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Decision Making

How do people make decisions? For example,
• Medicine: Which disease to diagnose?
• Business: Where to invest? Whom to trust?
• Law: Whether to convict?
• Admissions/hiring: Who to accept?
• Language interpretation: What meaning to select for a

word? How to resolve a pronoun? What quantifier scope to
choose for a sentence?



Decision Making

In all these cases, we use two kinds of information:
• Background knowledge:

prevalence of disease
previous experience with business partner
historical rates of return in market
relative frequency of the meanings of a word
scoping preference of a quantifier
etc.

• Specific information about this case:
test results
facial expressions and tone of voice
company business reports
various features of the current sentential and discourse
context
etc.



Decision Making

Example question from a study of decision-making for medical
diagnosis (Casscells et al. 1978):

Example
If a test to detect a disease whose prevalence is 1/1000 has a
false-positive rate of 5%, what is the chance that a person found
to have a positive result actually has the disease, assuming you
know nothing about the person’s symptoms or signs?



Decision Making

Most frequent answer: 95%

Reasoning: if false-positive rate is 5%, then test will be correct
95% of the time.

Correct answer: about 2%

Reasoning: assume you test 1000 people; only about one
person actually has the disease, but the test will be positive in
another 50 or so cases (5%). Hence the chance that a person
with a positive result has the disease is about 1/50 = 2%.

Only 12% of subjects give the correct answer.

Mathematics underlying the correct answer: Bayes’ Theorem.



Bayes’ Theorem

To analyze the answers that subjects give, we need:

Bayes’ Theorem
Given a hypothesis h and data D which bears on the
hypothesis:

p(h|D) =
p(D|h)p(h)

p(D)

p(h): independent probability of h: prior probability
p(D): independent probability of D: marginal likelihood /
evidence
p(D|h): conditional probability of D given h: likelihood
p(h|D): conditional probability of h given D: posterior probability

We also need the rule of total probability.



Total Probability

Theorem: Rule of Total Probability
If events B1,B2, . . . ,Bk constitute a partition of the sample
space S and p(Bi) 6= 0 for i = 1,2, . . . , k , then for any event A
in S:

p(A) =
k∑

i=1

p(A|Bi)p(Bi)

B1,B2, . . . ,Bk form a
partition of S if they are
pairwise mutually exclusive
and if
B1 ∪ B2 ∪ . . . ∪ Bk = S.
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Evidence/Marginal Likelihood and Bayes’ Theorem

Evidence/Marginal Likelihood
The evidence is also called the marginal likelihood because it is the
likelihood p(D|h) marginalized relative to the prior probability
distribution over hypotheses p(h):

p(D) =
∑

h

p(D|h)p(h)

It is also sometimes called the prior predictive distribution because
it provides the average/mean probability of the data D given the prior
probability over hypotheses p(h).

Reexpressing Bayes’ Theorem
Given the above formula for the evidence, Bayes’ theorem can be
alternatively expressed as:

p(h|D) =
p(D|h)p(h)∑

h
p(D|h)p(h)



Bayes’ Theorem for Data D and Model Parameters θ

In the specific case of a model with parameters θ (e.g., the bias
of a coin), Bayes’ theorem is:

p(θj |Di) =
p(Di |θj)p(θj)∑

j∈J
p(Di |θj)p(θj)

parameter values
data values . . . θj . . .

. . . . . . . . . . . . . . .

Di . . .
p(Di , θj)
= p(Di |θj)p(θj)
= p(θj |Di)p(Di)

. . . p(Di) =
∑
j∈J

p(Di |θj)p(θj)

. . . . . . . . . . . . . . .

. . . p(θj) . . .



Application of Bayes’ Theorem

In Casscells et al.’s (1978) example, we have:

• h: person tested has the disease;
• h: person tested doesn’t have the disease;
• D: person tests positive for the disease.

p(h) = 1/1000 = 0.001 p(h) = 1− p(h) = 0.999
p(D|h) = 5% = 0.05 p(D|h) = 1 (assume perfect test)

Compute the probability of the data (rule of total probability):

p(D) = p(D|h)p(h)+p(D|h)p(h) = 1·0.001+0.05·0.999 = 0.05095

Compute the probability of correctly detecting the illness:

p(h|D) =
p(h)p(D|h)

p(D)
=

0.001 · 1
0.05095

= 0.01963



Base Rate Neglect

Base rate: the probability of the hypothesis being true in the
absence of any data, i.e., p(h) (the prior probability of disease).

Base rate neglect: people tend to ignore / discount base rate
information, as in Casscells et al.’s (1978) experiments.

• has been demonstrated in a number of experimental
situations;

• often presented as a fundamental bias in decision making.

Does this mean people are irrational/sub-optimal?



Base Rates and Experience

Casscells et al.’s (1978) study is abstract and artificial. Other
studies show that
• data presentation affects performance (1 in 20 vs. 5%);
• direct experience of statistics (through exposure to many

outcomes) affects performance;
(which is why you should tweak the R and JAGS code in this
class extensively and try it against a lot of simulated data sets)

• task description affects performance.

