Models of Decision Making
 LaLoCo, Fall 2013

Adrian Brasoveanu, Karl DeVries

[based on slides by Sharon Goldwater \& Frank Keller]

Decision Making
Decision Making
Bayes' Theorem
Base Rate Neglect
Use of Base Rates
Base Rates and Experience
Experimental evidence
Modeling
Bayesian Inference
Uncertainty in Estimation
Bayesian vs. Frequentist
Discussion

Reading: Cooper (2002, Ch. 6, Secs. 6.1,6.2).

Decision Making

How do people make decisions? For example,

- Medicine: Which disease to diagnose?
- Business: Where to invest? Whom to trust?
- Law: Whether to convict?
- Admissions/hiring: Whom to accept?

In all these cases, two kinds of information is used:

- Background knowledge (prevalence of disease, previous experience with business partner, historical rates of return in market, etc).
- Specific information about this case (test results, facial expressions and tone of voice, company business reports, etc)

Decision Making

Example question from a study of decision-making for medical diagnosis (Casscells, Schoenberger, and Grayboys, 1978):

Example

If a test to detect a disease whose prevalence is $1 / 1000$ has a false-positive rate of 5% (i.e., 5% of those without the disease test positive anyway), what is the chance that a person found to have a positive result actually has the disease, assuming you know nothing about the person's symptoms or signs?

Decision Making

Most frequent answer: 95\%

Reasoning: if false-positive rate is 5%, then test will be correct 95\% of the time.

Correct answer: about 2\%

Reasoning: assume you test 1000 people; about one person is expected to have the disease, but the test will be positive in another 50 or so cases (5% of 999). Hence the chance that a person with a positive result has the disease is about $1 / 51 \approx$ 2\%.

Only 12% of subjects give the correct answer.
Mathematics underlying the correct answer: Bayes' Theorem.

Bayes' Theorem

To analyze the answers that subjects give, we need:

Bayes' Theorem

Given a hypothesis H and data D which bears on the hypothesis:

$$
P(H \mid D)=\frac{P(D \mid H) P(H)}{P(D)}
$$

$P(H)$: independent probability of H : prior probability
$P(D)$: independent probability of D
$P(D \mid H)$: conditional probability of D given H : likelihood $P(H \mid D)$: conditional probability of H given D : posterior probability

We also need the rule of total probability.

Application of Bayes' Theorem

In Casscells, Schoenberger, and Grayboys (1978) example, we have:

- $H=d$: person tested has the disease;
- $H=\bar{d}$: person tested doesn't have the disease;
- $D=t$: person tests positive for the disease.

$$
\begin{aligned}
& P(d)=1 / 1000=0.001 \quad P(\bar{d})=1-P(d)=0.999 \\
& P(t \mid \bar{d})=5 \%=0.05 \quad P(t \mid d)=1 \text { (assume perfect test) }
\end{aligned}
$$

Compute the probability of the data (rule of total probability):
$P(t)=P(t \mid d) P(d)+P(t \mid \bar{d}) P(\bar{d})=1 \cdot 0.001+0.05 \cdot 0.999=0.05095$
Compute the probability of correctly detecting the illness:

$$
P(d \mid t)=\frac{P(d) P(t \mid d)}{P(t)}=\frac{0.001 \cdot 1}{0.05095}=0.01963
$$

Base Rate Neglect

Base rate: the proportion of cases overall where the hypothesis is true (here, \% of population with disease); assumed equal to prior probability (here, $P(d)$).
Base rate neglect: people tend to ignore/discount base rate information (as in Casscells, Schoenberger, and Grayboys (1978) experiments).

- When base rate is very low, posterior prob (here, $P(d \mid t)$) is also low, but people judge it to be high, without accounting for the base rate.
- demonstrated in a number of experimental situations;
- often presented as a fundamental bias in decision making.

Does this mean people are irrational/sub-optimal?

