Anti-local contexts improve the *overall* speed of dependency completion

Matthew Wagers

Department of Linguistics University of California, Santa Cruz

Goal

 What is the relation between predictive forces in language comprehension and the concept of focal attention?

Focal attention

... is extremely limited

For sequentially-presented information, the capacity of focal attention appears limited to the last "unit" processed (Wickelgren et al., 1980; Garavan, 1998; Cowan, 2001; McElree, 2006; Jonides et al., 2008).

Building structured representations for sequentially-presented input will often require shunting information between memory and focal attention

Longer == easier

Anti-local contexts

Longer can be easier.

E.g., Jaeger, Fedorenko & Gibson, submitted

The understudy that the agent telephoned

about the job in Los Angeles shared the story ...

Question

- Today's investigation
 - What is the nature of anti-local facilitation?
 - RT facilitation is fed by many factors: strength of underlying encoding, speed of processing, etc. etc.
 - Which one of these changes?
 - Measure directly with S.A.T. response-signal method.

Locality in comprehension

Locality in comprehension

ACCEPTABILITY RATINGS

Sprouse et al. '10

ERP TIMECOURSE

Phillips et al. '05

ACCEPTABILITY RATINGS

Sprouse et al. '10

SAT ASYMPTOTIC ACCURACY

McElree et al. '03

ERP TIMECOURSE Phillips et al. '05

Gibson (2000)

Dependency Locality Theory

Fodor (1978)

Gap-finding is hard

Frazier (1987)

Wanner & Maratsos (1978)

Storing incomplete dependencies is hard

Longer ≠ harder

Konieczny (2000)

German RC preverbal intraposition

Vasishth & Lewis (2006)

Hindi center embedding & object relative clauses

Jaeger, Fedorenko, Gibson (2005,2008,submitted)
RC-modified subjects

Causes of facilitation

Mechanism of facilitation

RT ~ X

Why?

Wagers & McElree (AMLaP 2009)

Adjacent

The officer was informed that the driver fainted/*drained.

+Adverb

... the driver abruptly fainted

+PP

... the driver of the ambulance fainted

+Subject Relative Clause

... the driver who wrecked the ambulance fainted

+Object Relative Clause

... the driver who the ambulance hit fainted

Speed-accuracy tradeoff

Theoretical outcomes

Accuracy difference

Rate difference

Wagers & McElree (2009) actual data

Wagers & McElree (2009) actual data

Wagers & McElree (2009) summary

- Facilitation only observed in the +ADVERB conditions
- However, RCs were simple
- Give anti-locality a better chance by extending the RCs
- Follow the Jaeger et al. materials design

Exp. 1: Materials and Methods

ADJACENT

Wounded by the rebel in the trenches near the border, the soldier twitched/*snagged.

+Object Relative Clause/NoPP

In the trenches near the border, the soldier that the rebel wounded twitched/*snagged.

+Object Relative Clause/+1PP

In the trenches,

the soldier that the rebel wounded near the border twitched/*snagged

+Object Relative Clause/+2PP

The soldier that the rebel wounded in the trenches near the border twitched/
*snagged

Materials and Methods

Acceptability × Length

ADJACENT

- +OBJECT RC (ORC.noPP)
- +OBJECT RC/1PP (ORC.2PP)
- +OBJECT RC/2PP (ORC.1PP)
- 36 item sets
- MR-SAT
 - n = 10, compensated
 - Fillers with sentence-medial errors
 - Three sessions + with a practice session
 - Liu et al. (2009): Competitive model analysis

$$d' = \lambda \cdot \left(1 - e^{-\beta \cdot (t - \delta)}\right)$$

Results: Object Relative Clauses

Results: Object Relative Clauses

Results: Object Relative Clauses

Results: Best-fit parameters

	noPP	PP+1	PP+2
Asymptote λ	3.37	3.49	3.54
Rate β (sec ⁻¹)		0.746	
Intercept δ (sec)		0.724	

2064 ms

Results: Best-fit parameters

	noPP	PP+1	PP+2
Asymptote λ	3.37	3.49	3.54
Rate β (sec ⁻¹)		0.746	
Intercept δ (sec)		0.724	

2064 ms

Results: Adjacent v. ORC

Results: Adjacent v. ORC

Summary

- For RC-modified subjects, there was no rate effect of adding more PPs
- There was an increase in asymptotic accuracy as more PPs were added:

[3.37 d' < 3.49 d' < 3.54 d'] consistent across subjects

 Concern: overall processing was slow and adjacent subjectverb dependencies were slowest of all

Experiment 2

- The preposed XPs that controlled for ordinal position may have significantly dampened/swamped the subject-verb relevant processing
 - XPs were attachable to either subject or verb
 - ... and sometimes ambiguously
- Experiment 2 uses local environments that are identical to Experiment 1, but with an unambiguous embedding context to control for ordinal position

Materials and Methods

ADJACENT

The medic who was tending wounds in the trenches near the border observed that

the soldier twitched/*snagged.

+Object Relative Clause/NoPP

The medic in the trenches near the border observed that the soldier that the rebel wounded twitched/*snagged.

+Object Relative Clause/+2PP

The medic observed that the soldier that the rebel wounded in the trenches near the border twitched/ *snagged

+ADVERB

The medic who tended wounds in the trenches near the border observed that the soldier slightly twitched/*snagged.

