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This blog was snatched from Cisco's web site and reformatted to PDF. The original link is: 
https://blogs.cisco.com/sp/optimize-real-world-throughput-with-cisco-silicon-one  The discussion here is overly 
simplistic. It does not, for example, deal with buffer requirements for speed matching. It assumes that the switch 
rather than the end points needs to provide buffering to support the TCP window. For a better explanation of the need 
for buffers in switches see: https://blog.apnic.net/2019/12/12/sizing-the-buffer/ A reader expecting to find the buffer 
size of Silicon One ASICs will be disappointed. The closest the author gets to revealing the buffer size is the 
conclusion on the final page that a 25.6 Tb/s switch requires 100 MB of packet buffer.
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Switches are the heart of a network data plane and at the heart of any switch is the buffering
subsystem. Buffering is required to deal with transient oversubscription in the network. The 
size of the buffer determines how large of a burst can be accommodated before packets are 
dropped. The goodput of the network depends heavily on how many packets are dropped.

The amount of buffer needed for optimal performance is mainly dependent on the traffic 
pattern and network Round-Trip Time (RTT).

The applications running on the network drive the traffic pattern, and therefore what the 
switch experiences. Modern applications such as distributed storage systems, search, AI 
training, and many others employ partition and aggregate semantics, resulting in traffic 
patterns that are especially effective in creating large oversubscription bursts. For example, 
consider a search query where a server receives a packet to initiate a search request. The 
task of mining through the data is dispatched to many different servers in the network. Once
each server finishes the search it sends the results back to the initiator, causing a large burst 
of traffic targeting a single server. This phenomenon is referred to as incast.

Round-Trip Time
The network RTT is the time it takes a packet to travel from a traffic source to a destination 
and back. This is important because it directly translates to the amount of data a transmitter 
must be allowed to send into the network before receiving acknowledgment for data it sent. 
The acknowledgments are necessary for congestion avoidance algorithms to work and in 
the case of Transmission Control Protocol (TCP), to guarantee packet delivery.

For example, a host attached to a network with a 100Gbps link through a network with an 
RTT of 16us must be allowed to send at least 1.6Mb (16us * 100Gbps) of data before 
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receiving an acknowledgment if it wants to be able to transmit at 100Gbps. In TCP protocol
this is referred to as the congestion window size, which for a flow is ideally equal to the 
bandwidth delay product.

The amount of buffer a switch needs to avoid packet drop is directly related to this 
bandwidth delay product. Ideally a queue within a switch should have enough buffer to 
accommodate the sum of the congestion windows of all the flows passing through it. This 
guarantees that a sudden incast will not cause the buffer to overflow. For Internet routers 
this dynamic has been translated to a widely used rule of thumb – each port needs a buffer 
of average RTT times the port rate. However, the datacenter presents a different 
environment than the Internet. Whereas an Internet router can expect to see 10s of 
thousands of flows across a port with the majority bandwidth distributed across 1000s of 
flows, a datacenter switch often sees most of the bandwidth distributed over a few high 
bandwidth elephant flows. Thus, for a datacenter switch, the rule is that a port needs at most
the entire switch bandwidth (not just the port bandwidth) times average RTT. In practice of 
course this can be relaxed by noting that this assumes an extremely pessimistic scenario 
where all traffic happens to target one port. Regardless, a key observation is that the total 
switch buffer is also the entire switch bandwidth times average RTT, just like for the 
Internet router case. Therefore, the most efficient switch design is one where all the buffer 
in the switch can be dynamically available to any port.

Figure 1. Buffer requirement based on RTT



To help understand the round-trip times associated with a network, let’s look at a simple 
example. The RTT is a function of the network physical span, the delay of intermediate 
switches, and end nodes delay (that is the network adapters and the software stack). Light 
travels through fiber at about 5us per kilometer, so the contribution of the physical span is 
easy to calculate. For example, communication between two hosts in a datacenter with a 
total fiber span of 500 meters per direction will contribute 5us to the RTT. The delay 
through switches is composed of pipeline (minimum) delay and buffering delay.

Low delay switches can provide below 1us of pipeline delay. However, this is an ideal 
number based on a single packet flowing through the device. In practice, switches have 
more packets flowing through them simultaneously, and with many flows from different 
sources some minimum buffering in the switches is needed. Even a small buffer of 10KB 
will add almost 1us to the delay through a 100Gbps link.

Finally, optimized network adapters will add a minimum of two microseconds of latency, 
and often this is much more. So, putting this all together we can see that even a small 
datacenter network with 500 meters of cable span and three switching hops will result in a 
minimum RTT of around 16us. In practice, networks are typically never this ideal, having 
more hops and covering greater distances, with even greater RTTs.

Figure 2. Simple Datacenter Network – minimum RTT
As can be seen from the figure above, supporting a modest RTT of 32us in a 25.6T switch 
requires up to 100MB. It’s important to notice at this point that this is both the total required
buffer in the switch and the maximum required buffer for any one port. The worst-case 
oversubscription to any one port is when all incoming traffic happens to target one port. In 
this pathological incast case, all the buffer in the device is needed by the victim port to 
absorb the burst. Other oversubscribing traffic patterns involving multiple victim ports will 
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require that the buffer be distributed in proportion to the oversubscription factor among the 
victim ports.

