
Revision 3.3
November 2014

331496-001

Intel® Ethernet Switch FM5000/
FM6000
1 Gb/2.5 Gb/10 Gb/40 Gb Ethernet (GbE) L2/L3/L4 Chip
Datasheet

Networking Division (ND)

2 331496-001

LEGAL

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in
trade.

This document contains information on products, services and/or processes in development. All information provided here is subject
to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from published specifications.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725
or by visiting www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

© 2013-2014 Intel Corporation.

www.intel.com/design/literature.htm
http://ifcollaborate.intel.com/ifc/getdoc.aspx?docbase=InfoFactoryKB&chronid=09005ffd8005f5f4&ver=CURRENT&qepop=false
http://ifcollaborate.intel.com/ifc/getdoc.aspx?docbase=InfoFactoryKB&chronid=09005ffd8005f5f4&ver=CURRENT&qepop=false

331496-001 3

Revision History—FM5000/FM6000 Datasheet

Revision History

Revision Date Comments

3.3 November 10, 2014 General updates, including:
• Section 1.1, “Part Numbering” — Revised description of package type to include

FCBGA.
• Table 1-2, “Definition of Terms” — Revised the cut-through latency value for the

FlexPipe™ definition.
• Section 3.3.10, “JTAG Pins” — Updated description of TRST_N pin.
• Table 6-6, “EPL Standard Modes” — Updated SFI information.
• Section 9.4, “SerDes Management” — Added notes regarding SBus IDs.

3.2 March 26, 2014 General updates, including:
• Section 9.9, “LED Controller” — Updated LED controller state decoding in Table 9-7.

3.1 February 11, 2014 General updates, including:
• Section 10.2.2, “Maximum Peak Current” — Revised maximum peak current values for

AVDD in Table 10-3, Table 10-4 and Table 10-5.
• Section 10.2.3, “Maximum Sustained Power” — Revised maximum sustained power

values for AVDD in Table 10-6, Table 10-7 and Table 10-8.
• Section 11.4, “Pin List Ordered by Name” — Correct pin errors in Table 11-2.

3.0 November 22, 2013 General updates, including:
• Reordered chapter sequence, and renamed Section 2.0, “FM5000/FM6000 Capabilities”

to Section 5.0, “Frame Processing”.
• Moved overview information from Section 5.0, “Frame Processing”and added to new

Section 2.0, “Architecture Overview”.
• In Section 10.0, “Electrical Specification”, updated power sequencing drawing and

added REFCLK specification.
• In Section 11.0, “Mechanical Specification”, added legend to ballout diagram.
• Replaced Figure 11-2, “1677-Ball Package Top/Side View”with new drawing containing

notes for call-outs.

2.3 August 7, 2013 General updates, including:
• Revised pin description tables in Section 3.0, “Pin Descriptions”.
• Revised Table 3-1, “Boot Mode Selection by GPIO[9..7] Pin Strap Latched at Reset”.
• Revised Section 10.0, “Electrical Specification”.
• Revised Section 11.0, “Mechanical Specification”.

2.2 June 11, 2013 Initial release (Intel confidential).

FM5000/FM6000 Datasheet—Revision History

4 331496-001

NOTE: This page intentionally left blank.

5

Contents—FM5000/FM6000 Datasheet

Contents

1.0 Introduction ...13
1.1 Part Numbering ..13
1.2 Definitions ...14

2.0 Architecture Overview ..17
2.1 Overview ...17

2.1.1 EPL ..18
2.1.2 Ingress Crossbar ..18
2.1.3 Packet Memory ..18
2.1.4 Frame Handler ...18
2.1.5 Scheduler..18
2.1.6 Egress Crossbar ...19
2.1.7 Egress Modifier ..19
2.1.8 MSB ...19
2.1.9 PCIe ...19
2.1.10 Management ...19
2.1.11 Global Resource Tag (GloRT) Definition ...19
2.1.12 Multi-chip and Intel® Tags...20

3.0 Pin Descriptions ..23
3.1 Pin Overview ...23
3.2 Signal Name Convention ...24
3.3 Detailed Pin Descriptions ...24

3.3.1 Ethernet Port Pins ..25
3.3.2 PCIe Pins ..25
3.3.3 Power Pins ..25
3.3.4 External Bus Interface Pins ..26
3.3.5 DMA Interface Pins ...26
3.3.6 GPIOs and Strapping Pins..27
3.3.7 I2C Pins ..28
3.3.8 MDIO Pins ...28
3.3.9 LED Pins ...28
3.3.10 JTAG Pins..28
3.3.11 Miscellaneous Pins..29

3.4 Boot Mode Selection ...29

4.0 Power Up, Reset and Interrupts ..31
4.1 Power ...31
4.2 Reset ..31
4.3 Serial Boot ROM Format ..34
4.4 Interrupt Controller ..38

4.4.1 Normal Interrupts ..38
4.4.2 Fatal Interrupts..40

5.0 Frame Processing ..41
5.1 FM5000/FM6000 Capabilities ..41
5.2 Application ..42
5.3 Frame Processor ...43

5.3.1 Frame Processing Pipeline ...45
5.3.2 Frame Tail...46
5.3.3 Coloring ..46

FM5000/FM6000 Datasheet—Contents

6

5.4 Chip Management Logic ..47
5.4.1 I2C/CRM Block ...48
5.4.2 EBI Block ..48
5.4.3 PCIe Block...49
5.4.4 MSB Block...49
5.4.5 SPICO JTAG Block ..49
5.4.6 EPL Manager..49
5.4.7 Frame Handler Manager ..49
5.4.8 L2 Sweeper Manager ..50
5.4.9 Congestion Management Monitor..50
5.4.10 Scheduler Manager...50

5.5 Parsing and Association ...50
5.5.1 Parser...50
5.5.2 Channel Initialization ..52
5.5.3 Parser Slice ...52
5.5.4 Parser Byte Ordering ..54
5.5.5 Action Encoding ...55
5.5.6 Header Flags ...56
5.5.7 Association Named Channels..56
5.5.8 QoS Handling ..59
5.5.9 Action Flags...59

5.6 Mapper ...61
5.6.1 SRC_PORT_TABLE ..61
5.6.2 VID Tables ..62
5.6.3 L2 CAM/RAM Mapping ...63
5.6.4 L3 CAM/RAM Mapping ...64
5.6.5 L3_LENGTH_COMPARE..65
5.6.6 L4 Port Mapping ...65
5.6.7 FFU Initialization ..66
5.6.8 SCENARIO_FLAGS..66
5.6.9 FFU Action Data ...66
5.6.10 QoS Mapping ...68
5.6.11 Mapper Outputs ...69

5.7 Frame Filtering and Forwarding Unit (FFU) ...71
5.7.1 Overview ..71
5.7.2 Keys...72
5.7.3 Scenario Key ...73
5.7.4 Action Channels ...74
5.7.5 Action Precedence ..75
5.7.6 CAM Slice Chaining...76
5.7.7 CAM Slice Exclusion Sets ...76
5.7.8 Action Chains...77
5.7.9 Egress Actions ...78
5.7.10 Remap Stage...79
5.7.11 Action SRAM..79
5.7.11.1 Route Action ...80
5.7.11.2 Switch Action ..80
5.7.11.3 All Other Actions..81
5.7.12 BST Key Generation and Matching ..82
5.7.13 Atomic Modifications ...84

7

Contents—FM5000/FM6000 Datasheet

5.7.14 FFU Output..85
5.8 Frame Hashing ...86

5.8.1 L2 and L3 Frame Hashing Overview ..86
5.8.2 Hash Rotations ..87
5.8.3 Random Hashing ..88
5.8.4 L3 Key Generation..88
5.8.5 L2 Key Generation..88
5.8.6 Symmetrization ...89
5.8.7 Outputs ..89

5.9 Next Hop Table ..90
5.9.1 Overview ..90
5.9.2 Input Interface ..90
5.9.3 Index Calculation and Lookup ..91
5.9.4 Narrow Entry Formats...91
5.9.5 Wide Entry Format ...92
5.9.6 Outputs ..93