Base Rates and Experience

Casscells, Schoenberger, and Grayboys (1978) study is abstract and artificial. Other studies show that

- data presentation affects performance (1 in 20 vs. 5%).
- direct experience of statistics (through exposure to many outcomes) affects performance.
- various other ways in which task description / presentation affects performance.
Suggests subjects may be interpreting questions and determining priors in ways other than experimenters assume.
- E.g.: is it reasonable to assume that a medical test is given if there is no evidence of disease?

Base Rates and Experience

First, evidence that subjects can use base rates: diagnosis task of Medin and Edelson, 1988.

- Training phase:
- subjects were presented with pairs of symptoms and had to select one of six diseases;
- feedback was provided so that they learned symptom/disease associations;
- different diseases had different base rates;
- ended when subjects had achieved perfect diagnosis accuracy.
- Transfer phase:
- subjects were tested on single symptoms and combinations they had not seen in the training phase.

Experimental Data

Structure of Medin and Edelson (1988) experiment:

Symptoms	Disease	No. of trials
a \& b	1	3 trials
a \& c	2	1 trial
d \& e	3	3 trials
d \& f	4	1 trial
g \& h	5	3 trials
g \& i	6	1 trial

Symptoms a, d, g are imperfect predictors; symptoms b, c, e, f, h, i are perfect predictors.

Diseases 1, 3, 5 are high frequency, diseases 2, 4, 6 are low frequency.

Experimental Results

Results in transfer phase:

- when presented with a high frequency perfect predictor (e.g., b), 81.2\% responses for correct disease (e.g., 1);
- when presented with a low frequency perfect predictor (e.g., c), 92.7% responses for correct disease (e.g., 3).

Indicates: symptom/disease associations acquired correctly.

- when presented with a high freq. imperf. predictor (e.g., a), 78.1% responses for correct high freq. disease (e.g., 1), 14.6% responses for correct low freq. disease (e.g., 2).

Indicates: base rate information is used.

Modeling Decision Making

Medin and Edelson (1988) results suggest that Bayes' rule may be a plausible basis for modeling decision-making when subjects have direct experience with the data.

Cooper (2002, Ch. 6) presents a Cogent model:

- knowledge base contains frequency information about symptoms and diseases, acquired by counting.
- computes predictions using Bayes' Rule.

Problems: no plausible model of learning, prediction fails in transfer phase when symptoms conflict. But instructive to consider why...

Cooper (2002) Model

In transfer phase, subjects are presented with symptoms s and have to predict a disease d. Model does so using Bayes' Rule:

$$
P(d \mid s)=\frac{P(s \mid d) P(d)}{P(s)}
$$

$P(s \mid d), P(d)$, and $P(s)$ are determined from frequencies observed in the training phase.

Cooper (2002) Model

Compute probabilities from frequency counts:

$$
\begin{array}{lll}
P\left(d_{1}\right)=3 / 12 & P\left(a \mid d_{1}\right)=3 / 3 & P(a)=4 / 12 \\
P\left(d_{2}\right)=1 / 12 & P\left(b \mid d_{1}\right)=3 / 3 & P(b)=3 / 12 \\
\ldots & P\left(a \mid d_{2}\right)=1 / 1 & P(c)=1 / 12 \\
& P\left(c \mid d_{2}\right)=1 / 1 & \ldots
\end{array}
$$

Compute predictions given a single symptom:

$$
\begin{array}{r}
P\left(d_{1} \mid a\right)=\frac{P\left(a \mid d_{1}\right) P\left(d_{1}\right)}{P(a)}=\frac{(3 / 3)(3 / 12)}{4 / 12}=.75 \\
P\left(d_{1} \mid b\right)=\frac{P\left(b \mid d_{1}\right) P\left(d_{1}\right)}{P(b)}=\frac{(3 / 3)(3 / 12)}{3 / 12}=1
\end{array}
$$

Similarly, $P\left(d_{2} \mid a\right)=.25, P\left(d_{2} \mid c\right)=1$.

