Switch Designs for 50GbE and 200GbE

Scott Kipp
kipp_50GE_NGOATH_O1_O116.pdf
January 2016

Supporters

- Rob Stone, Broadcom
- Vittal Balasubramanian, Dell
- Mike Dudek, QLogic
- Ali Ghiasi, Ghiasi Quantum
- Scott Sommers, Molex
- Nathan Tracy, TE
- Tom Palkert, Molex

50G Lanes are Part of the Bigger Picture

50G technology has Broad Market Potential

- In addition to going faster, the industry is developing 128+ ports on switch ASICs
- QSFP supports only 144 lanes in 1 U
- The industry will move to higher lane density than the QSFP can support in the 50G era

More Ports at Higher Speeds

25Tb/s Switch ASIC
128 Ports of

Modules Types and Lane Counts

- SFP = 1 lane/module
- QSFP, CFP4, microQSFP, CFP2 = 4 lanes $/$ module
- CFP2, QSFP-DD, On Board Optics = 8 lanes/module
- On Board Optics = 12 lanes/module

ASIC Port Count	4 X	8 X	12 X
64	16	8	$5+4$
128	32	16	$10+8$
192	48	24	16
256	64	32	$21+4$

64 Port Switch Designs

$640 \mathrm{~Gb} / \mathrm{s}$ of Throughput with 10G Lanes ~2008
48 SFP + 4 QSFP

16 QSFP
\square
QSFP is ~3X the lane density of SFP

128 Port Switch Designs

$1.28 \mathrm{~Tb} / \mathrm{s}$ of Throughput at 10 G . $3 / 2 \mathrm{~Tb} / \mathrm{s}$ at $25 \mathrm{G} \sim 2015$

32 QSFP

32 microQSFP

8 SFP + 10 12-lane On Board Optics

| $\square I \square$ | |
| :--- | :--- | :--- |
| $\square \square \square \square$ | 10 |

192 Port Switch Designs

$4.8 \mathrm{~Tb} / \mathrm{s}$ at $25 \mathrm{G}, 9.6 \mathrm{~Tb} / \mathrm{s}$ at 50G ~2017?
48 microQSFP

16 12-lane On Board Optics

16 24-fiber MPO Receptacles

24 8-lane On Board Optics

| 24 16-fiber or 24-fiber MPO Receptacles |
| :--- | :--- |

256 Port Switch Designs

$12.8 \mathrm{~Tb} / \mathrm{s}$ at 50 G . 25.6Tb/s at $100 \mathrm{G}>2020$? 64 microQSFP
*All these design will be very challenged thermally and by board real estate. microQSFP has enhanced thermal properties compared to SFP and QSFP.

24 QSFP + 16 12-lane On Board Optics

32 8-lane On Board Optics

 32 16-fiber or 24-fiber MPO Receptacles

Module Tradeoffs

Flexible Solutions are mixing On Board Optics (OBO) and Pluggable Optics

- SFP to QSFP to microQSFP to 8-lane OBO

- SFP to QSFP to microQSFP to 12-lane OBO

Implications of High Port Count Switches

- Switches are going away from SFP (50GbE) modules to QSFP and microQSFP to OBO depending on the port count
- Not all switches will be based on the highest port count ASIC, but most switches are expected to be 128 ports or more for high density
- Thus not SFP+
- The 50G Study Group needs to consider that switch designs will be based on multi-lane ports that will be broken out

Electrical Interface Implications

From Our CFI Deck

- High port count switch ASICs are scaling to meet the needs of hyperscale data centers
- Multi-Lane ports and OBO must support multiple electrical interfaces and FEC scenarios

$$
\begin{aligned}
& \text { - CCAUI-4 } \\
& \text { - CAUI-2 } \\
& \text { - LAUI }
\end{aligned}
$$

Interoperability Challenges

- We need to define the PMDs (CR, SR, LR, ...) to support interoperability between many module form factors and OBO
- This presentation shows how 50/100/200/400G technology will be used in a wide variety of products that expands the broad market potential of the technology

BROCADE ${ }^{8}$

Thank you!