5.10 L3 Action Resolution ...94
5.10.1 Overview ..94
5.10.2 Keys...96
5.10.3 Actions ...97
5.10.4 Outputs ..99
5.10.5 SetFlags.. 100
5.10.6 TrapHeader ... 101
5.10.7 MuxOutput .. 102
5.10.7.1 GloRTs ... 103
5.10.7.2 Action Data W8{A..D} .. 103
5.10.7.3 Action Data W8{E,F}.. 104
5.10.7.4 Action Data W16{A..C} .. 104
5.10.7.5 L2 Lookup Channels ... 106
5.10.7.6 Layer 2 Hash Rotation .. 108
5.10.7.7 ALU Operands ... 108
5.10.7.8 Policer Indices ... 109
5.10.7.9 QoS ... 111

5.11 L2 Lookup ... 112
5.11.1 Basic Architecture .. 113
5.11.2 FID Mapping .. 114
5.11.3 Performance Versus Capacity ... 115
5.11.4 Key Precedence ... 115
5.11.5 Source Lookup Writeback .. 116
5.11.6 Output Handling... 116
5.11.7 Command and Result Encodings... 118
5.11.8 Direct Management Access .. 119
5.11.9 Table Sweepers.. 119
5.11.10 Table Access Arbitration .. 121

5.12 ALU .. 122
5.12.1 Overview .. 122
5.12.2 Inputs .. 123
5.12.3 Command Encoding.. 124
5.12.4 Outputs .. 125

5.13 Policers ... 126

FM5000/FM6000 Datasheet—Contents

8

5.13.1 Overview .. 126
5.13.2 Evaluation, Reporting, and Crediting ... 127
5.13.3 Entry Formats.. 127
5.13.4 Token Bucket Dynamics .. 128
5.13.5 Sweeper Configuration.. 130
5.13.6 QoS Mark-Down Mapping .. 130
5.13.7 Outputs .. 132

5.14 GloRT Lookup .. 133
5.14.1 Overview .. 133
5.14.2 GloRT CAM and Table.. 134
5.14.3 LAG Pruning .. 135
5.14.4 LAG Filtering.. 136
5.14.4.1 Rev A: LAG_PORT_TABLE ... 137
5.14.4.2 Rev B+: LAG_FILTERING_CAM .. 137
5.14.5 Outputs .. 139

5.15 Destination Mask Generation .. 140
5.15.1 Overview .. 140
5.15.2 DMASK Transformer ... 141
5.15.3 L2 Filtering Tables .. 144
5.15.4 EACLs... 146
5.15.5 LAG Filtering.. 146
5.15.6 LBS Filtering.. 146
5.15.7 Outputs to L2AR... 146

5.16 Egress ACLs ... 147
5.16.1 Functional Description... 147
5.16.2 Registers... 150

5.17 L2 Action Resolution ... 150
5.17.1 Overview .. 151
5.17.2 Keys... 152
5.17.3 EACL Extended Actions ... 153
5.17.4 Actions ... 154
5.17.5 Action Flags... 156
5.17.6 TransformDestMask.. 157
5.17.7 Output Flags.. 158
5.17.8 SetMirror .. 159
5.17.9 MuxOutput .. 161
5.17.9.1 MOD_DATA Outputs ... 162
5.17.9.2 Named Forward Channel Outputs ... 165
5.17.9.3 QoS ... 166
5.17.9.4 MAC Table Write-Back .. 167
5.17.9.5 Statistics Index Channels.. 168

5.18 Congestion Management ... 170
5.18.1 Linkage to the Frame Processing Pipeline... 171
5.18.2 Memory Management ... 173
5.18.3 Watermarks .. 175
5.18.4 Rx Watermark Evaluation .. 176
5.18.5 Tx Watermark Evaluation .. 178
5.18.6 Update Mirror Commands.. 181
5.18.7 Pause Frame Reception ... 182
5.18.8 Pause Frame Generation ... 183

9

Contents—FM5000/FM6000 Datasheet

5.18.9 Pause Pacing ... 186
5.18.10 Congestion Notification Frame Sampling.. 186
5.18.11 Interrupt Notification .. 188

5.19 Packet Replication .. 188
5.19.1 Frame Replication... 189
5.19.2 Frame VLAN Replication .. 190

5.20 Scheduler .. 192
5.20.1 Group Eligibility.. 194
5.20.2 Class Selection... 194
5.20.3 Algorithm Notes ... 195
5.20.4 Deficit Round-Robin.. 196
5.20.5 Bandwidth Shaping... 196
5.20.6 Frame Timeout .. 197
5.20.7 Configuration Registers ... 198
5.20.8 Definition of Terms... 199

5.21 Egress Modification ... 200
5.21.1 Basic Properties ... 200
5.21.2 Top Level Organization.. 201
5.21.2.1 Data from Scheduler .. 202
5.21.2.2 PAUSE Generation.. 202
5.21.3 Modify Mapper ... 203
5.21.4 Modify Slices ... 205
5.21.4.1 TCAM Key ... 205
5.21.4.2 Modify Command Slices .. 206
5.21.4.3 Modify Value Slices .. 207
5.21.4.4 Transmit Disposition Flags .. 209
5.21.4.5 Statistics Interface... 210
5.21.5 Serial Modify ... 210

5.22 Statistics ... 211
5.22.1 Overview .. 211
5.22.2 Action Resolution Structure ... 214
5.22.3 Per-Port Counters... 215
5.22.4 Discrete Counters... 215
5.22.5 Counter Performance .. 215
5.22.6 Port Mapping ... 216
5.22.7 Input Keys .. 216
5.22.8 Flags Mapping.. 217
5.22.9 Index Mapping... 218
5.22.10 Length Correction and Binning ... 219
5.22.11 Counter Bank Control.. 220
5.22.12 Counter Index Generation ... 220
5.22.13 Bank Index Muxing... 223
5.22.13.1 CounterNum Channel Sources ... 223
5.22.13.2 Per-Index Channel Sources ... 224
5.22.14 Atomicity .. 224
5.22.15 Clearing Counters... 224

6.0 Ethernet Port Logic (EPL) ..225
6.1 Overview ... 225
6.2 Port Mapping ... 227

6.2.1 Port Numbering.. 227

FM5000/FM6000 Datasheet—Contents

10

6.2.2 Port Mapping Using the Channel ... 228
6.2.3 Default Lane Reversal and Polarity Inversion Inside the Package....................................... 230
6.2.4 EPL Port Pairing ... 232

6.3 Mode of Operation .. 233
6.4 Reference Clock ... 235
6.5 SerDes Characteristics .. 236

6.5.1 DFE Tuning and Emphasis ... 236
6.5.2 Pattern Generator/Comparator... 236
6.5.3 Loopbacks... 237
6.5.4 Eye Measurement... 237

6.6 Recovered Clocks ... 237
6.7 Auto-Negotiation .. 238

6.7.1 Clause 73.. 238
6.7.2 Clause 37.. 241
6.7.3 SGMII... 243

6.8 Physical Coding Sub-layer (PCS) ... 245
6.8.1 40GBASE-R4 ... 245
6.8.2 20GBASE-R2 ... 246
6.8.3 10GBASE-R ... 246
6.8.4 10GBASE-X ... 246
6.8.5 1000BASE-X Frame Format ... 247
6.8.6 Link Status.. 247
6.8.7 FSIG... 247
6.8.8 IFGs ... 248
6.8.9 Changing PCS Mode.. 249

6.9 MAC ... 249
6.9.1 Preamble and CRC Optional Processing.. 250
6.9.2 Packet Generation .. 251
6.9.3 Reception Errors .. 252
6.9.4 Counters ... 253
6.9.5 Time Stamping for IEEE1588 ... 254

6.10 Status and Interrupts .. 255
6.11 Link State and Fault Conditions .. 255

7.0 PCIe Interface ..259
7.1 Overview ... 259
7.2 Power Up .. 261
7.3 Access to SerDes .. 261
7.4 Reference Clock ... 261
7.5 In-Band Reset and Link Down Events .. 262
7.6 Interrupts .. 263
7.7 Power Management .. 263
7.8 Byte Swapping ... 263
7.9 32-bit/64-bit Addressing ... 264
7.10 Registers ... 264

7.10.1 PCIe Configuration Space .. 264
7.10.2 PCIe Control Registers .. 265
7.10.2.1 Command Register... 266
7.10.2.2 Status Register.. 267
7.10.2.3 Descriptor List Boundaries... 267
7.10.2.4 Interrupt Status Register .. 268