It’s also important to note that other protocols, like User Datagram Protocol (UDP) that are 
utilized by Remote Direct Memory Access (RDMA), don’t have the congestion feedback 
schemes used in TCP, and they rely on flow control to prevent packet loss during bursts. In 
this case the buffer is critical as it reduces the likelihood of triggering flow control, thus 
reducing the likelihood of blocking and optimizing overall network throughput.

Traditional Buffering Architectures
Unfortunately, since the buffer must handle extremely high bandwidth it needs to be 
integrated on the core silicon die, meaning off-chip buffering that can keep up with the total
IO bandwidth is no longer possible as we discussed in our white paper, “Converged Web 
Scale Switching And Routing Becomes A Reality: Cisco Silicon One and HBM Memory 
Change the Paradigm”. On-die buffering in high bandwidth switches consumes a significant
amount of die area and therefore it’s important to use whatever buffer can be integrated on-
die in the most efficient way.

Figure 3: Bandwidth growth in DDR memories and Ethernet switches

Oversubscription is an unpredictable transient condition that impacts different ports at 
different times. An efficient buffer architecture takes advantage of this by allowing the 
buffer to be dynamically shared between ports.

Most modern architectures support packet buffer sharing. However, not all claims of shared 
memory are equal, and not surprisingly this fact is usually not highlighted by the vendors. 
Often there are restrictions on how the buffer can be shared. Buffer sharing can be 
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categorized according to the level and orientation of sharing, as depicted in the figures 
below:

Figure 4. Shared buffer per output port group

A group of output ports shares a buffer pool. Each buffer pool absorbs traffic destined to a 
subset of the output ports.

Figure 5. Shared buffer per input port group



A group of input ports share a buffer pool. Each buffer pool absorbs traffic from a subset of 
the input ports.

Figure 6. Shared buffer per input-output port group

A group of input and output ports share a buffer pool. Each buffer pool absorbs traffic from 
a subset of input ports for a subset of output ports.

In all the cases where there are restrictions on the sharing, the amount of buffer available for
burst absorption to a port is unpredictable since it depends on the traffic pattern.

With output buffer sharing, burst absorption to any port is restricted to the individual pool 
size. For example, an output buffer architecture with four pools means that any output port 
can consume at most 25 percent of the total memory. This restriction can be even more 
painful under more complex traffic patterns, as depicted in the figure below, where an 



output port is restricted to 1/16th of the total buffer. Such restriction makes buffering 
behavior under incast unpredictable.

Figure 7. Output buffered switch with 4 x 2:1 oversubscription traffic

With input buffer sharing, burst absorption depends on the traffic pattern. For example, in a 
4:1 oversubscription traffic pattern with the buffer partitioned to four pools, the burst 
absorption capacity is anywhere between 25-100 percent of total memory.

Figure 8. Input buffer utilization with 4:1 oversubscription traffic

Input-output port group sharing, like input buffer sharing, by design, limits an output port to
a fraction of the total memory. In the example of four pools, any one port is limited by 
design to half the total device buffer. This architecture further limits buffer usage depending
on traffic patterns, as in the example below where an output port can use only 12.5 percent 
of the device buffer instead of 50 percent.



Figure 9: input-output port group buffer architecture with 2 x 2:1
oversubscription traffic

Cisco Silicon One employs a fully shared buffer architecture as depicted in the figure 
below:

Figure 10. Cisco Silicon One Fully Shared Buffer



In a fully shared buffer architecture, all the packet buffer in the device is available for 
dynamic allocation to any ports, so this means sharing the buffer among ALL the input-
output ports without any restrictions. This maximizes the efficiency of the available 
memory and makes burst absorption capacity predictable as it’s independent of the traffic 
pattern. In the examples presented above, the fully shared architecture yields an effective 
buffer size that is at least four times the alternatives. This means that, for example, a 25.6T 
switch that requires up to 100MB of total buffer per device and per port needs exactly 
100MB on-die buffer if it implements as a fully shared buffer. To achieve the same 
performance guarantee, a partially shared buffer design that breaks the buffer into four pool 
will need four times the memory.

The efficiency gains of a fully shared buffer also extend to RDMA protocol traffic. RDMA 
uses UDP which doesn’t rely on acknowledgments. Thus, RTT is not directly a driver of the
buffer requirement. However, RDMA relies on Priority-based Flow Control (PFC) to 
prevent packet loss in the network. A big drawback of flow control is the fact that it’s 
blocking and can cause congestion to spread by stopping unrelated ports. A fully shared 
buffer helps to minimize the need to trigger flow control by virtue of supporting more 
buffering when and where it’s needed. Or in other words, it raises the bar of how much 
congestion needs to happen before flow control is triggered.

We encourage you to learn more about Cisco Silicon One and its innovative architecture.
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