Domain(f ) f (x) = 1.



Distributions over Infinite Sets

Example: geometric distribution

Let X be the number of coin flips needed before getting heads,
where ph is the probability of heads on a single flip. What is the
distribution of X?

Assume flips are independent, so:

P(T n−1H) = P(T )n−1P(H)

Therefore:
P(X = n) = (1− ph)

n−1ph



Expectation

The notion of mathematical expectation derives from games of
chance. It’s the product of the amount a player can win and the
probability of wining.

Example

In a raffle, there are 10,000 tickets. The probability of winning is
therefore 1

10,000 for each ticket. The prize is worth $4,800. Hence

the expectation per ticket is $4,800
10,000 = $0.48.

In this example, the expectation can be thought of as the average
win per ticket.



Expectation

This intuition can be formalized as the expected value (or mean)
of a random variable:

Definition: Expected Value

If X is a random variable and f (x) is the value of its probability
distribution at x , then the expected value of X is:

E (X ) =
∑
x

x · f (x)



Expectation

Example

A balanced coin is flipped three times. Let X be the number of
heads. Then the probability distribution of X is:

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
8 for x = 0
3
8 for x = 1
3
8 for x = 2
1
8 for x = 3

The expected value of X is:

E (X ) =
∑
x

x · f (x) = 0 · 1
8
+ 1 · 3

8
+ 2 · 3

8
+ 3 · 1

8
=

3

2



Expectation

The notion of expectation can be generalized to cases in which a
function g(X ) is applied to a random variable X .

Theorem: Expected Value of a Function

If X is a random variable and f (x) is the value of its probability
distribution at x , then the expected value of g(X ) is:

E [g(X )] =
∑
x

g(x)f (x)



Expectation

Example

Let X be the number of points rolled with a balanced (6-sided)
die. Find the expected value of X and of g(X ) = 2X 2 + 1.

The probability distribution for X is f (x) = 1
6 . Therefore:

E (X ) =
∑
x

x · f (x) =
6∑

x=1

x · 1
6
=

21

6

E [g(X )] =
∑
x

g(x)f (x) =
6∑

x=1

(2x2 + 1)
1

6
=

94

6



Summary

• Sample space S contains all possible outcomes of an
experiment; events A and B are subsets of S .

• rules of probability: P(Ā) = 1− P(A).
if A ⊆ B , then P(A) ≤ P(B).
0 ≤ P(B) ≤ 1.

• addition rule: P(A ∪ B) = P(A) + P(B)− P(A,B).

• conditional probability: P(B |A) = P(A,B)
P(A) .

• independence: P(A,B) = P(A)P(B).

• total probability: P(A) =
∑

Bi
P(Bi)P(A|Bi).

• Bayes’ theorem: P(B |A) = P(B)P(A|B)
P(A) .

• any value of an r.v. ‘picks out’ a subset of the sample space.

• for any value of an r.v., a distribution returns a probability.

• the expectation of an r.v. is its average value over a
distribution.
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