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1 Production Selection (Conflict Resolution)

Once a current goal has been set, ACT-R must choose a production rule to fire in order to
achieve that goal.

The question is, if multiple production rules satisfy that goal,
how does the system select which production to fire?

First step: The production rules that match the goal - the conflict set - are ordered given
their expected gain, or utility.

This is done in parallel.

(1) Expected Gain
E = PG - C

Where:

I. P = probability that goal will be achieved if production is chosen

II. G = goal value (time ACT-R is willing to spend on goal)

III. C = expected cost (time to achieve goal)

Intuitively, production rules are ranked highest the more the probability of achieving the
goal outweighs the time it takes to achieve that goal if the production is chosen.

As the value of the goal increases more weight is given to the probability of success, that is,
the more weight is placed on achieving the goal, the more important it is to achieve it, so
the system will be more willing to spend more time on it. This results in a speed-accuracy
trade-off.

All production rules in the conflict set are ordered with respect to each other, but given that
the only criterion for membership is whether they match the current goal, it is possible that
some of them will not be successful because chunk retrieval fails.
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That is, the highest ranked production rule may fail, in which case the second highest one
will be tried, and so on, for all production that match the goal and have greater than zero
expected gain.

This process is done serially.

If no production in the conflict set has a positive expected gain, the goal is popped with
failure, leading ACT-R to return to the higher goal.

1.1 Specifying P, G and C

The probability that the goal will be achieved if a given production rule is chosen is a based
on both the probability that the production will be successful and that subsequent steps in
achieving the goal will also be successful.

(2) P(robability that goal will be achieved if production is chosen)
P = qr

(3) q = probability that the production will work successfully
r = probability of achieving goal if production is successful

q will be less than 1 if a retrieval is attempted and fails, or if a subgoal the production sets
fails.

The cost, C, is also determined by two parameters.

(4) Cost of Goal
C = a + b

(5) a = sum of match time and right-hand-side costs
b = time from production completion to goal being achieved

Right-hand-side costs are set by default as 0.05 seconds, but increases if the production sets
subgoals.

q and a refer to both the production and any sugboals it sets. a refers to the amount of
time spent in the entire span of production and subgoals, and q the probability of success
over the whole span.

G, the goal value, is not derived based on other parameters, but estimated in fitting the
data.

Once the initial value is set though, subgoals do not inherit the value of the supergoal. This is
intuitive, if G is the amount of time ACT-R is willing to spend on that goal as a whole.

The value of subgoals is set as G’ = rG - b: the probability of achieving the goal given the
supergoal value, minus the time from production completion to the goal being achieved.
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1.2 Introducing some noise

The production selection system given so far is entirely deterministic - there will always be a
single highest ranked rule for each goal, so that production will be chosen every time.

ACT-R adds some noise to the evaluation process, so that a production is chosen with a
certain probability, reflecting the distance between it and its competitors, relative to that
noise.

The noise comes from a logistic distribution, which approximates a normal distribution.

ACT-R determines the probability of selection of production rule by running a series of
Monte Carlos simulations, but it can also have the following description
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Pee) =_1
1+e-8 !S . This produces noise E for each expected value Ei with mean aand
2 n2s2

variance 0' = -3- . In the ACT-R simulation, it is customary to set the noise by setting
the s parameter.

Stochasticity in Conflict Resolution
The actual conflict resolution behavior implied by the previous description
is totally deterministic-there will be a highest valued rule in each situation
and the subject will always choose that rule first. However, in the ACT-R
simulation, SOffie noise is added to these evaluation values. This noise is
approximately normally distributed and serves to introduce some stochas-
ticity into the behavior of the system. Thus, if two productions are compet-
ing in conflict resolution, a production is only chosen with a certain
probability that reflects the difference between the two productions' evalu-
ations relative to the noise in the evaluation process.
The noise added to each productions evaluation comes from a logistic

distribution.5The logistic distribution closely approximates a normal distri-

a subgoal to perform a distribution [e.g., convert 3 (x - 2) into 3x - 6]. The
expected probability ofachieving the goal ofcollapsingx, even ifdistribution
is successful, might only be '/3' and the further expected costmight be 3 sec.
Thus, the value of thedistribute subgoal would be 2/3·18 - 3 = 9. Note that
this means that ACT-Rwill value a goal less the more deeply it is embedded
in uncertain subgoals. As a consequence, ACT-Rwill more likely abandon
deeply embedded subgoals. On an intuitive level, this seems right. For
instance, in trying to prove a theorem, one is willing to spend less effort in
trying to prove a subconjecture on the way to the theorem than one is willing
to spend proving the theorem itself.
It is worth reviewing why conflict resolution requires keeping separate

the four quantities a, b, q, and r. Separating the probability parameters (q,r)
from the cost parameters (a,b) allows the system to be differentially sensitive
to probability and cost as a function of the value of the goal (as implied by
the PG - C formula-see the earlier speed-accuracy discussion). Separating
quantities associated with the current production rule (a,q) from the quan-
tities associated with future rules (b,r) allows ACT-R to appropriately
discount the value of the subgoal (to the value rG - b). Being able to assign
appropriate values to subgoals is critical to ACT-F:s use of the subgoal
structure.