Cooper (2002) Model

What about conflicting symptoms?

$$
P\left(d_{1} \mid b, c\right)=\frac{P\left(b, c \mid d_{1}\right) P\left(d_{1}\right)}{P(b, c)}=\frac{(0)(3 / 12)}{0}=? ?
$$

- Cooper uses this problem with conflicting symptoms to argue against the Bayesian model.
- However, Cooper's implementation takes a naive view of probability: probability = actual (normalized) counts; no 'smoothing' by prior information.

Uncertainty

In probabilistic models, there are two sources of uncertainty.

1. Given a known distribution $P(X)$, the outcome is uncertain (this is the likelihood).

$$
\text { e.g., } P(X=a)=.3, P(X=b)=.7
$$

2. In general, the distribution itself is uncertain, as it must be estimated from data (this is the prior).

$$
\text { e.g., } P(X=a) \approx .3 \text { or } P(X=a)=.3 \pm .01
$$

Cooper's model fails to consider the second kind of uncertainty.

Probability \neq (Finite) Counting

Thought experiment: what is a good estimate of $P(X=$ head $)$ in each case?

1. I pick up a coin off the street, and start flipping.
a. Flip 10 times: 4 tails, 6 heads.
b. Flip 100 times: 40 tails, 60 heads.
2. I have a coin in my pocket, and I tell you it's weighted. I pull it out and start flipping.
a. Flip 10 times: 4 tails, 6 heads.
b. Flip 100 times: 40 tails, 60 heads.

What changed in each case?

Frequentist Statistics

Standard frequentist statistics interprets probabilities as proportions of infinite number of trials.

- Probabilities are estimated from repeated observations.
- More observations \rightarrow more accurate estimation.
- Focuses on ruling out hypotheses, not estimating their probabilities.
- Ex: Data $=(4$ tails, 6 heads). Estimate $P($ head $)=.6$, but margin for error is large, does not rule out $P($ head $)=.5$.

Used widely in controlled scientific experiments.

Bayesian Statistics

Bayesian interpretation of probabilities is that they reflect degrees of belief, not frequencies.

- Belief can be influenced by frequencies: observing many outcomes changes one's belief about future outcomes.
- Belief can be influenced by other factors: structural assumptions, knowledge of similar cases, complexity of hypotheses, etc.
- Hypotheses such as $P($ head $)=.6$ can be assigned probabilities.

Works much better for cognitive modeling.

Bayes' Theorem, Again

Bayesian interpretation of Bayes' theorem:
Bayes' Theorem

$$
P(H \mid D)=\frac{P(D \mid H) P(H)}{P(D)}
$$

$P(H)$: prior probability reflects plausibility of H regardless of data.
$P(D \mid H)$: likelihood reflects how well H explains the data. $P(H \mid D)$: posterior probability reflects plausibility of H after taking data into account.

Note that $P(H)$ may differ from the "base rate" (which implies simply counting).

Discussion

Reconsider modeling and experimental evidence:

- Cooper's model fails not because of Bayes' rule, but because probabilities are equated with relative frequencies; no attempt is made to account for uncertainty in the estimates of the probabilities (i.e., maybe they aren't $0)$.
- Similarly, evidence of base rate neglect fails to consider factors besides frequency that might affect prior probabilities.

Summary

- Bayes' theorem can be applied to human decision making;
- early experimental results seemed to indicate that subjects ignore prior probabilities: base rate neglect;
- however, more recent studies show that subject can learn base rate information from experience;
- rational analysis using Bayesian view suggests that equating probabilities with relative frequencies is the problem;
- subjects may use additional information to determine prior probabilities.

References I

Casscells, W., A. Schoenberger, and T. Grayboys (1978). "Interpretation by Physicians of Clinical Laboratory Results". In: New England Journal of Medicine 299.18, pp. 999-1001. Cooper, Richard P. (2002). Modelling High-Level Cognitive Processes. Mahwah, NJ: Lawrence Erlbaum Associates. Medin, D. L. and S. M. Edelson (1988). "Problem Structure and the Use of Base-rate Information from Experience". In: Journal of Experimental Psychology: General 117.1, pp. 68-85.

