Bayesian Inference (I)

Intro to Bayesian Data Analysis \& Cognitive Modeling Adrian Brasoveanu

[based on slides by Sharon Goldwater \& Frank Keller]
Fall 2012 • UCSC Linguistics
(1) Decision Making

Decision Making
Bayes' Theorem
Base Rate Neglect
Base Rates and Experience
(2) Bayesian Inference

Probability Distributions
(3) Making Predictions

ML estimation
MAP estimation
Posterior Distribution and Bayesian integration

Decision Making

How do people make decisions? For example,

- Medicine: Which disease to diagnose?
- Business: Where to invest? Whom to trust?
- Law: Whether to convict?
- Admissions/hiring: Who to accept?
- Language interpretation: What meaning to select for a word? How to resolve a pronoun? What quantifier scope to choose for a sentence?

Decision Making

In all these cases, we use two kinds of information:

- Background knowledge:
prevalence of disease
previous experience with business partner
historical rates of return in market relative frequency of the meanings of a word scoping preference of a quantifier etc.
- Specific information about this case:
test results
facial expressions and tone of voice
company business reports
various features of the current sentential and discourse context
etc.

Decision Making

Example question from a study of decision-making for medical diagnosis (Casscells et al. 1978):

Example

If a test to detect a disease whose prevalence is $1 / 1000$ has a false-positive rate of 5%, what is the chance that a person found to have a positive result actually has the disease, assuming you know nothing about the person's symptoms or signs?

Decision Making

Most frequent answer: 95\%
Reasoning: if false-positive rate is 5%, then test will be correct 95% of the time.

Correct answer: about 2\%
Reasoning: assume you test 1000 people; only about one person actually has the disease, but the test will be positive in another 50 or so cases (5\%). Hence the chance that a person with a positive result has the disease is about $1 / 50=2 \%$.

Only 12% of subjects give the correct answer.
Mathematics underlying the correct answer: Bayes' Theorem.

Bayes' Theorem

To analyze the answers that subjects give, we need:
Bayes' Theorem
Given a hypothesis h and data D which bears on the hypothesis:

$$
p(h \mid D)=\frac{p(D \mid h) p(h)}{p(D)}
$$

$p(h)$: independent probability of h : prior probability $p(D)$: independent probability of D : marginal likelihood / evidence
$p(D \mid h)$: conditional probability of D given h : likelihood
$p(h \mid D)$: conditional probability of h given D : posterior probability
We also need the rule of total probability.

Total Probability

Theorem: Rule of Total Probability
If events $B_{1}, B_{2}, \ldots, B_{k}$ constitute a partition of the sample space S and $p\left(B_{i}\right) \neq 0$ for $i=1,2, \ldots, k$, then for any event A in S :

$$
p(A)=\sum_{i=1}^{k} p\left(A \mid B_{i}\right) p\left(B_{i}\right)
$$

$B_{1}, B_{2}, \ldots, B_{k}$ form a partition of S if they are pairwise mutually exclusive and if
$B_{1} \cup B_{2} \cup \ldots \cup B_{k}=S$.

Evidence/Marginal Likelihood and Bayes' Theorem

Evidence/Marginal Likelihood

The evidence is also called the marginal likelihood because it is the likelihood $p(D \mid h)$ marginalized relative to the prior probability distribution over hypotheses $p(h)$:

$$
p(D)=\sum_{h} p(D \mid h) p(h)
$$

It is also sometimes called the prior predictive distribution because it provides the average/mean probability of the data D given the prior probability over hypotheses $p(h)$.