Materials and Methods

Acceptability × Length

ADJACENT

- +OBJECT RC (ORC.noPP)
- +OBJECT RC/2PP (ORC.2PP)
- +ADVERB
- 36 item sets
- Fillers identical to experiment 1
- MR-SAT
 - n = 10, course credit for a Semantics course
 - Five sessions + 1 practice session

Results: all data

Results: Adjacent, +Adverb, +ORC

Results: Best-fit curve

Results: Best-fit curve

	Adjacent	+ADV	+ORC noPP	
Asymptote λ	2.75	2.80	2.76	
Rate β (sec ⁻¹)	1.69	1.74	1.48	
Intercept δ (sec)		0.466		

	Adjacent	+ADV	+ORC noPP	
Asymptote λ	2.75	2.80	2.76	
Rate β (sec ⁻¹)	1.69	1.74	1.48	
Intercept δ (sec)		0.466		

Average 'speed': $1/\beta + \delta$

	Adjacent	+ADV	+ORC noPP	
Asymptote λ	2.75	2.80	2.76	
Rate β (sec ⁻¹)	1.69	1.74	1.48	
Intercept δ (sec)		0.466		

1056 ms 1040 ms 1142 ms

+Adv > Adjacent >> +RC
Replicates McElree, Foraker & Dyer (2003)
Wagers & McElree (2009)

Results: Adjacent v. ORC.PP2

Results: Adjacent v. ORC.PP2

Results: Adjacent v. ORC.PP2

Asymptote λ Rate β (sec ⁻¹)	Adjacent 2.75 1.69	+ADV 2.80 1.74	+ORC noPP 2.76 1.48	+ORC PP2 2.58 3.75
Intercept δ (sec)		0.466		0.673
	1056 ms	1040 ms	1142 ms	939 ms

	Adjacent	+ADV	+ORC noPP	+ORC PP2
Asymptote λ	2.75	2.80	2.76	2.58
Rate β (sec ⁻¹)	1.69	1.74	1.48	> 3.75
Intercept δ (sec)		0.466		< 0.673
	1056 ms	1040 ms	1142 ms	939 ms

Results: Model comparison

Results: Graphical model comparison

Results: Model comparison quantified

	Adjusted R- squared	Deviance	AIC	BIC
4-4-1 Single intercept	0.9917	-147.41	-129.41	-109.44
4-4-2 Dual intercept	0.9938	-156.47	-136.47	-114.28
4-4-4 Saturated intercept	0.9938	-157.30	-133.31	-106.68

$$G^2(1) = 9.1, p < .005$$

$$G^2(2) = 0.8$$
, n.s

Consistent parameter ranking across participants (p < .05)

Results: Across participants

Results: Summary

- When the V-dependencies are strictly local, we observe observe two distinct effects on speed for the strong anti-local context:
 - An intercept shift
 Discriminating information is available much later
 - A rate increase
 Information is accrued much faster
 - Overall: a facilitation in speed

Relation to reaction times

Conclusion

- Strongly anti-local S-V relationship formation is associated with faster dynamics
 - Consistent with predictive accounts (sloughing, working ahead)
 - Less consistent with memory-strength accounts
- However, it associated with <u>a cost</u>: discriminative information is <u>available later</u>
- Facilitation obtains on balance for modest-to-high accuracy processing

What is the cost?

- Focus of attention costs
 - 85 ms / McElree et al. (2003)
 - 87 ms, 74 ms / Wagers & McElree (2009)
 - 83 ms / this study [ORC.noPP-Adjacent]
- Intercept cost:
 - 207 ms (+44%)

What is the cost?

- Previous studies:

$$- \dots]_{VP}]_{S}]_{NP} \rightarrow [NPV]_{S}$$

- Current study

- ...
$$NP]_{PP-2}]_{PP-1}]_{VP}]_{S}]_{NP} \rightarrow [NP V]_{S}$$

$$- \dots NP]_{PP-2}]_{PP-1}] \rightarrow \dots PP-1]_{VP}]_{S}]_{NP} \rightarrow [NPV]_{S}$$

- Relating the scope of focal attention with the chunking of syntactic category

A diversity of timing measures

- RTs masked two underlying effects
 - Speed and accuracy tradeoffs are not predictable
- Dillon et al., *Thurs,* Binding *ziji* faster rate was associated with lower accuracy
- Staub, *Fri*, frequency & predictability in fixation times RT distribution modeling

Collaborators and acknowledgments

Sarah Napoli(UCSC Linguistics)

- Shayne Sloggett, Pranav Anand and LING116 members
- CUNY reviewers
- Office of the Dean of Humanities, UCSC, and UCSC Academic Senate Committee on Research

Thank you.

Appendices

Asymptote λ	Adjacent 2.75	+ADV 2.80	+ORC noPP 2.76	+ORC <i>PP2</i> 2.58
Rate β (sec ⁻¹)	1.69	1.74	1.48	3.75
Intercept δ (sec)		0.466		0.673
	1056 ms	1040 ms	1142 ms	940 ms

Results: 4-4-4 parameters

Asymptote	Adjacent 2.75	+ADV 2.80	+ORC noPP 2.76	+ORC <i>PP2</i> 2.57
λ Rate	1.63	1.77	1.51	3.76
β (sec ⁻¹)	1.00	1.77	1.01	3.70
Intercept δ (sec)	0.467	0.476	0.476	0.673
	1057 ms	1039 ms	1140 ms	939 ms

Results: 4-4-1 parameters

	Adjacent	+ADV	+ORC noPP	+ORC PP2
Asymptote λ	2.75	2.80	2.76	2.58
Rate β (sec ⁻¹)	1.68	1.72	1.46	1.77
Intercept δ (sec)	0.460			

1056 ms 1042 ms 1143 ms 1023 ms

Results: Across participants

Consistent parameter ranking across participants (p < .05)

Spill-over?

... lag latency plots

Results: Graphical model comparison

Wagers & McElree (2009) Adverb specificity

Exponential equation

$$d' = \lambda \cdot \left(1 - e^{-\beta \cdot (t - \delta)}\right)$$

Accuracy ~ session