6And t2 = Zl-see previous footnote.

Conflict Resolution Equation 3-4
eEil1

LeE/!t
j

Probability of i

Evidence: "Probability MatChing" Experiments

This theory of conflict resolution plays a critical role in ACT-F:s ability to

where the summation is over the n alternatives. The parameter t in the
preceding distribution is related to the standard deviation, (5, of the noise
by the formula t =,roo Ire.6 Equation 3.4 is the same as the Boltzmann
equation used in Boltzmannmachines (Ackley, Hinton, &Sejnowsky, 1985;
Hinton & Sejnowsky, 1986). In this context t is called the temperature.
Equation 3.4 is sometimes referred to as a "soft...max" rule because it tends
to select the maximum item but not always. The smaller that t is (and the
less noise), the stronger the tendency to select the maximum item. Note
that Equation 3.4 is an approximate closed-form characterization of
ACT-F:s conflict-resolution behavior. The actual predictions of the
ACT-R theory depend on Monte Carlo simulations.
The connection of t to temperature in Boltzmann machines points to an

interesting perspective on this noise parameter. The temperature parameter
in Boltzmann machines plays an important role in enabling them to avoid
local optima (or minima in their terminology) in finding globally optimal
solutions. Similarly, as developed in detail in Chapter 8 on choice, noise in
production selection ·allows ACT-R to identify better productions and to
identify when the relative payoffs of different productions change.

bution but is computationally simpler. It is for this computational reason
that we have used the logistic distribution within ACT-R.
It would be useful to have some analytic description ofwhat the prob-

ability of selecting a production is. One could find out the probability by
running Monte Carlo simulations, but closed-form descriptions are useful.
Appendix A to this chapter discusses the properties of a distribution that
approximates a normal distriburion or a logistic distribution and has a
number of analytic conveniences. In particular, it allows us to go from
production evaluations to probabilities ofbeing selected in conflict resolu-
tion. IfE, is the evaluation of alternative i, the probability of choosing that
ith production among n applicable productions with evaluations Ej will be

and has a cumulative
peE) = e-Os

s(l+e-£/s)25The logistic densiry is defined

Where Ei is the evaluation of alternative i, and t is related to the standard deviation of the
noise.

Why add noise? I don’t know, see chapter 8.

1.3 Experimental data

Probability-learning paradigm: subjects must make a single choice between two alternatives,
learning their probability of success by receiving feedback on what was the correct choice
over a number of trials.

Subject’s behavior is often characterized as probability matching : if an option is right on a
proportion p of the trials, subjects will select that option with probability p.

Probability matching is said to be irrational, because if an alternative has probability greater
than 0.5, subjects would be able to maximize their correct choices by selecting that alterna-
tive all of the time.

Friedman et al (1964): subjects do not exactly probability match.

3



66 ANDERSON, LEBIERE, LOVED 3. PERFORMANCE 67

account for many phenomena, particularly when it is added to ACT-R's
theory of learning the a, b, q, and r parameters. We return to the theory
throughout this book and particularly in Chapter 8 on choice. Howeve!; as
a token of the power of this theory, this subsection considers its application
to the simplest choice situation imaginable.
The simplest possible choice situation is one where a subject has to make

a single choice between two options, each of which has a particular prob-
ability of success. Many such experiments have been performed in what is
called the probability-learning paradigmwhere the subject chooses one of two
alternatives, receives feedback "as to whether that was the correct choice,
and then repeats this over and over again. For instance, a subject might try
to predict over and over again whether a possibly biased coin will come up
heads or tails. Subjects' behavior in such experiments is often characterized
as "probability matching." That is, if an option is correct on a proportion p
of the trials, subjects choose that option with probability p. This behavior
has often been judged irrational. It is argued that, it one alternative occurs
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FIG. 3.2 Proportion of choices for experimental alternatives as a function of the
probability. From Friedman et al. (1964).