11

Contents—FM5000/FM6000 Datasheet

7.11 Packet DMA Engine ... 268
7.11.1 Buffer Descriptors .. 269
7.11.1.1 Status .. 270
7.11.1.2 Buffer Length .. 270
7.11.1.3 Buffer Address... 270
7.11.1.4 F64 Tag.. 271
7.11.2 Packet Processing Overview... 272
7.11.3 Fabric Congestion Management .. 274
7.11.3.1 PAUSE Detection.. 274
7.11.3.2 PAUSE Reaction... 274

8.0 External Bus Interface (EBI) ...275
8.1 Overview ... 275
8.2 Bus Timing .. 276

8.2.1 Using DATA_HOLD ... 277
8.3 Atomic Accesses ... 278
8.4 Little and Big Endian Support ... 278
8.5 CPU Frame Transfer .. 280

8.5.1 Packet Transmission via EBI .. 281
8.5.2 Packet Reception via EBI ... 282
8.5.3 Packet Transfer.. 283
8.5.3.1 Little Endian Packet Transfer ... 283
8.5.3.2 Big Endian Packet Transfer.. 284

8.6 Packet Transfer DMA Timing .. 284

9.0 Peripherals ...287
9.1 Overview ... 287
9.2 Clocking .. 287
9.3 Counter Rate Monitor .. 290
9.4 SerDes Management ... 294

9.4.1 SPICO Micro-controller .. 297
9.4.2 SerDes Registers.. 297
9.4.3 Device Address to Serdes Map ... 297

9.5 I2C Controller .. 299
9.6 MDIO Controller ... 304
9.7 General Purpose IO (GPIO) Controller ... 306
9.8 SPI Interface ... 307

9.8.1 Overview .. 307
9.8.2 Boot ... 308
9.8.3 Management ... 310

9.9 LED Controller .. 312
9.10 JTAG Interface ... 313

9.10.1 Tap Controller.. 313

10.0 Electrical Specification ..315
10.1 Absolute Maximum Ratings .. 315
10.2 Recommended Operating Conditions ... 315

10.2.1 Voltage Scaling .. 316
10.2.2 Maximum Peak Current ... 316
10.2.3 Maximum Sustained Power .. 317

10.3 Thermal Characteristics ... 319
10.4 Power Supply Sequencing .. 319
10.5 REFCLK Specification .. 320

FM5000/FM6000 Datasheet—Contents

12

10.6 DC Characteristics of LVCMOS PADs .. 321
10.7 Ethernet Output Specifications ... 322
10.8 Ethernet Input Specifications ... 322
10.9 PCIe Output Specifications ... 323
10.10 PCIe Input Specifications ... 323
10.11 EBI Interface, General Timing Requirements .. 324
10.12 JTAG Interface ... 325

11.0 Mechanical Specification ...327
11.1 1677-Ball Package Dimensions ... 327
11.2 1677-Ball Package .. 329
11.3 Pin List Ordered by Location ... 330
11.4 Pin List Ordered by Name .. 341
11.5 EPL Blocks ... 353

11.5.1 FM5224 10 GbE EPL Location Flexibility ... 353

331496-001 13

Introduction—FM5000/FM6000 Datasheet

1.0 Introduction

The Intel® Ethernet and Switch series consists of the Intel® Ethernet Switch FM2000 series L2 switch
chip platform, the Intel® Ethernet Switch FM4000 series multi-layer switch chip platform and the high-
performance Intel® Ethernet Switch FM5000/FM6000 Series (FM5000/FM6000) multi-layer switch chip
platform. This document provides the following information:

• Functional descriptions

• Frame processing pipeline

• Hardware design

• Pin interface

• Electrical specifications

• Package mechanical

• Thermal information

Note: For software details, see the Intel® Ethernet and Switch Family Software API.

1.1 Part Numbering

The FM5000/FM6000 provides a range of part numbers as listed in Table 1-1. Each part number is
configured with a maximum core bandwidth that puts a limit on the sum of the maximum port
bandwidth plus the maximum management bandwidth. The management bandwidth is the portion of
the core bandwidth that can be used by Ethernet management ports and/or the CPU interface, and is
limited to less than 20 GbE. The ports can be allocated in any manner as long as the maximum port
bandwidth is not exceeded.

Table 1-1 Part Numbering

Part Number Max Port
Bandwidth

Max SGMII or 1
GbE Serdes Ports Max XAUI Ports Max 10 GbE

Serial Ports Max 40 GbE Ports

FM5224 240G 72 2 8 2

FM6324 240G 72 24 24 6

FM6348 480G 72 24 48 12

FM6364 640G 72 24 64 16

FM6724 240G 72 24 24 6

FM6764 640G 72 24 64 16

FM5000/FM6000 Datasheet—Introduction

14 331496-001

This document pertains to all variants of the FM5000/FM6000 series, although most references are
specific to the 64-port 10 GbE version of the device. All devices are manufactured in a Flip-Chip Ball
Grid Array (FCBGA), 1677-ball package.

1.2 Definitions
Table 1-2 Definition of Terms

Term Definition

{A,B} Denotes a bit concatenation of variable A or B where A is most significant bit field and B is least
significant bit field.
Note: {0,A} means that 0s are added to the left (most significant bits) to pad to the desired size

while {A,0} means padded to the right.

Bit Numbering Bit 0 is the least significant bit throughout the architecture (even if Ethernet standards and
specifications suggest otherwise).

Byte 8 bits.

Double Word 64 bits.

EBI External Bus Interface — Intel's term for a legacy address/data external bus interface to processor.

F32/F64/F96 Intel-proprietary inter-switch link tag, which is used to pass relevant management and control
information from one Intel Ethernet and Switch Family device to another in a network. Not supported
in the FM2000 series.

FlexPipe™ The name for the FM5000/FM6000 series high-performance flexible frame processing pipeline that
operates at over one billion packets-per-second with less than 400 ns cut-through latency. Microcode
can be used to provide flexible pipeline configurations.

FM2000 The first generation of the Intel® Ethernet and Switch Family.
The FM2000 is a Layer 2 (L2) 10 GbE switch chip platform that forms the basis for many L2 switch
product variants, including the FM2224, FM2212, FM2208, FM2112, FM2104, and FM2103.

FM4000 The second generation of the Intel® Ethernet and Switch Family.
The FM4000 is an enhanced multi-layer 10 GbE switch chip platform that forms the basis for new
switch product variants, all of which are pin-compatible with their original FM2000 series counterparts.
The FM4xxx devices are full-featured L3 routing devices, and contain other enhancements, such as
ACL's, congestion management, increased frame memory and more. The FM3xxx devices are similar
to the FM4xxx, except that L3 routing is not included.

FM5000/FM6000 The third generation of the Intel® Ethernet and Switch Family.
The FM5000/FM6000 enhances functionality and bandwidth while providing package options that are
pin compatible with the FM4000 series. The FM5000/FM6000 L2/L3/L4 devices provide advanced CEE/
DCB features for the Data Center.

GloRT Intel-proprietary Global Resource Tag, which is used to pass global identification information from one
device to another in a network. GloRT is the proper pronunciation, although other uses might appear
in the document and have the same meaning. For example, glort, Glort, GloRT or GLORT.

Half Word 16 bits.

Logging Logging refers to a copy of the frame sent to a local CPU for monitoring purposes.

Mirroring Mirroring refers to a copy of the frame sent to another port for monitoring purposes.

331496-001 15

Introduction—FM5000/FM6000 Datasheet

Packet or Frame Packet — On a typical computer network, data is transmitted in the form of structured and modest-
sized packets. Instead of transmitting arbitrary-length strings of data, structured packets Packet or
Frame allow error checking and other relevant processing to occur on smaller easier-to-retransmit
data. Packetized data also helps to alleviate traffic jams on the network when multiple nodes are
contending for a shared network resource.
Frame — While a packet is a small block of data, a Frame is the definition of how packets of data are
defined and transported on a specific network. When sending data over a network, both sides of the
connection must agree on a common frame format (e.g., when a frame starts, when a frame ends,
padding, etc.)
Combining terms, an Ethernet packet is sent onto an Ethernet interface using an Ethernet frame
format.
This document uses both terms interchangeably.

PCIe Express* (PCIe*) PCIe Interface to a processor. Compliant to PCIe Gen 2.

RapidArray The name for Intel's single output queued shared memory architecture that is used in the FM2000,
FM4000 and FM5000/FM6000 series 10 GbE switch chip platforms.