Reexpressing Bayes' Theorem

Given the above formula for the evidence, Bayes' theorem can be alternatively expressed as:

$$
p(h \mid D)=\frac{p(D \mid h) p(h)}{\sum_{h} p(D \mid h) p(h)}
$$

Bayes' Theorem for Data D and Model Parameters θ

In the specific case of a model with parameters θ (e.g., the bias of a coin), Bayes' theorem is:

$$
p\left(\theta_{j} \mid D_{i}\right)=\frac{p\left(D_{i} \mid \theta_{j}\right) p\left(\theta_{j}\right)}{\sum_{j \in J} p\left(D_{i} \mid \theta_{j}\right) p\left(\theta_{j}\right)}
$$

Application of Bayes' Theorem

In Casscells et al.'s (1978) example, we have:

- h : person tested has the disease;
- \bar{h} : person tested doesn't have the disease;
- D : person tests positive for the disease.
$p(h)=1 / 1000=0.001 \quad p(\bar{h})=1-p(h)=0.999$
$p(D \mid \bar{h})=5 \%=0.05 \quad p(D \mid h)=1$ (assume perfect test)
Compute the probability of the data (rule of total probability):
$p(D)=p(D \mid h) p(h)+p(D \mid \bar{h}) p(\bar{h})=1 \cdot 0.001+0.05 \cdot 0.999=0.05095$
Compute the probability of correctly detecting the illness:

$$
p(h \mid D)=\frac{p(h) p(D \mid h)}{p(D)}=\frac{0.001 \cdot 1}{0.05095}=0.01963
$$

Base Rate Neglect

Base rate: the probability of the hypothesis being true in the absence of any data, i.e., $p(h)$ (the prior probability of disease).

Base rate neglect: people tend to ignore / discount base rate information, as in Casscells et al.'s (1978) experiments.

- has been demonstrated in a number of experimental situations;
- often presented as a fundamental bias in decision making.

Does this mean people are irrational/sub-optimal?

Base Rates and Experience

Casscells et al.'s (1978) study is abstract and artificial. Other studies show that

- data presentation affects performance (1 in $20 \mathrm{vs} .5 \%$);
- direct experience of statistics (through exposure to many outcomes) affects performance;
(which is why you should tweak the R and JAGS code in this class extensively and try it against a lot of simulated data sets)
- task description affects performance.

Suggests subjects may be interpreting questions and determining priors in ways other than experimenters assume.
Evidence that subjects can use base rates: diagnosis task of Medin and Edelson (1988).

Bayesian Statistics

Bayesian interpretation of probabilities is that they reflect degrees of belief, not frequencies.

- Belief can be influenced by frequencies: observing many outcomes changes one's belief about future outcomes.
- Belief can be influenced by other factors: structural assumptions, knowledge of similar cases, complexity of hypotheses, etc.
- Hypotheses can be assigned probabilities.

Bayes' Theorem, Again

$$
p(h \mid D)=\frac{p(D \mid h) p(h)}{p(D)}
$$

$p(h)$: prior probability reflects plausibility of h regardless of data.
$p(D \mid h)$: likelihood reflects how well h explains the data.
$p(h \mid D)$: posterior probability reflects plausibility of h after taking data into account.

Upshot:

- $p(h)$ may differ from the "base rate" / counting
- the base rate neglect in the early experimental studies might be due to equating probabilities with relative frequencies
- subjects may use additional information to determine prior probabilities (e.g., if they are wired to do this)

Distributions

So far, we have discussed discrete distributions.

- Sample space S is finite or countably infinite (integers).
- Distribution is a probability mass function, defines probability of r.v. having a particular value.
- Ex: $p(Y=n)=(1-\theta)^{n-1} \theta$ (Geometric distribution):

Distributions

We will also see continuous distributions.

