
1

 WHITE PAPER
Intel® Ethernet Switch FM6000 Series - Software Defined Networking

SDN
Server and network infrastructure virtualization are of
tremendous help to data center administrators, who
have to address increased demand for computing
resources on a constrained budget. However, the
increased growth of both physical and virtual devices in
the data center as well as the demand to seamlessly
move virtual machines (VM) also results in added
complexity for these same administrators who manage
dynamic networks that need to quickly adapt to user
needs. Unfortunately, management and control of
these virtualized and complex networks have not kept
pace with the changes in the data center and largely
remain unchanged.

Traditional networks rely on IP addresses to locate
servers and each distributed switch device relies on one
or more instances of a L2/L3 control plane. Traditional
switches and routers using legacy networking protocols
can take too long to converge for today’s networks,
which need to be faster and more flexible. Traditional
networking methods and protocols were acceptable for
yesterday’s static networks. But managing complex and
dynamic virtual networks has become extremely labor-
intensive, far too time consuming and expensive to
remain feasible and competitive in modern networks.

Dominated by virtual device mobility and multi-
tenancy, modern networks need to quickly adapt to
business needs. Furthermore, traditional data center
networks heavily borrow from the enterprise with
complex network protocols that have not been
concerned with scalability or server migration.

Administrators need to be freed from the physical
infrastructure to simplify the task of managing large
and virtualized networks. Software Defined Networking
(SDN) is a new networking paradigm that separates,
abstracts and centralizes the control information of the
network from the underlying distributed data
forwarding infrastructure. This centralized view of the
network, as illustrated in the figure below, combined
with splitting the control and data planes creates a far
more dynamic, flexible, automated and manageable
architecture that also results in increased reliability and
reduced costs. SDN provides the opportunity for the
networks to be managed through intelligent
orchestration software that supports virtualized
networking and on-demand resource allocation. SDN
provides a global network wide data flow control to the
administrator, allowing administrators to define
network flows that meet the requirements of end
users. The SDN controller, which implements the
control plane functionality, logically centralizes and

Intel® Ethernet Switch FM6000 Series - Software Defined Networking
Recep Ozdag
Intel Corporation

Software Defined Networking (SDN) promises to provide a flexible and simple management approach to traditional,
heavily protocol driven networks by separating the control and data forwarding planes and abstracting the control
and management functions into a software based controller that presents a centralized view of the network.
OpenFlow, which is one method to enable SDN, provides software control of the flow tables that instruct switches in
the network how do direct traffic within a network. While both SDN and OpenFlow provide real benefits to users, the
move from traditional networking will not happen overnight. In this paper we present Intel’s low latency, high
performance and extremely programmable, 10GbE FM6000/FM7000 Ethernet switch silicon as a key enabler for
network administrators to gradually migrate to OpenFlow and SDN. The FM6000 series hybrid Ethernet switch
provides superb support for OpenFlow and SDN with its unique FlexPipe® frame processing pipeline architecture
while it continues its role as a traditional data center switching solution.

2

manages switches and routes
packets through the network.

Some of the high level goals of SDN
include the following:

• Flexible control of flows passing
through the network
o Forwarding of packets

according to software
defined rules

o Load balancing of packets
according to software
defined heuristics
combined with hardware
flow hashing

o Flexible modification of the
frame (NAT, Tunneling, tag
rewrites) to aid in
interfacing between hosts,
local networks, and
external network
interfaces

o Intelligent flow
classification (security,
virtual domaining, etc.)
that is software defined
and is done in parallel with
forwarding and frame
modifications

• Vendor independent interface
to the switching elements

• Ability to work beside existing
protocols (hybrid switch)

• Ability to overlay SDN

intelligence using tunneling

OpenFlow
The OpenFlow protocol is one
method to enable SDN. OpenFlow
provides software control of the
flow tables that instruct switches
how do handle traffic within an SDN
based network. OpenFlow provides
access to the data plane of the
network and allows software to
determine the path that data
packets or flows will take.

OpenFlow depends on switches
with internal flow tables and an
interface to add, remove and
manipulate flow entries that can be
controlled via software running on
an external and decoupled control
plane. The controller and the switch
communicate via the OpenFlow
protocol. OpenFlow uses a number
of packet header fields to define a
flow. Each entry in the flow table
contains a set of packet fields
against which incoming traffic is
matched and an associated action is
performed on the matched flow.
When the switch encounters a flow

that it cannot match, the packet is
sent to the controller to determine
how to handle the packet. The
controller may define a new flow
and a new action based on this
unmatched packet, and populate
the switch’s flow table accordingly.

