
Models of Arithmetic
LaLoCo, Fall 2013

Karl DeVries, Adrian Brasoveanu

[based on slides by Sharon Goldwater & Frank Keller]

1



Modeling Arithmetic Skill
Motivation
Architecture
Diagnosing Student Models

A Production Rule Model
A Basic Model
A Revised Model
Young and O’Shea’s Model

Reading: Cooper (2002, Ch. 3)

2



Why study models of arithmetic?

An example of a cognitive skill : an ability learned through
conscious practice. Others include:
• solving well-defined, knowledge-lean problems
• driving (vs. walking)
• reading/writing (vs. understanding/speaking)

Focus on multi-column subtraction; Cooper also covers
addition. Both models illustrate how
• cognitive skills can be modeled using a production system.
• humans perform a task correctly by integrating many

smaller sub-skills;
• failure of individual sub-skills may help explain systematic

failures in main skill.

3



Multi-column subtraction

How do skilled students perform this task?

What types of errors are made by learners?
• random errors or systematic errors?
• factual (arithmetic) errors or procedural errors?
• incorrect sub-skills or failure to apply sub-skills?

Young and O’Shea (1981) hypothesized that many errors are
caused by failing to apply a sub-skill.

4



Basic architecture: General production system

Architecture is a general production system, not specific to this
task:

5



Basic architecture: General production system

• Working memory: holds current goals for task (here,
multi-column subtraction) and subtasks (e.g., borrow).

• Production memory: holds production (ie,
condition-action) rules encoding when and how to perform
subtasks. Also stores relevant facts (here, arithmetic facts).

• Match memory: holds production rules whose conditions
are currently met.

• Resolve conflicts: if >1 rule in Match memory,
determines which to fire.

• Refractory memory: keeps track of rules that have fired,
in order to prevent the same rule from firing multiple times
(unless re-introduced into Match memory).

6



Comparison to ACT-R

Recall that ACT-R is also a general production system. Not
surprisingly, the architectures of the two systems are similar.
• Working memory: similar to ACT-R Goal module.
• Production memory: combines ACT-R Central Production

System and Declarative module.
• Match memory: Similar to ACT-R Retrieval buffer.
• Conflict resolution: Here, based on recency. ACT-R:

based on subsymbolic activation levels.

7



Diagnosing Student Models

If teacher believes a student has a different model from their
own (correct) one:

• assemble a bug catalog;
• reason about what student would have to believe in order

to exhibit behavior indicating this.

Student model: representation of student’s current state of
knowledge.

Diagnosis: process of inferring the student model.

8



Examples of children’s work

Figure from Young and O’Shea (1981)

9



Problems with children’s work
Terminology:

YYY minuend
XXX subtrahend
ZZZ difference

Errors:

• A: always subtract smaller digit from larger.
• B: always borrow.
• C: both A and B.
• D: subtracting larger number from smaller equals zero.
• E: borrowing makes 10 (rather than 10+minuend).
• F: add instead of subtract
• G,H: errors only with subtracting from zero.

Note that only patterns of errors distinguish G,H from A,D. Finding
flaws in the underlying procedure (rather than specific errors) requires
looking at multiple problems.

10



Young and O’Shea’s Model

Production rule model of multi-column subtraction:

• contains a fairly small number of simple production rules.
• children’s errors are modeled by deleting production rules

from a model that works correctly.
• accounts for a large percentage of errors found in practice.
• supports hypothesis that many errors arise from forgetting

a sub-component of the skill.

11



A Simple Production Rule Model

Condition Action
S1: (goal = process col-
umn) & (minuend ≥ subtra-
hend)

−→ Take absolute difference of
minuend and subtrahend
and write in the answer
space

S2: (goal = process col-
umn) & (minuend < subtra-
hend)

−→ Push goal ‘borrow’ onto
stack

S3: (goal = borrow) −→ Decrement next minuend
by 1, add 10 to current min-
uend and delete the current
goal

12



Example

process column
goal stack

4 9 minuend
–1 8 subtrahend

*
S1 is the only applicable production, so it fires.

process column
goal stack

4 9 minuend
–1 8 subtrahend

1
*

Now S1 is still the only applicable production! We need a fix. . .

* indicates current column

13



A Revised Subtraction Model

Condition Action
S1: (goal = subtract) & all an-
swer spaces empty

−→ Place marker on rightmost
column & push ‘process col-
umn’ onto goal stack

S2: (goal = process column)
& (minuend ≥ subtrahend)

−→ Take absolute difference of
minuend and subtrahend
and write in the answer
space

S3: (goal = process column)
& (minuend < subtrahend)

−→ Push goal ’borrow’ onto stack

S4: (goal = process column)
& answer space filled in

−→ Move one column left

S5: (goal = borrow) −→ Decrement next minuend by
1, add 10 to current minuend
and delete the current goal

14



Example 1

subtract
goal stack

4 9 minuend
–1 8 subtrahend

*
S1 is the only applicable production, so it fires. The marker is
placed, the new goal put on the stack and S2 fires.

process column
subtract

goal stack

4 9 minuend
–1 8 subtrahend

1
*

S2 and S4 both satisfy the conditions but recency rules out S2.