with probability greater than .5, the subjects should choose that alternative
with probability I to maximize their correct choices. We do not address the
issue of the rationality of their behavior until the next chapter where we
address learning issues, and further in Chapter 8 on choice. In this section,
we are content with showing that behavior is not as simple as implied by the
probability-matching characterization and that ACT-R can predict sub-
jects' asymptotic behavior in these choice experiments.
Figure 3.2 shows some data from Friedman et al.(1964) that presents the

proportion oftimes that their subjects chose one oftwo buttons as a function
of the probability of it being reinforced. The data is from the last 24 trials
of 48-trial blocks where probabilities of choice have appeared to have
stabilized. As can be seen, subjects do not exactly probability match in this
experiment. The best fitting linear equation giving probability of choice as
a function of experimental probability (P) is;

Choice probability = .124 + .722P

The fact that this equation is not a simple idenrity (i.e., choice probability
= P) points to the fact that subjects were not probability matching. In this
experiment they were undermatching (i.e., not responeling as extremely as
the experienced probabilities). This undennatching is reflected in the slope
.722, which is less than 1.
There is a simple ACT-Rmodel for this task. Essentially, there were two

productions in competition:

Choose..Button·l
IF the goal is to make a choice in the experiment

THEN press burton 1
and pop the goal

Choose..Button..2
IF the goal is to make a choice in the experiment

THEN press burton 2
and pop the goal

These productions have identical conditions and the one selected in conflict
resolutionwillbe the one with the momentarily higher value. Figure 3.2 also
shows the predictions of the ACT simulation involving these two produc-
tions. We assumed that ACT had estimated P to be the true probability (an
assumption elaborated on in the next chapter on learning and Chapter 8
on choice). More precisely, each production was given the following pa-
rameters:

ACT-R simulations match the experimental data quite well if the following model is assumed.
There are two production rules, with identical conditions.

Choose-Button 1
IF the goal is to make a choice in the experiment
THEN press button 1

and pop the goal

Choose-Button 2
IF the goal is to make a choice in the experiment
THEN press button 2

and pop the goal

Assume the following values for the parameters:

q = 1 (rule always fires if selected)
r = true probability of that button
a = 0.05 default action cost
b = 0 since goal is popped and there are no more actions

Since q = 1, P = true probability, and since b= 0, C = a = 0.05
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The expected gain (PG - C) of choice 1 is then P1G - 0.05, and for choice 2 (1- P1)G -
0..05.

Introducing noise to the selection based on the Conflict Resolution Equation, the probability
of choosing alternative 1 is e to the expected gain or 1 over t, over e to the expected gain of
1 over t plus e to the expected gain or 2 over t, or
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(PIG-.05)/1e
Prob(l) = e(1'tG .05)/1 + e[(l P1)G .05]/1

Thus, P = qr = true probability and C = a + b = .05.
There is an analytical characterization of ACT-R's predictions in this

experiment based on the Conflict Resolution Equation 3.4: If PI is the
probability of choice 1 then the expected value for choice 1will be P1G-
.05 and for choice 2will be (I-PI)G - .05. Then the probability ofchoosing
alternative 1 is:
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It can be shown that:

The predictions of this equation depend on the ratio G/t and to simplify the
analysis, we will sett = 1 (or 0-2 = 1.64) and just estimate G. The bestfitting
value ofG is 1.54. Figure 3.2 shows thatACT-Rcanpredict choice behavior
assuming some noise in the process. It might seem
remarkable that the noise would be of just such a value so as to produce
probability matching. However, as we see, exact probabilitymatching is not
the usual result, despite the popular supposition to the contrary. Rather,
although choice probability does vary monotonically with experienced
probability, there is only approximate probability matching.
One thing .that should influence the response probability is the value of

G. If a constant noise is added to PG - C, the larger the value of G, the
greater the effect of P. Thus, more extreme response probabilities should
occurwhenG is increased. Myers, Fort, Katz, and Suydam (1963) performed
an experiment in which subjects were either not paid or given 10 cents for
each correct response. Presumably, this should influence probabilitY of
choice. Figure 3.3 shows their results for conditions where the probabilities
were .6, .7, or .8 for one altemative. As can be seen, subjects choose the

FIG. 3.3 Proportion choices for experimental alternatives as a function ofpayoff and
probability. The dotted lines are data and the filled lines are theory. Data from Myers,
Fort, Katz, and Suydam (1963).

more probable altemative considerably more frequently when there is a
payoff for doing so.
To fit the model, a value for G of 2.86 was estimated in the zero payoff

condition and a value of 4.66 in the 10 cents condirion, continuing the
assumption of t = 1. Figure 3.3 illustrates that this model provides a good
fit to the data from the experiment.
This is just one example of how the ACT-R conflict-resolution mecha-

nism can be used to predict choice behavior. Anderson (1990) used a
precursor of ACT-R's conflict resolution to predict a variety of choice
behavior in problem-solving search. Anderson, Kushmerick end Lebiere
(1993) used it to account for detailed data about choices subjects made in
an artificial navigation task. More recently, Lovett and Anderson (1995,
1996) pursued its application even more deeply, and Chapter 8 extends the
theory to explain behavior in problem solving, choice experiments, and
animalleaming experiments.

