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Decision Making

How do people make decisions? For example,
e Medicine: Which disease to diagnose?
e Business: Where to invest? Whom to trust?
e Law: Whether to convict?
e Admissions/hiring: Whom to accept?
In all these cases, two kinds of information is used:

e Background knowledge (prevalence of disease, previous
experience with business partner, historical rates of return
in market, etc).

o Specific information about this case (test results, facial
expressions and tone of voice, company business reports,
etc)



Decision Making

Example question from a study of decision-making for medical
diagnosis (Casscells, Schoenberger, and Grayboys, 1978):

Example

If a test to detect a disease whose prevalence is 1/1000 has a
false-positive rate of 5% (i.e., 5% of those without the disease
test positive anyway), what is the chance that a person found to
have a positive result actually has the disease, assuming you
know nothing about the person’s symptoms or signs?



Decision Making

Most frequent answer: 95%

Reasoning: if false-positive rate is 5%, then test will be correct
95% of the time.

Correct answer: about 2%

Reasoning: assume you test 1000 people; about one person is
expected to have the disease, but the test will be positive in
another 50 or so cases (5% of 999). Hence the chance that a
person with a positive result has the disease is about 1/51 ~
2%.

Only 12% of subjects give the correct answer.

Mathematics underlying the correct answer: Bayes’ Theorem.
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Bayes’ Theorem

To analyze the answers that subjects give, we need:

Bayes’ Theorem

Given a hypothesis H and data D which bears on the
hypothesis:
P(DIH)P(H)

P(D)

H): independent probability of H: prior probability
D): independent probability of D

D|H): conditional probability of D given H: likelihood
P(H|D): conditional probability of H given D: posterior
probability

P(HID) =

P(
P(
P(

We also need the rule of total probability.



Application of Bayes’ Theorem
In Casscells, Schoenberger, and Grayboys (1978) example, we
have:

e H = d: person tested has the disease;
o H = d: person tested doesn’t have the disease;
e D = t: person tests positive for the disease.

P(d) =1/1000 = 0.001 P(d) =1 — P(d) = 0.999

P(t|ld) =5% =0.05 P(t|d) =1 (assume perfect test)

Compute the probability of the data (rule of total probability):

P(t) = P(t|d)P(d)+P(t|d)P(d) = 1-0.0014-0.05-0.999 = 0.05095
Compute the probability of correctly detecting the illness:

P(d)P(t|d) _ 0.001 -1
P(f) _ 0.05095
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P(d|t) = — 0.01963




Base Rate Neglect

Base rate: the proportion of cases overall where the hypothesis
is true (here, % of population with disease); assumed equal to
prior probability (here, P(d)).

Base rate neglect: people tend to ignore/discount base rate
information (as in Casscells, Schoenberger, and Grayboys
(1978) experiments).

e When base rate is very low, posterior prob (here, P(d|t)) is
also low, but people judge it to be high, without accounting
for the base rate.

e demonstrated in a number of experimental situations;
e often presented as a fundamental bias in decision making.

Does this mean people are irrational/sub-optimal?



Base Rates and Experience

Casscells, Schoenberger, and Grayboys (1978) study is
abstract and artificial. Other studies show that

e data presentation affects performance (1 in 20 vs. 5%).
e direct experience of statistics (through exposure to many
outcomes) affects performance.

e various other ways in which task description / presentation
affects performance.

Suggests subjects may be interpreting questions and
determining priors in ways other than experimenters assume.

e E.g.:is it reasonable to assume that a medical test is given
if there is no evidence of disease?



Base Rates and Experience

First, evidence that subjects can use base rates: diagnosis task
of Medin and Edelson, 1988.

¢ Training phase:

o subjects were presented with pairs of symptoms and had to
select one of six diseases;

o feedback was provided so that they learned
symptom/disease associations;

o different diseases had different base rates;

e ended when subjects had achieved perfect diagnosis
accuracy.

e Transfer phase:

e subjects were tested on single symptoms and combinations
they had not seen in the training phase.



Experimental Data

Structure of Medin and Edelson (1988) experiment:

Symptoms Disease No. of trials

a&b 1 3 trials
a&c 2 1 trial
d&e 3 3 trials
d&f 4 1 trial
g&h 5 3 trials
g&i 6 1 trial

Symptoms a, d, g are imperfect predictors; symptoms b, ¢, e, f,
h, i are perfect predictors.

Diseases 1, 3, 5 are high frequency, diseases 2, 4, 6 are low
frequency.



Experimental Results

Results in transfer phase:

¢ when presented with a high frequency perfect predictor
(e.g., b), 81.2% responses for correct disease (e.g., 1);

e when presented with a low frequency perfect predictor
(e.g., €), 92.7% responses for correct disease (e.g., 3).
Indicates: symptom/disease associations acquired correctly.