While OpenFlow provides a new
networking paradigm that is gaining
traction, it must co-exist with
traditional networks - the transition
to SDN or OpenFlow will not
happen overnight. For the
transition to be smooth, OpenFlow
must be supported by hybrid
switches that also support
traditional L2/L3 switching and IP
routing.

The Intel® Ethernet
FM6000 Series Hybrid
Switch
The Intel® Ethernet FM6000 series
hybrid switch provides the most
practical way to transition to a flow-
processing based OpenFlow type
protocol while also supporting
traditional switching and routing
protocols. The highly
programmable parser of the
FM6000 allows for incoming traffic
to be parsed and to be directed to
the OpenFlow processing pipeline
or to the traditional pipeline. This
enables an infrastructure in which
both traditional networks and
OpenFlow can be simultaneously
supported with extremely low
latency and high performance.

Intel® Ethernet Switch FM6000 Series - Software Defined Networking

Figure 1: SDN provides a centralized view of the network

3

Programmable Parsing

The Intel® Ethernet FM6000 series
switch provides unprecedented
parsing flexibility to support the
ever growing portfolio of
networking protocols, making the
switch an ideal building block for
administrators that want to define
and introduce their own protocols
and standards. The key building
block that provides such
programmability while maintaining
line rate performance is a
TCAM/SRAM/MUX structure as
illustrated in Figure 2.

Incoming frame header fields are
looked up in the TCAM, which
allows partial matches with the
usage of wildcards. Matches in the
TCAM point to an entry in the RAM,
which controls various operations
to be performed in the incoming
frame header fields as well as
extracting and propagating these
fields to subsequent stages.

The FM6000’s loop unrolled and
fully pipelined parsing state
machine is illustrated in Figure 3.
The parser processes each frames
incoming byte sequence according
to programmed rules, mapping the
frames conditionally formatted
header fields into fixed hardware
channels. At the hardware level,
very little of this flexible
functionality is specific to Ethernet
or any particular standard
supported by the device. The parser
can be viewed as an iterative state
machine that consumes successive
four byte words of the frame in
each iteration. In response to
incoming frame contents and its

internal state, the parser maps the
frame data to specific fields of an
output bus that ripples through the
frame processing pipeline. In
addition, the parser records
properties of interest about the
frame such as whether the frame is
a unicast, multicast, IP frame, by
setting specific bits of a 40-bit
output flags vector.

In order to maintain a fully
pipelined operation, the parser
implementation is physically
unrolled in hardware, with each
Parser Slice representing one
iteration of the parsing state
machine as shown above. Each
successive slice receives the next
word of frame data and the prior
slices’ 32-bit state output. These

Figure 2: TCAM/RAM/MUX structure used in the parser

Figure 3: FM6000’s programmable and pipelined parser

Intel® Ethernet Switch FM6000 Series - Software Defined Networking

4

two 32-bit quantities are combined
into a key that is looked up in the
TCAM to determine an action
specifying how to update the state
vector, what flags to set and how
the frame data should be extracted
and mapped to the output channel.
This very powerful structure
provides the maximum flexibility in
detecting and parsing ever changing
Ethernet standards and protocols
providing a future proof
investment.

The Frame Forwarding Unit
and Pattern Matching

The Intel® Ethernet FM6000 series
switch provides a wide array of
pattern matching capabilities to
support traditional networking, SDN
and OpenFlow. The key building
block of the Frame Forwarding Unit
(FFU) that provides such flexibility
and high performance is a
TCAM/SRAM/LOGIC structure that
is illustrated in Figure 4.

A subset of the original or modified
frame header that is passed along
from the Parser to the FFU is fed
into the TCAM that determines the
transformation rules that are to be
applied to the frame. The winning
entry in the TCAM points to the
corresponding action that must be
applied among all the possible
actions that are stored in the Action
RAM. The Action Logic takes both
the input header fields and data
from the Action RAM as operands
to perform a particular action. This
circuit structure provides a very
powerful mechanism to selectively
match a portion of a field then

select an action to be applied out of
a set of actions, and can be
pipelined to provide a very flexible
pattern matching construct to be
used for access control lists (ACLs)
or matching to the widest
aggregate field dictated by the
latest OpenFlow specification. The
resulting FFU structure is illustrated
in Figure 5.