- Support is uncountably infinite (real numbers).
- Distribution is a probability density function, defines relative probabilities of different values (sort of).
- Ex: $p(Y=y)=\lambda e^{-\lambda y}$ (Exponential distribution):

Discrete vs. Continuous

Discrete distributions $(p(\cdot)$ is a probability mass function):

- $0 \leq p(Y=y) \leq 1$ for all $y \in S$
- $\sum_{y} p(Y=y)=\sum_{y} p(y)=1$
- $p(y)=\sum_{x} p(y \mid x) p(x)$
(Law of Total Prob.)
- $E[Y]=\sum_{y} y \cdot p(y)$
(Expectation)
Continuous distributions $(p(\cdot)$ is a probability density function):
- $p(y) \geq 0$ for all y
- $\int_{-\infty}^{\infty} p(y) d y=1$
(if the support of the dist. is \mathbb{R})
- $p(y)=\int_{x} p(y \mid x) p(x) d x$
- $E[X]=\int_{x} x \cdot p(x) d x$
(Law of Total Prob.)
(Expectation)

Prediction

Simple inference task: estimate the probability that a particular coin shows heads. Let

- θ : the probability we are estimating.
- H : hypothesis space (values of θ between 0 and 1).
- D: observed data (previous coin flips).
- n_{h}, n_{t} : number of heads and tails in D.

Bayes' Rule tells us:

$$
p(\theta \mid D)=\frac{p(D \mid \theta) p(\theta)}{p(D)} \propto p(D \mid \theta) p(\theta)
$$

How can we use this for predictions?

Maximum Likelihood Estimation

1. Choose θ that makes D most probable, i.e., ignore $p(\theta)$:

$$
\hat{\theta}=\underset{0}{\operatorname{argmax}} p(D \mid \theta)
$$

This is the maximum likelihood (ML) estimate of θ, and turns out to be equivalent to relative frequencies (proportion of heads out of total number of coin flips):

$$
\hat{\theta}=\frac{n_{h}}{n_{h}+n_{t}}
$$

- Insensitive to sample size (10 coin flips vs 1000 coin flips), and does not generalize well (overfits).

Maximum A Posteriori Estimation

2. Choose θ that is most probable given D :

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} p(\theta \mid D)=\underset{\theta}{\operatorname{argmax}} p(D \mid \theta) p(\theta)
$$

This is the maximum a posteriori (MAP) estimate of θ, and is equivalent to ML when $p(\theta)$ is uniform.

- Non-uniform priors can reduce overfitting, but MAP still doesn't account for the shape of $p(\theta \mid D)$:

Posterior Distribution and Bayesian Integration

3. Work with the entire posterior distribution $p(\theta \mid D)$.

Good measure of central tendency - the expected posterior value of θ instead of its maximal value:

$$
E[\theta]=\int \theta p(\theta \mid D) d \theta=\int \theta \frac{p(D \mid \theta) p(\theta)}{p(D)} d \theta \propto \int \theta p(D \mid \theta) p(\theta) d \theta
$$

This is the posterior mean, an average over hypotheses. When prior is uniform (i.e., Beta(1,1), as we will soon see), we have:

$$
E[\theta]=\frac{n_{h}+1}{n_{h}+n_{t}+2}
$$

- Automatic smoothing effect: unseen events have non-zero probability.

Anything else can be obtained out of the posterior distribution: median, 2.5% and 97.5% quantiles, any function of θ etc.

E.g.: Predictions based on MAP vs. Posterior Mean

Suppose we need to classify inputs y as either positive or negative, e.g., indefinites as taking wide or narrow scope.

There are only 3 possible hypotheses about the correct method of classification (3 theories of scope preference): h_{1}, h_{2} and h_{3} with posterior probabilities $0.4,0.3$ and 0.3 , respectively.

We are given a new indefinite y, which h_{1} classifies as positive / wide scope and h_{2} and h_{3} classify as negative / narrow scope.

- using the MAP estimate, i.e., hypothesis h_{1}, y is classified as wide scope
- using the posterior mean, we average over all hypotheses and classify y as narrow scope

References

Casscells, W., A. Schoenberger, and T. Grayboys: 1978, 'Interpretation by Physicians of Clinical Laboratory Results', New England Journal of Medicine 299, 999-1001.
Medin, D. L. and S. M. Edelson: 1988, 'Problem Structure and the Use of Base-rate Information from Experience', Journal of Experimental Psychology: General 117, 68-85.