15



Example 1

subtract
goal stack

4 9 minuend
–1 8 subtrahend

1
*

S2’s conditions are satisfied so it fires, then S4 will fire.

process column
subtract

goal stack *

4 9 minuend
–1 8 subtrahend

3 1

Now no rules are satisfied so the system halts.

16



Example 2

Condition Action
S1: (goal = subtract) & all answer
spaces empty

−→ Place marker on rightmost column &
push ‘process column’ onto goal stack

S2: (goal = process column) &
(minuend ≥ subtrahend)

−→ Take absolute difference of minuend
and subtrahend and write in the an-
swer space

S3: (goal = process column) &
(minuend < subtrahend)

−→ Push goal ’borrow’ onto stack

S4: (goal = process column) & answer
space filled in

−→ Move one column left

S5: (goal = borrow) −→ Decrement next minuend by 1, add
10 to current minuend, delete current
goal

4 8
–1 9 OK

4 0 7
–1 0 8 not OK:

(How to borrow from 0?)

17



Young and O’Shea’s Model

Production rule model of multi-column subtraction:

• contains a fairly small number of simple production rules.
• models children’s errors by deleting rules from a model

that works correctly.
• accounts for a large percentage of errors found in practice.
• supports hypothesis that many errors arise from forgetting

a sub-skill.

Young and O’Shea stress that rules do not form a structurally
delimited module: If during subtraction, circumstances are
appropriate for triggering other rules, they will fire.

18



Young and O’Shea’s Production Rules

Condition Action
Init: goal = subtract & all answer
spaces empty

−→ Place marker on rightmost column &
push goal ‘process column’

Read: goal = process column & no M
or S in working memory

−→ Read M and S

Compare: M and S in working mem-
ory

−→ Compare M and S

FindDiff: M and S in working mem-
ory

−→ push goal ‘find difference’, push goal
‘next column’

Borr2a: M < S −→ Push goal ‘borrow’
BorrS1: goal = borrow −→ Decrement next minuend by 1
BorrS2: goal = borrow −→ Add 10 to current minuend
AbsDiff: goal = find difference −→ Take absolute difference between M

and S as result
Write: result in working memory −→ Write result
Next: goal = process column & an-
swer space filled in

−→ Move one column left

Carry: result is (1,X) −→ Carry 1 and take X as result

19



Faulty Models: Missing rules

Leaving out specific rules leads to many common errors.
• Compare: M and S in working memory −→ Compare M

and S.
If missing, take smaller from larger.

• BorrS1: goal = borrow −→ Decrement next minuend by 1.
If missing, borrow freely, no payback.

But not all: Additional errors may come from faulty rules
• Always borrow.
• Zero errors.
• . . .

20



Additional faulty rules: borrowing

Replace

Borr2a: M < S −→ Push goal ‘borrow’

with one of these:

Borr2b: M > S −→ Push goal ‘borrow’

Borr1: M and S in working memory −→ Push goal ‘borrow’
• accounts for always borrow behavior.
• Young and O’Shea suggest teaching methods are to

blame: students given only examples without borrowing,
then only examples with borrowing. Never learn conditions
for borrowing.

21



Additional faulty rules: zeros

Condition Action
Nmin00: M=N, S=0 −→ result is 0
0minNN: M=0, S=N −→ result is N
0minN0: M=0, S=N −→ result is 0
NminNN: M=N, S=N −→ result is N

• Treated as additional production rules.
• Are these really procedural errors or arithmetic (factual)

errors? Do students require more training in multi-column
subtraction or arithmetic facts?

22



Summary

• Arithmetic (multicolumn subtraction) as example of a
cognitive skill;

• Using general architecture of a production system,
subtraction can be modeled using specific production
rules;

• Missing rules lead to degraded behavior similar to patterns
of student errors;

• Diagnosis: inferring which skills (and subskills) students
have mastered (or failed to master).

23



References I

Cooper, Richard P. (2002). Modelling High-Level Cognitive Processes.
Mahwah, NJ: Lawrence Erlbaum Associates.
Young, R. M. and T. O’Shea (1981). “Errors in Children’s Subtraction”. In: 5.2,
pp. 153–177.

24


	Modeling Arithmetic Skill
	Motivation
	Architecture
	Diagnosing Student Models

	A Production Rule Model
	A Basic Model
	A Revised Model
	Young and O'Shea's Model