Once the incoming packet is parsed,
the fields are mapped on to keys to
be fed into the FFU that consists of
24 slices with each slice capable of
matching 1K entries, providing a
total of 24K TCAM entries, with
each entry being 36-bits. Slices can
be programmed to match and act
on 36-bit keys or can be grouped
together to form a much wider

Figure 4: TCAM/RAM/LOGIC structure

Figure 5: FM6000’s FFU pipeline used for generic pattern matching

Intel® Ethernet Switch FM6000 Series - Software Defined Networking

5

entry to match on wider keys, such
as OpenFlow’s 12-tuple construct.
Furthermore, the outputs of the
first 12 slices can be mapped as
keys to the input of the second 12
slices providing recursive flow
forwarding with no performance
degradation penalty as illustrated in
Figure 5.

A Binary Search Tree (BST) for IP
Lookup

The Intel® Ethernet FM6000 series
switch supports both IPv4 and IPv6
routing. While IP addresses can be
looked up using the TCAMs
available in the FFU, the FM6000
series also provides a more efficient
longest prefix search based Binary
Search Tree (BST) block that can
match a key with up to 128-bits
with capacity to compare up the
64K rules against any frame.
Because of the flexible TCAM based
structure, the BST can be used to
lookup both IP addresses in a
traditional networks as well as
provide pattern matching
capabilities for OpenFlow based
usage.

Rule Compression

To support hundreds of thousands
of flows that carriers and massive
data centers may require, the
FM6000 provides a “compression”
service at the API level. This service
compresses and maps these flows
to rules to populate the TCAMs and
is orders of magnitude more
efficient than simply using the flow
fields without modification. This
powerful compression allows the

finite, on-chip TCAMs to be utilized
very efficiently supporting most
customers’ needs while providing a
combination of 10GbE and 40GbE
throughput.

Consider a flow that is defined
using the 12 fields in Figure 6. An
OpenFlow controller that adds this
flow, without optimizing it will use
up a very large TCAM entry to fit all
the fields. However, it is clear that 6
fields are not involved in defining
the flow, thus, such an approach
will waste valuable resources.
Intel’s OpenFlow compatible switch
will compress this rule by removing
the non-identifying information and
will compact the flow identifier into
a very narrow TCAM entry. Even if
all the fields were used,
compression is still possible.

Consider the DMAC field illustrated
in Figure 7. Three flows with
different DMAC addresses are
intended to be added to the
switch’s flow table. Rather than
using all 48-bits, Intel’s compression
API can reduce the field width down
to 20-bits, with no loss of
information or functionality.

Multi-Stage Architecture

OpenFlow heavily relies on
matching packets against multiple
tables in the pipeline, with the
output of one table being able to
modify the contents of the inputs to
the next table as illustrated in
Figure 8. Not only are modified or
unmodified packets sent from one
table to the next, but metadata is
also generated and passed on
between tables. This enables a wide
range of actions that are

Figure 6: Rule compression to efficiently use TCAMs

Figure 7: Compressing a single field

Intel® Ethernet Switch FM6000 Series - Software Defined Networking

6

accumulated and executed on the
packet at the end of the pipeline
before the frame leaves the switch.

The Intel® Ethernet FM6000 series
switch provides a similar and very
powerful multi-stage architecture.
Not only does the FFU consist of
two blocks with a remap stage
between them but the FM6000’s
microcode also allows the hybrid
switch to reallocate its Parser, MAC
and Binary Search Tree (BST) tables

from legacy protocols such as
support for IPv4, IPv6, IP Multicast
and tunneling to flow matching as
illustrated in Figure 9.

The FM6000’s forwarding tables
can be used to support OpenFlow
and traditional networking
protocols simultaneously at full line
rate.

Beyond SDN and
OpenFlow
While SDN and OpenFlow are
making great strides in addressing
the needs of today’s data center
and continue to evolve in the right
direction, they are still far from
providing complete solutions. In
this section we provide a few use
cases in which various protocols
and features are not necessarily
fully supported by these emerging
concepts but can be easily
addressed with the Intel® Ethernet
FM6000 and FM7000 series
switches. The Intel FM7000
Ethernet switch builds upon the
FM6000 features to not only
support SDN, but also several
advanced tunneling protocols.

NAT Processing

Network Address Translation (NAT)
allows seamless connection
between local IP addresses in the
private network and global IP
addresses in the public network. In
order to maintain several
concurrent connections between
local computers and outside global
IP addresses, NAT uses the
following header fields.