The probability of choosing alternative 1 thus dependents on the ration G/t. t i set to 1,
and recall that G is just fitted to the data. Here the best fit for G is 1.54.

Is this jenky? The final probability depends on this value that is not derived from anything
else, but just estimated to fit the data.

There is an interesting, an empirically grounded result, however. The higher the value of
the goal, the greater the effect of P will be. This means that the higher the value given to
the Goal, the further away from probability matching we get, and closer to the expected
rational behavior.

This seems to be on the right track. Meyes, Fort, Katz and Suydam (1963): two subject
groups, one paid for correct responses, the other not.

If financial incentive increases the value of the goal, then that subject group should behave
more rationally. This was indeed the case:68 ANDERSON, LEBIERE, LOVETT 3. PERFORMANCE 69
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behavior in problem-solving search. Anderson, Kushmerick end Lebiere
(1993) used it to account for detailed data about choices subjects made in
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2 Chunk Retrieval (Activation)

Chunk retrieval latency (and success) is a function of that chunks activation.

The activation Ai of some chunk i is calculated like this:

(6) Ai = Bi + ∑
j

WjSji

Where:

I. Bi is the base-level activation of the chunk

II. j are slot values of the chunk

III. Wj is the ‘attentional weighting’ of the slot values

IV. Sji is the strength of association between j and i

Bi is going to be the most interesting to us for the time being; it reflects how frequently and
how recently the chunk has been retrieved.

(7) Bi(t) = β - d ln(t) + ε1 + ε2

Where:

I. β is the initial expected value of Bi (usually set to 0)

II. d is the decay rate parameter (usually set to 0.5)

III. ε1 is some random noise permanently associated with i

IV. ε2 is some random noise added with each retrieval attempt

Upshot: activation decays as a logarithmic function of time since last retrieval. So activation
spikes very briefly when a chunk is retrieved, declines very quickly as that retrieval recedes
into the immediate past, and then decays much more slowly after the loss of the initial
spike.
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2.1 Retrieval Failure

Chunks will be retrievable if Ai is above the retrieval threshold τ ; they will not be retrievable
otherwise.

2.2 Partial Matching

Theres not always an exact match for a searched-for chunk; the system shouldnt just throw
up its hands, it should search for approximate matches and see if they work. So ACT-R
penalizes the activation of chunks that imperfectly match a request, instead of disregarding
them entirely.

This is cached out by way of a Match Score Mip :

(8) Mip = Ai - Dip

Where Dip is determined by the number of slots in which chunk i mismatches the goal chunk,
and the degree of mismatch.

If the match is perfect, then Dip = 0, and the Mip = Ai .

Chunk choice works exactly like production rule choice:

(9) probability of retrieving i for p = eMip/t

∑
j
eMjp/t
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Takeaway: high-activation perfectly-matching chunks will always be the most likely to be
chosen; as distribution of noise increases, the chances of low-activation or partially-matching
chunks to be retrieved also increases.

Theres something interesting here that they dont discuss: its possible for a partially-matching
chunk to be the objective (i.e. pre-noise) winner here if its a very high-activation chunk and
perfectly-matching chunks are very low-activation.

There’s a concrete example about addition mistakes by 4-year-olds on pp. 77-80 that could
be discussed if there’s interest.

2.3 Retrieval Latency

Activation doesn’t just influence the chance of a chunk being retrieved; it also makes pre-
dictions about retrieval latency.

Retrieval time, relative to some production rule p, is the sum of Timeip for all chunks i that
have to be retrieved for production p (usually, thats just one chunk).

(10) Timeip = Fe -f (Mip + Sp)

We usually assume that f is 1 and Sp is 0, so really its just:

(11) Timeip = Fe -Mip

F is a latency scale parameter representing the time it takes to retrieve a chunk i when Mip

is zero. They assume that F = one second.

Whats crucial to understand about this is that the retrieval latency function is exponential,
so retrieval time increases very quickly as activation (Mip) becomes negative, but increases
very slowly as activation becomes positive:
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Again, there’s a concrete example (pp.82-87) to walk through if the desire exists.

2.4 Retrieval Failure

Finally: if no chunks have a high enough match score Mip to surpass the retrieval threshold
τ , the production rule that initiated the search is jettisoned.
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