Register Type Registers are split into fields of the following types:
RO: Read-Only (This register cannot be programmed by software. Typically reports a status.)
RW: Read-Write (Reading returns the value written.)
CW Clear-on-Write (Writing to the register clears the register.)
CW1: Clear-on-Write-1 (Writing 1b to any bit clears that bit.)
CR: Clear-on-Read (Reading the register clears the register.)
RV: Reserved (For upward compatibility. Always write as 0b, ignore on read.)
WO: Write-Only (The value written cannot be read back.)

Segment A portion of a packet corresponding to one of the common architecturally-significant storage and
processing chunks that has been defined in the architecture. For FM5000/FM6000 devices, a segment
is 160 bytes.

Trapping Trapping refers to special frames that are captured by the switch and redirected to a local CPU for
processing.

Word 32 bits.

X[0..N] Denotes an array with indexes that go from 0 through N, inclusively.

X[N:0] or X[0:N] Denotes a bit range within a variable. The bit range [0:N] indicates that bit 0 is the most significant,
while bit range [N:0] indicates that the bit 0 is the least significant.

Table 1-2 Definition of Terms (Continued)

Term Definition

FM5000/FM6000 Datasheet—Introduction

16 331496-001

NOTE: This page intentionally left blank.

331496-001 17

Architecture Overview—FM5000/FM6000 Datasheet

2.0 Architecture Overview

2.1 Overview

The FM5000/FM6000 main components are shown in Figure 2-1.

At the switch ingress, the Ethernet Port Logic (EPL) parses incoming packets to extract the packet
payload, which gets forwarded to the shared packet memory through a receive crossbar. In the reverse
direction, the scheduler forwards packets from the shared packet memory through the transmit
crossbar, to the egress modifier. The egress modifier might modify the packet before forwarding it to
the EPL along with recomputing the CRC. All packet headers are processed by the frame handler.

Figure 2-1 FM5000/FM6000 Block Diagram

FM5000/FM6000 Datasheet—Architecture Overview

18 331496-001

2.1.1 EPL

EPL is an interface between the Ethernet SerDes and the internal data structures. It implements PCS,
reconciliation layer, and the MAC layer. The EPL also implements PCS-type management, such as fault
handling, auto-negotiation, etc. Various SerDes-to-channel mapping combinations are offered to enable
support for 1GBASE-X, SGMII, XAUI, 10 GbE serial and 40 GbE MLD. There are 24 EPLs in the switch.
Two arrangements are supported. The first 12 EPLs are arranged in pairs, in which each pair shares 40
GbE of bandwidth to the crossbar.

The next 12 EPLs are directly attached to the crossbar, in which each EPL has access to up to 40 GbE
worth of bandwidth to the crossbar (4 x 10 GbE channels).

See Section 6.2 and Section 6.3 for more details concerning the 24 EPLs.

2.1.2 Ingress Crossbar

The role of the ingress crossbar is to receive a serial stream of data at 10 GbE and forward it to the
main memory as segments. The segment size is 160 bytes. The first 112 bytes of the first segment are
passed to the frame handler for packet processing, switching and/or routing decisions.

The ingress and egress crossbars support up to 76 full-duplex channels. Any channel can support a
throughput of 10 GbE (four channels are combined together for 40 GbE support) but the total
aggregate throughput is limited to 720 GbE.

2.1.3 Packet Memory

The main memory stores incoming packets from ingress EPLs and forwards them to egress EPLs upon
request from the scheduler. The main memory size is 7.5 MB. Additional memory in other functional
blocks brings the total packet and frame header memory to approximately 9.5 MB.

2.1.4 Frame Handler

The frame handler makes forwarding decisions based on the frame header received from the EPL. The
forwarding information (port mask and modification data) is sent to the scheduler.

2.1.5 Scheduler

The scheduler manages free data segments, maintains receive and transmit queues and schedules
packets for transmission. The free segments are forwarded as needed to the receive crossbar, which
uses them to store incoming packets to the right location in the shared memory fabric. The scheduler
keeps the list of the segments sent to each EPL/MSB/IPL and waits for the frame handler forwarding
decision before placing the packet at the tail of the proper transmission queue.

The scheduler then applies advanced scheduling algorithms to decide which packet to forward to the
EPL/MSB/IPL. It then sends a segment list to the transmit crossbar, which uses those segments to
retrieve the packet from memory and forward the payload to the egress modifier.

331496-001 19

Architecture Overview—FM5000/FM6000 Datasheet

2.1.6 Egress Crossbar

The egress crossbar receives pointers from the scheduler, reads the packets from memory and forwards
them to the egress modifier for packet modification.

2.1.7 Egress Modifier

The egress modifier executes the instructions received from the scheduler to modify the packets as
data gets transmitted. Examples of egress modification includes new DMAC/SMAC/VLAN and VLAN
translation as well as adding/removing an MPLS header.

2.1.8 MSB

The MSB unit is an internal port to the switch fabric for EBI attached devices. The MSB receives frames
from the EBI and forwards them to the switch or receives frames from the switch and forwards them to
the EBI.

2.1.9 PCIe

The PCIe unit (fixed at internal port 0) is the primary interface for controlling the switch. Also, the PCIe
has direct access to the switch fabric enabling packets to flow between the fabric and the host
processor through a built-in DMA engine.

2.1.10 Management

The management system includes many entities: legacy external address/Data Bus Interface (EBI),
JTAG controller, peripherals, boot controller and PLL.

2.1.11 Global Resource Tag (GloRT) Definition

GloRT is a 16-bit number that can be used to identify a specific port, link aggregation group, multicast
group, management frame or any other packet destination in a single or multi-stage fabric.

The source GloRT is generally used to identify the logical source port of the frame as it enters a multi-
stage switch fabric. The destination GloRT is generally the logical destination port or group of ports to
where the frame exits the multi-stage fabric. Each FM5000/FM6000 must be configured with the
following set of GloRTs.

• Per-port Source GloRT — Each time a frame arrives without an Inter-Switch Link (ISL) tag, this
source GloRT is associated with the frame. If the frame's source MAC address is learned, this GloRT
value is stored in the MAC address table.

FM5000/FM6000 Datasheet—Architecture Overview

20 331496-001

• CPU GloRT — Each time a frame is trapped, logged or mirrored to the CPU, the top eight bits of the
destination GloRT are set to this value. The bottom eight bits are set to a trap code value, chosen
by hardware to indicate the reason for sending the frame to the CPU.

In addition, other feature-specific GloRTs can also be created on-the-fly using API commands:

• Rx mirror GloRT

• Tx mirror GloRT

• Multicast GloRT

• Link aggregation GloRT

• Load balancing group GloRT

The mapping from GloRT to a physical port involves a ternary CAM lookup. This enables the 16-bit
GloRT space to be allocated in a fairly arbitrary manner. The only structure required by the mapping
function consists of:

• A configurable bit range within link aggregation group GloRTs, used to identify individual physical
port members.

• Fixed 8-bit CPU trap code field within the CPU GloRT.

2.1.12 Multi-chip and Intel® Tags

Multiple switches can be aggregated together to create a larger logical switch by connecting them
through normal Ethernet ports, and by extending the Ethernet packet format to carry extra information.
Intel defines three extra tag formats, F56, F64 and F96, for this purpose:

• The F56 tag is 7 bytes long and replaces the seven bytes of preamble between the SDF symbol and
the first byte of the payload.

— This tag is available on 10 GbE and 40 GbE links only.

• The F64 tag is 7 bytes long and is inserted at byte 12 (right after SMAC).

— This tag replaces the VLAN tag.

• The F96 tag is 12 bytes long and is inserted at byte 12 (right after SMAC).

— This tag replaces the VLAN tag.

Table 2-1 shows the F56 tag (first byte is preamble SDF symbol).

Table 2-1 F56 Tag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SDF FTYPE SWPRI

VLAN PRI CFI VLAN

Source GloRT

Destination GloRT

331496-001 21

Architecture Overview—FM5000/FM6000 Datasheet

Table 2-2 shows the F64 and F96 tags.

The FTYPE is:

0x0000 = Normal frame

0x1000 = Special delivery

Table 2-2 F64/F96 Tags

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FTYPE SWPRI USER

VLAN PRI CFI VLAN

Source GloRT

Destination GloRT

EXTRA (F96 only)

EXTRA (F96 only)

FM5000/FM6000 Datasheet—Architecture Overview

22 331496-001

NOTE: This page intentionally left blank.