Suggests subjects may be interpreting questions and
determining priors in ways other than experimenters assume.

Evidence that subjects can use base rates: diagnosis task of
Medin and Edelson (1988).



Bayesian Statistics

Bayesian interpretation of probabilities is that they reflect
degrees of belief , not frequencies.
• Belief can be influenced by frequencies: observing many

outcomes changes one’s belief about future outcomes.
• Belief can be influenced by other factors: structural

assumptions, knowledge of similar cases, complexity of
hypotheses, etc.

• Hypotheses can be assigned probabilities.



Bayes’ Theorem, Again

p(h|D) =
p(D|h)p(h)

p(D)

p(h): prior probability reflects plausibility of h regardless of
data.
p(D|h): likelihood reflects how well h explains the data.
p(h|D): posterior probability reflects plausibility of h after taking
data into account.

Upshot:

• p(h) may differ from the “base rate” / counting
• the base rate neglect in the early experimental studies

might be due to equating probabilities with relative
frequencies

• subjects may use additional information to determine prior
probabilities (e.g., if they are wired to do this)



Distributions

So far, we have discussed discrete distributions.
• Sample space S is finite or countably infinite (integers).
• Distribution is a probability mass function, defines

probability of r.v. having a particular value.
• Ex: p(Y = n) = (1− θ)n−1θ (Geometric distribution):

(Image from http://eom.springer.de/G/g044230.htm)



Distributions

We will also see continuous distributions.
• Support is uncountably infinite (real numbers).
• Distribution is a probability density function, defines

relative probabilities of different values (sort of).
• Ex: p(Y = y) = λe−λy (Exponential distribution):

(Image from Wikipedia)



Discrete vs. Continuous

Discrete distributions (p(·) is a probability mass function):
• 0 ≤ p(Y = y) ≤ 1 for all y ∈ S
•
∑
y

p(Y = y) =
∑
y

p(y) = 1

• p(y) =
∑
x

p(y |x)p(x) (Law of Total Prob.)

• E [Y ] =
∑
y

y · p(y) (Expectation)

Continuous distributions (p(·) is a probability density function):
• p(y) ≥ 0 for all y

•
∞∫
−∞

p(y)dy = 1 (if the support of the dist. is R)

• p(y) =
∫

x p(y |x)p(x)dx (Law of Total Prob.)
• E [X ] =

∫
x x · p(x)dx (Expectation)



Prediction

Simple inference task: estimate the probability that a particular
coin shows heads. Let
• θ: the probability we are estimating.
• H: hypothesis space (values of θ between 0 and 1).
• D: observed data (previous coin flips).
• nh,nt : number of heads and tails in D.

Bayes’ Rule tells us:

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ p(D|θ)p(θ)

How can we use this for predictions?



Maximum Likelihood Estimation

1. Choose θ that makes D most probable, i.e., ignore p(θ):

θ̂ = argmax
θ

p(D|θ)

This is the maximum likelihood (ML) estimate of θ, and turns
out to be equivalent to relative frequencies (proportion of heads
out of total number of coin flips):

θ̂ =
nh

nh + nt

• Insensitive to sample size (10 coin flips vs 1000 coin flips),
and does not generalize well (overfits).



Maximum A Posteriori Estimation

2. Choose θ that is most probable given D:

θ̂ = argmax
θ

p(θ|D) = argmax
θ

p(D|θ)p(θ)

This is the maximum a posteriori (MAP) estimate of θ, and is
equivalent to ML when p(θ) is uniform.

• Non-uniform priors can reduce overfitting, but MAP still
doesn’t account for the shape of p(θ|D):



Posterior Distribution and Bayesian Integration

3. Work with the entire posterior distribution p(θ|D).

Good measure of central tendency – the expected posterior
value of θ instead of its maximal value:

E [θ] =

∫
θp(θ|D)dθ =

∫
θ

p(D|θ)p(θ)
p(D)

dθ ∝
∫
θp(D|θ)p(θ)dθ

This is the posterior mean, an average over hypotheses. When
prior is uniform (i.e., Beta(1,1), as we will soon see), we have:

E [θ] =
nh + 1

nh + nt + 2

• Automatic smoothing effect: unseen events have non-zero
probability.

Anything else can be obtained out of the posterior distribution:
median, 2.5% and 97.5% quantiles, any function of θ etc.



E.g.: Predictions based on MAP vs. Posterior Mean

Suppose we need to classify inputs y as either positive or
negative, e.g., indefinites as taking wide or narrow scope.

There are only 3 possible hypotheses about the correct method
of classification (3 theories of scope preference): h1, h2 and h3
with posterior probabilities 0.4, 0.3 and 0.3, respectively.

We are given a new indefinite y , which h1 classifies as positive /
wide scope and h2 and h3 classify as negative / narrow scope.

• using the MAP estimate, i.e., hypothesis h1, y is classified
as wide scope

• using the posterior mean, we average over all hypotheses
and classify y as narrow scope
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