• IPv4 source address

• TCP or UDP source port number

• IPv4 destination address

• TCP or UDP destination port
number

This section provides a high-level
overview of how these fields are

Figure 8: OpenFlow multi-state pattern matching

Figure 9: FM6000’s multi-stage FlexPipe® architecture

Intel® Ethernet Switch FM6000 Series - Software Defined Networking

7

translated as traffic moves in and
out of the private network and how
NAT is supported in Intel FM7000’s
FlexPipe® frame processing
pipeline.

Outgoing Traffic

Figure 10 shows how frames are
processed as they transition from
the private network into the public
network in a NAT router, such as
the FM7000.

In this direction, the FFU/BST match
various IPv4 fields of the flow to
create an index into the Nexthop
table. The Nexthop table provides
the normal DMAC, VLAN used for
forwarding, plus any additional
information that will be used to
process response packets as they
are returned from the destination.
Egress Modify is a programmable
unit that updates the DMAC and
VLAN fields, while replacing the
SMAC with the address of the
router.

Incoming Traffic

Figure 11 shows how frames are
processed as they transition from
the public network into the private
network in a NAT router.

In this direction, the Egress Modify
unit updates the DMAC and VLAN,
while replacing the SMAC with the
address of the router.

Load Balancing

In applications such as server load
balancing, the Intel FM6000’s and
FM7000’s ECMP feature can be
used to distribute loads across
private network IPv4 addresses
after translation. The FM6000 and
FM7000 contain an L3 hashing
mechanism that can use various
L3/L4 header fields as a hash key as
shown in the following table.

Three 16-bit hash values are
produced that are statistically
independent allowing support of
applications such as hierarchical
ECMP. Symmetrical hashing is also
supported. The L3 hashing of the
FM6000/FM7000 switch allows the
balancing of flows across multiple
entries.

IP Tunneling

The Intel® Ethernet FM7000 series
hybrid switch provides the most
practical way to move to IP-in-IP
tunneling. At the switch ingress,
the outer and inner IP headers are
presented to the FFU TCAM and
routing tables. The microcode can
be configured to either store the
outer IP header in the standard IP
header fields (Destination IP,
Source IP, Protocol, etc), or store
the outer header in the header
expansion fields when a tunnel
header is detected. At the switch
egress, a tunnel header is added to
the frame’s IP header.

IP-in-IPv4 Encapsulation

Figure 12 illustrates a high-level
view of how the frame-processing
pipeline can be configured to
support IP-in-IPv4 encapsulation
using the Nexthop table. In this
case, the parser will present the

Figure 10: NAT processing into the public network using the Intel
FM7000 switch

Figure 11: Intel FM7000 switch NAT processing from the public network

Intel® Ethernet Switch FM6000 Series - Software Defined Networking

8

For more information on Intel® Open Network Platform, visit www.intel.com/go/ethernet

Intel® Ethernet Switch FM6000 Series - Software Defined Networking

frame fields to the ACL and routing
tables in the FFU/BST. As a result of a
frame match in these tables, the
Nexthop table may specify that the
frame should be IP-in-IPv4
encapsulated or de-encapsulated.

IP-in-IPv6 Encapsulation

Encapsulating for IPv6 works similarly
to adding an outer IPv4 header, with
the exception that up to 96 bits of
encapsulating IPv6 destination IP
address is sourced from the Egress
Modify tunnel ID table. The pipeline
treats this tunneling similarly to
adding an IPv4 header.

Conclusion
New technologies such as SDN and
OpenFlow meet the goal of helping
users develop applications that
manage and control the network
independent of the underlying
topology or switch vendor while
providing access to resources on a
per-flow basis. The Intel® Ethernet
FM6000 series and FM7000 series
switch silicon provides full support
for these technologies while filling
the gap that these specifications
lack for supporting IPv6, NAT, load
balancing, QoS, traffic shaping and

Figure 12: IP-in-IP Encapsulation in the FM7000 series Ethernet switch

many more fundamental features
in today’s data center. The
FM6000/FM7000 provides the
perfect mix of programmability
with its FlexPipe® frame
processing pipeline and support
for traditional networking,
allowing users to support both of
these old and new technologies at
the same time.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR
INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions
marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to
them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies
of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s Web site
at www.intel.com.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

For more information go to http://www.intel.com/performance.

Copyright © 2012 Intel Corporation. All rights reserved. Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

http://www.intel.com/go/url
http://www.intel.com/
http://www.intel.com/performance