331496-001 23

Pin Descriptions—FM5000/FM6000 Datasheet

3.0 Pin Descriptions

The FM5000/FM6000 comes in several port bandwidth options. This section describes the largest port
bandwidth configuration. The actual pin-list is presented in Table 11-1 and Table 11-2.

3.1 Pin Overview

Figure 3-1 shows an overview of the pins used for the FM5000/FM6000. Some part variants are
restricted to a reduced number of Ethernet ports due to core bandwidth limitations. See Section 11.0,
“Mechanical Specification” for additional pin information.

Figure 3-1 FM5000/FM6000 Pin Overview

FM5000/FM6000 Datasheet—Pin Descriptions

24 331496-001

3.2 Signal Name Convention

The following signal name conventions are used:

• Signal Mnemonic — The signal mnemonic is a generic name used as a prefix to identify the
function of this pin.

• Negative Logic — Signal with inverted logic (0=asserted, 1=deasserted) are designated by using
the signal mnemonic following by _N suffix.

• Differential Pairs — Differential signals are designated by using the signal mnemonic followed by
_P for the positive pin and _N for the negative pair.

• Bus Designation — A signal that is part of a bus is designated by using the signal mnemonic
followed by [n] to designate the pin number in that bus. The entire bus or part of a bus is
designated using the [M...N] designation. As an example, DATA[31..0] bus represents 32 pins
designated DATA[0], DATA[1], etc...

• Set — A set of signals is referenced globally using name{M...N} or name{A,B,C,D}. The actual pin
designation is formed by using the signal mnemonic and concatenating one of the values of the set.
As an example, the pin set REFCLK{1..4}{A,B}{P,N} represents 16 pins designated REFCLK1AP,
REFCLK1AN, REFCLK1BP, etc...

• Direction — The following pin direction types are used:

— IN: Input to the chip

— OUT: Output from the chip

— IN/OUT: Might operate as input or output

— OD: Open drain output

— OC: Open collector output

— Power: A pin used for power

— Ground: A pin used for ground

— Sense: A pin used for sensing (no input/output concept)

• Standard — The following pin input/output buffer types are used:

— CML

— LVCMOS

— LVPECL

3.3 Detailed Pin Descriptions

The FM5000/FM6000 pins are listed in the following tables. GPIOs pins are latched when
CHIP_RESET_N is de-asserted to provide default configurations.

331496-001 25

Pin Descriptions—FM5000/FM6000 Datasheet

3.3.1 Ethernet Port Pins

3.3.2 PCIe Pins

3.3.3 Power Pins

Pin Name Direction Type Usage

P{1..24}_R{A,B,C,D}{P,N} IN CML SerDes receive ports.
There are four pairs per port. Each set {A,B,C,D} of four pairs can be
mapped to LANE0..LANE3. In CML or to LANE3...LANE0 by software.
Unused pins can be left floating; they are internally terminated.

P{1..24}_T{A,B,C,D}{P,N} OUT CML SerDes transmit ports (i=[1..24]).
There are four pairs per port. Each set {A,B,C,D} of four pairs can be
mapped to LANE0.LANE3 or to LANE3...LANE0 by software. Unused pins
can be left floating; they are internally terminated.

ETH_RCK[1..4]{P,N) IN LVPECL Ethernet reference clocks for SerDes; 156.25 MHz.

ETH_CLKOUT_{A,B} OUT LVCMOS Recovered clocks from SerDes.

Pin Name Direction Type Usage

PX_R{A,B,C,D}{P,N} IN CML PCIe receive lanes.

PX_T{A,B,C,D}{P,N} OUT CML PCIe transmit lanes.

PX_RCK{P,N} IN LVPECL PCIe reference clock.
Must be 125 MHz.

Pin Name Direction Type Usage

VDD Power N/A Variable core power supply that can be adjusted to support higher bandwidth.

VDDS Power N/A Fixed core power supply.

VDD25 Power N/A TTL I/O power supply.

AVDD25 Power N/A LVPECL reference clocks power supply.

AVDD Power N/A SerDes analog power supply.

VDDPLL Power N/A Analog power for frame handler PLL.

VFB1, VFB2 Reserved N/A Must be tied to ground for normal operation.
Permanent damage can occur if this pin is tied to a positive potential.

VSS Ground N/A Ground.

VDDK OUT Power Kelvin sense pin for the VDD power plane on the die.
Leave open if not used.

VSSK OUT Power Kelvin sense pin for the VSS power plane on the die.
Leave open if not used.

VDDSK OUT Power Kelvin sense pin for the VDD power plane on the die.
Leave open if not used.

VSSK2 OUT Power Kelvin sense pin for the VSS power plane on the die.
Leave open if not used.

FM5000/FM6000 Datasheet—Pin Descriptions

26 331496-001

3.3.4 External Bus Interface Pins

3.3.5 DMA Interface Pins

Pin Name Direction Type Usage

CLK_EBI IN LVCMOS Bus interface clock.

ADDR[23:2] IN LVCMOS Address inputs.

DATA[31:0] IN LVCMOS Data bus.

PAR[3:0] IN/OUT LVCMOS Data parity.

CS_N IN/OUT LVCMOS Chip Select (Active low).
This pin is sampled when CHIP_RESET_N is de-asserted. If this pin is low, EBI is
assumed to not be used and EBI_CLK is ignore and replaced internally with
PCIE_REFCLK.

AS_N IN LVCMOS Address Strobe (Input, active low).

RW_N IN LVCMOS Read/Write.
Defines the type of transaction (read or write) being requested.
Polarity of this signal depends on the RW_INV strapping pin. When RW_INV is pulled
down to ground, read is active high while write is active low. Conversely, when
RW_INV is pulled up to VDD25, read is active low while write is active high.

DTACK_N OUT LVCMOS Data Transfer Acknowledge.
Indicates the completion of a data transfer.
This signal is actively asserted for one cycle when data transfer is ready during read or
latched during write and then actively de-asserted for 1 cycle, the cycle after, and
finally tri-stated for all other cycles.
Polarity of this signal is determined by DTACK_INV strapping pin. If DTACK_INV is
pulled down to ground at reset, DTACK_N is active low. If DTACK_INV is pulled up to
VDD25 at reset, DTACK_N is active high.

DERR_N OUT LVCMOS Write Data Parity Errors.
Only asserted (and valid) when DTACK_N asserted. Tri-stated otherwise.

INTR_N Open drain LVCMOS Interrupt.
This pin is active low and asserted each time an interrupt condition exists in the chip.
The pin gets de-asserted once all interrupt sources have been cleared. Pull down
current = 30 mA.

Pin Name Direction Type Usage

TXRDY_N OUT LVCMOS Transmit FIFO Ready.
Asserted each time the switch can accept a new word of data for packet transmission
from the CPU to the network.

RXRDY_N OUT LVCMOS Receive Data Ready.
Asserted each time the switch has data in its receive FIFO for the CPU.

RXEOT_N OUT LVCMOS End of frame indication.
Asserted while reading the last data word of a packet to indicate this is the last work of
the packet.

331496-001 27

Pin Descriptions—FM5000/FM6000 Datasheet

3.3.6 GPIOs and Strapping Pins

Pin Name Direction Type Usage

GPIO[0]/DTACK_INV IN/OUT LVCMOS General Purpose I/O pin.
This pin is also sampled when CHIP_RESET_N is de-asserted to
determine DTACK polarity mode. If the pin is sampled low, DTACK_N is
active low, if the pin is sampled high, DTACK_N is active high (operate
as DTACK rather than DTACK_N).

GPIO[1]/RW_INV IN/OUT LVCMOS General Purpose I/O pin.
This pin is also sampled when CHIP_RESET_N is de-asserted to
determine R/W polarity mode. If the pin is sampled low, read is active
high while write is active low. Conversely, when sampled high, read is
active low while write is active high.

GPIO[2]/IGN_PAR IN/OUT LVCMOS General Purpose I/O pin.
This pin is also sampled when CHIP_RESET_N is de-asserted to
determine parity mode. If the pin is sampled high, parity on writes is
not checked. If the pin is sampled low, parity on incoming writes is
checked.