¢ when presented with a high freq. imperf. predictor (e.g., a),
78.1% responses for correct high freq. disease (e.g., 1),
14.6% responses for correct low freq. disease (e.g., 2).

Indicates: base rate information is used.



Modeling Decision Making

Medin and Edelson (1988) results suggest that Bayes’ rule may
be a plausible basis for modeling decision-making when
subjects have direct experience with the data.

Cooper (2002, Ch. 6) presents a Cogent model:

¢ knowledge base contains frequency information about
symptoms and diseases, acquired by counting.

e computes predictions using Bayes’ Rule.

Problems: no plausible model of learning, prediction fails in
transfer phase when symptoms conflict. But instructive to
consider why...



Cooper (2002) Model

In transfer phase, subjects are presented with symptoms s and
have to predict a disease d. Model does so using Bayes’ Rule:

P(d]s) = P(SI;‘?S’)D(")

P(s|d), P(d), and P(s) are determined from frequencies
observed in the training phase.



Cooper (2002) Model

Compute probabilities from frequency counts:

P(di)=3/12 P(ald;)=3/3 P(a)=4/12

P(d) = 1/12 P(b|dy) =3/3 P(b) =3/12

P(aldb) =1/1 P(c)=1/12
P(cldb) =1/1 ...

Compute predictions given a single symptom:

_ Plald)P(dh) _ (3/3)(3/12) _ .

Pldla) = —=py— = 412
_ P(bld;)P(dr) _ (3/3)(3/12) _
Pla|b) = P1(b) = 312

Similarly, P(dz|a) = .25, P(ds|c) = 1.
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Cooper (2002) Model

What about conflicting symptoms?

P(b.cloP(dh) _ (0)(3/12) _,

Pab.0) =By ~ ~ o

e Cooper uses this problem with conflicting symptoms to
argue against the Bayesian model.
e However, Cooper’s implementation takes a naive view of

probability: probability = actual (normalized) counts; no
‘smoothing’ by prior information.



Uncertainty

In probabilistic models, there are two sources of uncertainty.

1. Given a known distribution P(X), the outcome is uncertain
(this is the likelihood).

eg.,PX=a)=3PX=b=.7

2. In general, the distribution itself is uncertain, as it must be
estimated from data (this is the prior).

eg.,PX=a~30orP(X=a=.3+£.01

Cooper’s model fails to consider the second kind of uncertainty.



Probability = (Finite) Counting

Thought experiment: what is a good estimate of P(X = head)
in each case?

1. | pick up a coin off the street, and start flipping.

a. Flip 10 times: 4 tails, 6 heads.
b. Flip 100 times: 40 tails, 60 heads.

2. I’ have a coin in my pocket, and | tell you it's weighted. | pull
it out and start flipping.

a. Flip 10 times: 4 tails, 6 heads.
b. Flip 100 times: 40 tails, 60 heads.

What changed in each case?



Frequentist Statistics

Standard frequentist statistics interprets probabilities as
proportions of infinite number of trials.

¢ Probabilities are estimated from repeated observations.
e More observations — more accurate estimation.

e Focuses on ruling out hypotheses, not estimating their
probabilities.

o Ex: Data = (4 tails, 6 heads). Estimate P(head) = .6, but
margin for error is large, does not rule out P(head) = .5.

Used widely in controlled scientific experiments.



Bayesian Statistics

Bayesian interpretation of probabilities is that they reflect
degrees of belief, not frequencies.

¢ Belief can be influenced by frequencies: observing many
outcomes changes one’s belief about future outcomes.

e Belief can be influenced by other factors: structural
assumptions, knowledge of similar cases, complexity of
hypotheses, etc.

e Hypotheses such as P(head) = .6 can be assigned
probabilities.

Works much better for cognitive modeling.
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Bayes’ Theorem, Again

Bayesian interpretation of Bayes’ theorem:

Bayes’ Theorem

P(DIH)P(H)
P(D)

P(H): prior probability reflects plausibility of H regardless of
data.

P(D|H): likelihood reflects how well H explains the data.
P(H|D): posterior probability reflects plausibility of H after
taking data into account.

P(H|D) =

Note that P(H) may differ from the “base rate” (which implies
simply counting).
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Discussion

Reconsider modeling and experimental evidence:

e Cooper’s model fails not because of Bayes’ rule, but
because probabilities are equated with relative
frequencies; no attempt is made to account for uncertainty
in the estimates of the probabilities (i.e., maybe they aren’t
0).

o Similarly, evidence of base rate neglect fails to consider
factors besides frequency that might affect prior
probabilities.
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Summary

Bayes’ theorem can be applied to human decision making;

early experimental results seemed to indicate that subjects
ignore prior probabilities: base rate neglect;

however, more recent studies show that subject can learn
base rate information from experience;

rational analysis using Bayesian view suggests that
equating probabilities with relative frequencies is the
problem;

subjects may use additional information to determine prior
probabilities.
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