GPIO[3]/SPI_SCK
GPIO[4]/SPI_CS_N
GPIO[5]/SPI_MOSI
GPIO[6]/SPI_MISO

IN/OUT LVCMOS Used for either SPI or General Purpose I/O pins.
These pins are used as SPI when the switch retrieves its configuration
from an external SPI EEPROM (if enabled) and as GPIO after.
The pin directions when the interface is used as SPI are:

SPI_CLK = Out
SPI_CS_N = Out
SPI_MOSI = Out
SPI_MISO = In

GPIO[7]/BOOT_MODE[0]
GPIO[8]/BOOT_MODE[1]
GPIO[9]/BOOT_MODE[2]

IN/OUT LVCMOS General Purpose I/O pin.
These pins are also sampled when CHIP_RESET_N is de-asserted to
define the boot mode of the switch (see Table 3-1).

GPIO[10]/PARITY_EVEN IN/OUT LVCMOS General Purpose I/O pin.
This pin is also sampled when CHIP_RESET_N is de-asserted to
determine the parity mode on the data bus after reset (high = even,
low = odd). This pin must be pulled up or pulled down and cannot be
left unconnected.

GPIO[11]/I2C_ADDR[0] IN/OUT LVCMOS General Purpose I/O pin.
This pin is sampled when CHIP_RESET_N is de-asserted to set the I2C
slave address of the switch.

GPIO[12]/I2C_ADDR[1] IN/OUT LVCMOS General Purpose I/O pin.
This pin is sampled when CHIP_RESET_N is de-asserted to set the I2C
slave address of the switch.

GPIO[13]/I2C_ADDR[2] IN/OUT LVCMOS General Purpose I/O pin.
This pin is sampled when CHIP_RESET_N is de-asserted to set the I2C
slave address of the switch.

GPIO[14]/DATA_HOLD/SPI_IO3 IN/OUT LVCMOS General Purpose I/O pin.
This pin is sampled when CHIP_RESET_N is de-asserted to define
DTACK and DATA behavior.
If this pin is pulled up, DTACK and DATA (if read) are asserted when
needed and remain asserted until CS is de-asserted. If this pin is pulled
down, DTACK and DATA are asserted (if read) for one cycle, DTACK
gets actively de-asserted for one cycle and tri-stated after that.
This pin should be pulled up or down. It should not be left
unconnected. Also used as IO[3] for SPI when operating in quad-pin
mode.

GPIO[15]/SPI_IO2 IN/OUT LVCMOS General Purpose I/O pin.
Also used as IO[2] for SPI when operating in quad-pin mode.

FM5000/FM6000 Datasheet—Pin Descriptions

28 331496-001

3.3.7 I2C Pins

3.3.8 MDIO Pins

3.3.9 LED Pins

3.3.10 JTAG Pins

Pin Name Direction Type Usage

I2C_SCL Open drain LVCMOS I2C Clock.

I2C_SDA Open drain LVCMOS I2C Data.

Pin Name Direction Type Usage

MDC OUT LVCMOS MDIO Clock.

MDIO Open drain LVCMOS MDIO data.

Pin Name Direction Type Usage

LED_CLK OUT LVCMOS Serial LED Clock.

LED_EN OUT LVCMOS Serial LED Enable.
Asserted only on the first bit of an 80-bit frame.

LED_DATA[2:0] OUT LVCMOS Serial LED Data.
These pins are latched at power up to control internal termination on the 2.5 V LVPECL
reference clocks inputs. Using a pull down enables the termination, using a pull up
disables the termination. These pins have weak internal pull down.

LED_DATA[0] = Controls internal termination for ETH_RCK inputs.
LED_DATA[1] = Controls internal termination for PX_RCK inputs.
LED_DATA[2] = Controls internal termination for TEST_CLK inputs.

Pin Name Direction Type Usage

TCK IN LVCMOS JTAG Clock.
Internal pull up.

TMS IN LVCMOS JTAG Control.
Internal pull up.

TDI IN LVCMOS JTAG Data Input.
Internal pull up.

TDO OUT LVCMOS JTAG Data Output.

TRST_N IN LVCMOS JTAG Reset input pin.
Active low to reset for the JTAG port. The external Pdn value should be 470 to 1 K,
with the internal pull-up impedance ranging from 25 K to 50 K This provides a GND
level to disable the JTAG port under normal operation when the JTAG testing function is
not used.

331496-001 29

Pin Descriptions—FM5000/FM6000 Datasheet

3.3.11 Miscellaneous Pins

3.4 Boot Mode Selection

Pin Name Direction Type Usage

CHIP_RESET_N IN LVCMOS On the FM5000/FM6000 series, all strapping options are latched while the chip is in
reset.
Internal pull down.

DIODE_IN
DIODE_OUT

Sense Analog Note that the temperature versus voltage might be different on the FM5000/FM6000
series.

PLL_CLKOUT OUT LVCMOS Copy of PLL Output.
Presence of this signal is controlled by PLL configuration register.

TESTMODE IN LVCMOS Connect to GND for normal operation.

TEST_CLK_[P,N] IN LVPECL Connect to GND for normal operation.

PAD_TRI_N IN LVCMOS Leave open for normal operation.

Table 3-1 Boot Mode Selection by GPIO[9..7] Pin Strap Latched at Reset

BOOT_MODE
Mode Usage

[2] [1] [0] HEX

0 0 0 0x0 Slave CPU acts as I2C, SPI, or EBI master to boot the FM5000/FM6000.

0 0 1 0x1 I2C Master Boot from I2C serial boot ROM at address 0x50, image at offset 0.

0 1 0 0x2 Not Supported

0 1 1 0x3 I2C Master Boot from I2C serial boot ROM at address 0x51, image at offset 0.

1 0 0 0x4

SPI Master

Boot from SPI serial boot ROM, image address pointer at offset 0.

1 0 1 0x5 Boot from SPI serial boot ROM, image address pointer at offset 4.

1 1 0 0x6 Boot from SPI serial boot ROM, image address pointer at offset 8.

1 1 1 0x7 Boot from SPI serial boot ROM, image address pointer at offset 12.

FM5000/FM6000 Datasheet—Pin Descriptions

30 331496-001

NOTE: This page intentionally left blank.

331496-001 31

Power Up, Reset and Interrupts—FM5000/FM6000 Datasheet

4.0 Power Up, Reset and Interrupts

This section describes how to power up and reset the FM5000/FM6000 device along with a description
of the interrupt controller block.

4.1 Power

The power-up sequence steps are:

1. Apply power.

• Ensure CHIP_RESET_N is maintained asserted as long as power is not valid.

2. Apply clock.

• Ensure CHIP_RESET_N is maintained asserted for at least 1024 clock cycles.

3. De-assert CHIP_RESET_N.

4. Use a serial SPI Flash or I2C EEPROM to boot the chip.

• A serial SPI Flash or I2C EEPROM is required for minimum setup.

5. Use the PCIe or EBI interface to boot and manage the switch (optional).

• Use the FM5000/FM6000 API platform driver code to bring up the switch features.

• Apply networking protocol software.

4.2 Reset

Figure 4-1 shows the reset structure.

FM5000/FM6000 Datasheet—Power Up, Reset and Interrupts

32 331496-001

The different control points are as follows:

CHIP_RESET_N (external pin)

Places the watchdog in reset when asserted. Afterwards, the watchdog automatically asserts the
internal MASTER_RESET. The GPIO pins are also reset to input.

When CHIP_RESET_N is de-asserted, the GPIO pins are sampled and the watchdog module is
immediately taken out of reset. The watchdog then releases the internal MASTER_RESET after a
few cycles. It also initializes the FATAL_COUNT and FATAL_CODE registers to 0x0.

FATAL_CODE Register (internal register in watchdog)

There are three methods to write into this register:

• Detecting an uncorrectable SRAM error (each uncorrectable SRAM is maskable).

• Timeout of CRM access.

• Direct write from any bus master to this register via a management ring master (PCIe, EBI,
etc...).

When the register is written and the WATCHDOG_CFG enables reset upon write to FATAL code, the
watchdog copies FATAL_CODE into LAST_FATAL_CODE, clears FATAL_CODE, increments
FATAL_COUNT by one and waits 64 cycles before asserting MASTER_RESET.

MASTER_RESET (internal master reset)

The internal MASTER_RESET is an output of the watchdog circuit. It causes the management
module and core fabric to be placed in reset when asserted, forcing those modules to regain their
default state and reset all registers to their default value. Manageability also contains the
SOFT_RESET register that controls the reset status of PCIe, MSB, JSS, and EPL modules. The JSS
modules include a SerDes micro-controller and Serial Bus Ring (SBUS) master.

When MASTER_RESET is de-asserted, the management module boots the system by checking the
status of the BOOT_MODE pins.

Figure 4-1 FM5000/FM6000 Reset Domains

331496-001 33

Power Up, Reset and Interrupts—FM5000/FM6000 Datasheet

SOFT_RESET Register

The SOFT_RESET register controls the reset for different modules: EPLs, PCIe, JSS (SPICO/SBUS)
and MSB. Its default value is to assert reset on all modules. Each module must be taken out of reset
before the platform is accessed.

The entire boot process is listed in Table 4-1.

Table 4-1 Reset Process Detail

Step Description Details

1 Asserting Reset Asserting CHIP_RESET_N or the self-asserting WATCHDOG causes the MGMT module to go in
reset and, by consequence, causes all other modules to go into reset. All registers are reset to
their default values. GPIO pins are reset to input mode.

2 De-asserting Reset De-asserting CHIP_RESET_N or the self de-asserting WATCHDOG causes the following:
• The GPIO pins are sampled, providing the initial configuration for various elements.
• The internal MASTER reset control is kept asserted for 64 cycles and then self-clears.

3 Switch Initialization De-assertion of the internal MASTER reset causes the boot controller to start to boot the chip.
The boot controller does the following:
• Transfers the content of the fusebox to the different modules.
• Uses sampled BOOT_MODE pins to determine if booting form serial ROM is requested and

what type of serial ROM is used.

4 Select Boot Method Boot from serial ROM:
• If booting from ROM is enabled, the boot controller reads and executes the instructions in

the ROM until the last instruction (END) is retrieved.
Boot from CPU:
• If booting from ROM is disabled, the boot controller is stalled until boot instructions are

received from the CPU through the BOOT_CTRL register.

5 Select Normal
Operating Mode

Write 0xFFFFFFFF to SCAN_CHAIN_DATA_IN to put the core logic and the EPLs into normal
operating mode.

6 Setup PLL Initialize PLL and wait for PLL lock. The maximum lock time is 80 ms. The CPU might poll the
PLL_STATUS register if desired to reduce waiting time.

7 Enable Modules Take all modules out of reset (EPL, PCIe, MSB, SPICO/SBUS).

8 Perform FFU Slice
Number Assignment

When booting from the serial boot ROM:
• Send command BOOT (Initialize FFU Slice Numbers).
• EEPROM fetching is on hold until completed.

When booting from the CPU:
• Write command Initialize FFU Slice Numbers into BOOT_CTRL:Command register.
• Wait for BOOT_STATUS:CommandDone to return to 1b.

9 Perform Bank Memory
Repair

When booting from the serial boot ROM:
• Send command BOOT (Apply Bank Memory Repairs).
• EEPROM fetching is on hold until completed.

When booting from the CPU:
• Write command Apply Bank Memory Repairs into BOOT_CTRL:Command register.
• Wait for BOOT_STATUS:CommandDone to return to 1b.

10 Perform Freelist
Initialization

When booting from the serial boot ROM:
• Send command BOOT (“Initialize All Scheduler Freelists”).
• EEPROM fetching is on hold until this is completed.

When booting from the CPU:
• Write command Initialize All Scheduler Freelists into BOOT_CTRL:Command register.
• Wait for BOOT_STATUS:CommandDone to return to 1b.

FM5000/FM6000 Datasheet—Power Up, Reset and Interrupts

34 331496-001

4.3 Serial Boot ROM Format

The FM5000/FM6000 supports booting from a serial EEPROM attached on either the I2C bus or the SPI
bus. The SPI bus is much faster (up to 62.5 MHZ) and supports large memory sizes.

The serial boot ROM format is the same for both types of memories, and consists of a series of
instructions encoded as follows.

The size of the instructions is at least 4 bytes long and always a multiple of four bytes. The first 4 bits
make up the command, followed by a 4-bit option code to the command and then arguments to the
command.

Note: If the FM5000/FM6000 is reset during boot, the EEPROM should also be reset by performing
a power cycle.

11 Start PCIe If PCIe is used, BOOT ROM must setup PCIe SerDes and take PCIe out of reset.

12 Initialize Memory This step could be:
• Use CRM to setup memory table.
• Launch CRM execution.
• Wait for completion.

Or:
• Software writes memory manually.

Table 4-1 Reset Process Detail (Continued)

Step Description Details

OPT CMD

ARGS

OPT CMD

ARGS

.

.

.

XXX END

XXXX

4 bytes

N x 4 bytes

(last command)

7 4 3 0

331496-001 35

Power Up, Reset and Interrupts—FM5000/FM6000 Datasheet

The command encoding is detailed in Table 4-2.

Table 4-2 Boot ROM Command Encoding

Command Code Option ARGS and Data

WRITE 1 NWORDS-1 ARGS[0] = ADDR[23:16]
ARGS[1] = ADDR[15:8]
ARGS[2] = ADDR[7:0]
ARGS[3] = DATA[0][31:24]
ARGS[4] = DATA[0][23:16]
ARGS[5] = DATA[0][15:8]
ARGS[6] = DATA[0][7:0]
ARGS[7] = DATA[1][31:24]
. . .
ARGS[66] = DATA[15][7:0]

POLL 2 Not used ARGS[0] = ADDR[23:16]
ARGS[1] = ADDR[15:8]
ARGS[2] = ADDR[7:0]
ARGS[3] = DATA[31:24]
ARGS[4] = DATA[23:16]
ARGS[5] = DATA[15:8]
ARGS[6] = DATA[7:0]
ARGS[7] = MASK[31:24]
ARGS[8] = MASK[23:16]
ARGS[9] = MASK[15:8]
ARGS[10] = MASK[7:0]
ARGS[11] = MAX_RETRY[15:8]
ARGS[12] = MAX_RETRY[7:0]
ARGS[13] = RETRY_INTERVAL[15:8]
ARGS[14] = RETRY_INTERVAL[7:0]
ARGS[15] = not used
ARGS[16] = JUMP_ADDRESS[23:16]
ARGS[17] = JUMP_ADDRESS[15:8]
ARGS[18] = JUMP_ADDRESS[7:0]

WAIT 3 Not used ARGS[0] = TIME[23:16]
ARGS[1] = TIME[15:8]
ARGS[2] = TIME[7:0]

BOOT 4 Not used ARGS[0] = Not used
ARGS[1] = Not used
ARGS[2] = boot command
BOOT 4 Not used
The boot commands defined are:

1 = Initialize FFU slice numbers
2 = Apply bank memory repairs
3 = Initialize all scheduler Freelists
4 = Initialize only the array Freelist
5 = Initialize only the head storage Freelist
6 = Initialize only the TXQ Freelist
7 = Initialize only the RXQ Freelist

LCNT 5 Counter 0
Counter 1

ARGS[0] = Not used
ARGS[1] = COUNT[15:8]
ARGS[2] = COUNT[7:0]

LOOP 6 Counter 0
Counter 1

ARGS[0] = JUMP_ADDRESS[23:16]
ARGS[1] = JUMP_ADDRESS[15:8]
ARGS[2] = JUMP_ADDRESS[7:0]

FM5000/FM6000 Datasheet—Power Up, Reset and Interrupts

36 331496-001

The polling function polls a register at regular intervals until a masked value is found or maximum retry
count is reached. The boot stops if the maximum number of retries is reached without the expected
value having been found. The function is typically used to issue a command (such as initializing a block
of memory) and wait for completion.

The LCNT and LOOP are used to do loops. The LCNT instruction loads one of the two 16-bit counters
with a constant value. The LOOP instruction checks the counter value and, if not zero, decrements the
counter and jumps to the address indicated. These instructions are intended to create a series of
packets easily.

The waiting times (WAIT and RETRY_INTERVAL) are in PCIE_REFCLK clock cycles.

The data and addresses are always encoded Most Significant Byte (MSB) first. Examples illustrating the
byte ordering are:

The location of the image and the type of interface to use depends on BOOT_MODE pin strapping, as
shown in Table 4-3.

retry = 0;
w = read_reg(ADDR);
while (retry < MAX_RETRY && (w & MASK) != VALUE)
{
 retry++;
 wait_clock_count(RETRY_INTERVAL);
 w = read_reg(ADDR);
}

WRITE ADDR=0x40104 DATA=0x19 => [11 04 01 04 00 00 00 19]
DELAY 10 usec (03 00 04 E2)
BOOT CMD 1 (04 00 00 01)

Table 4-3 Boot Mode Pin Strapping

BOOT_MODE
Usage

[2] [1] [0]

0 0 0 Boot from CPU only (not valid for PCIe operation only)/

0 0 1 Reserved.

0 1 0 Boot from I2C serial boot ROM at address 0x51, image at offset 0.

0 1 1 Boot from I2C serial boot ROM at address 0x50, image at offset 0.

1 0 0 Boot from SPI serial boot ROM, image address pointer at offset 0.

1 0 1 Boot from SPI serial boot ROM, image address pointer at offset 4.

1 1 0 Boot from SPI serial boot ROM, image address pointer at offset 8.

1 1 1 Boot from SPI serial boot ROM, image address pointer at offset 12.

331496-001 37

Power Up, Reset and Interrupts—FM5000/FM6000 Datasheet

If SPI serial boot ROM are used, the first four 32-bit words define the base address of each image. The
image selection [0..3] depends on the BOOT_MODE strapping as follows:

The first byte defines the SPI operating mode and speed.

.

.

.

BASE[0][23:16]

COMMAND

DATA

MODE SPEED XX

.

.

.

0x0

0x1

0x2

0x3 BASE[0][7:0]

BASE[0][15:8]

BASE[1][23:16]

MODE SPEED XX0x4

0x5

0x6

0x7 BASE[1][7:0]

BASE[1][15:8]

BASE[2][23:16]

MODE SPEED XX0x8

0x9

0xA

0xB BASE[2][7:0]

BASE[2][15:8]

BASE[3][23:16]

MODE SPEED XX0xC

0xD

0xE

0xF BASE[3][7:0]

BASE[3][15:8]

FM5000/FM6000 Datasheet—Power Up, Reset and Interrupts

38 331496-001

4.4 Interrupt Controller

4.4.1 Normal Interrupts

Interrupt handling includes the following registers:

• Interrupt Pending Registers — The interrupt pending registers (XXX_IP) contain one bit per
interrupt source that gets set when an interrupt condition is detected. The interrupt condition is
cleared by software by writing the corresponding bit to 1b, writing a 0b has no effect.

• Interrupt Mask — The interrupt mask registers (XXX_IM) have a direct correspondent bit-per-bit
to the interrupt pending registers and is used to mask out the interrupt source if desired. A masked
interrupt (setting bit to 1b) does not post an interrupt up in the hierarchy.

• Interrupt Detect Registers — The interrupt detect registers are a collective representation of the
presence of an unmasked interrupt source in the system or sub-system. The register
GLOBAL_INTERRUPT_DETECT is the top register.

• Global Interrupt Mask Registers — The global interrupt mask registers enable designers to
select which global interrupt gets presented to which output.

Figure 4-2 shows the overall interrupt hierarchy.

Table 4-4 SPI First Byte

Bits Name Description

2:0 DON’T CARE N/A

5:3 SPEED 111b = 62.5 MHz
110b = 31.2 MHz
101b = 15.6 MHz
100b = 7.8 MHz
011b = 3.9 MHz
010b = 2.0 MHz
001b = 1.0 MHz
000b = 0.5 MHz

7:6 MODE 00b = Single (command code = 0x03)
01b = Dual (command code = 0x3B)
10b = Quad (command code = 0x6B)
11b = Single_fast (command code = 0x0B)

331496-001 39

Power Up, Reset and Interrupts—FM5000/FM6000 Datasheet

The elements in the hierarchy are listed in Table 4-5.

Figure 4-2 FM5000/FM6000 Interrupt Hierarchy

Table 4-5 Interrupt Sources

Module Description

EPL All EPL blocks are daisy-chained through a serial chain. The vector posted to manageability is an 8-bit vector with
the lower 7 bits indicating the EPL number (only 0..24 are valid) and upper bit indicates if an interrupt is pending
or not.
The EPL generates a vector immediately after it is taken out of reset and also each time the EPL_IP becomes
non-zero or goes to zero. If the vector has not been sent yet and a new condition arises that requires sending an
updated vector (this could happen if the chain is delayed temporarily and an event create an interrupt or the
software just cleared all interrupts in this EPL), the new vector replaces the one that has not left yet. This ensures
that the latest state is reported to the manageability module.
The manageability module, upon receiving the vector, sets or clears the corresponding bit in the
GLOBAL_EPL_INT_DETECT register for that EPL. It also sets the EPL_INT bit in the GLOBAL_INTERRUPT_DETECT
if any bit is set in the GLOBAL_EPL_INT_DETECT register.

FPP All FPP modules are daisy-chained through a serial chain. The vector produced is an 8-bit vector with the lower 7
bits indicating the FPP module number and upper bit indicates if an interrupt is pending or not.
A particular FPP module generates a vector each time an interrupt condition is raised or each time all interrupt
conditions got cleared. An interrupt condition is detected each time an IP bit is set and corresponding IM bit is
cleared.
As for EPL, if the vector has not been sent yet and a new condition arises that requires sending an updated vector,
the new vector replaces the one that has not left yet. This ensures that the latest state is reported to the
manageability module.
The manageability module, upon receiving the vector, sets or clears the corresponding bit in the
GLOBAL_INTERRUPT_DETECT register for that module.

FM5000/FM6000 Datasheet—Power Up, Reset and Interrupts

40 331496-001

4.4.2 Fatal Interrupts

The switch is capable of detecting this type of event and resetting itself. This is accomplished by
configuring the SRAM_UNCORRECTABLE_FATAL register to enable chip reset after detecting an
uncorrectable memory error.

If the chip is reset for this reason, the LAST_FATAL_CODE contains the SRAM block that caused the
error and the FATAL_COUNT is incremented.

Chip reset causes the serial EEPROM to reload so the switch can be reached.

SRAM All SRAM blocks are daisy-chained through a serial chain and have ECC memory protection. An interrupt is posted
each time an ECC error is detected while reading a particular location. The vector produced SRAM is an 8-bit
vector with the lower 7 bits indicating the SRAM block number and upper bit indicates the error type.
There are two types of errors detected: corrected errors and non-correctable errors. A corrected error event is an
event where the type of error detected was correctable and corrected. A non-correctable error is an event where
the type of error detected was not correctable.
If the vector has not been sent yet and a new error is detected, the new vector can only replace an existing vector
if the new vector is a non-correctable error. This guarantees reporting of all non-correctable errors.
The manageability module, upon receiving the vector, either sets a bit in either SRAM_CORRECTED_IP or
SRAM_UNCORRECTABLE_ERR depending of the type received. Manageability also sets the SRAM_C_ERR or
SRAM_U_ERR bit in the GLOBAL_INT_DETECT each time an interrupt is posted and the corresponding mask bit is
cleared.

MGMT Local
Sources

Manageability includes local interrupt sources that get posted in the GLOBAL_INTERRUPT_DETECT each time they
are active and not masked out. Those sources are GPIO, MDIO, I2C, SOFT, CRM, and LCI.

PCIe The PCIe can also be a source of interrupts. For example, GLOBAL_INTERRUPT_DETECT.

Posting
Interrupts

Three methods are available:
• INT_N pin
• In-band PCIe

Manageability provides three mask registers for each of these outputs enabling designers to select which interrupt
gets posted by which method.

Table 4-5 Interrupt Sources (Continued)

Module Description

331496-001 41

Frame Processing—FM5000/FM6000 Datasheet

5.0 Frame Processing

5.1 FM5000/FM6000 Capabilities

Table 5.1 describes the capabilities of the FM5000/FM6000.

Table 5-1 FM5000/FM6000 Product Family Features

Feature FM5000/FM6000

Number TCAM rules 24 K

TCAM remapping Yes

64 K binary search tree Yes

Next hop table Yes

Egress CoS queues 8

QCN support Yes

TRILL support Yes

Double VLAN tagging Yes

IEEE 1588 support Yes

Tunneling features No

Q-in-Q PB support No

MAC-in-MAC PBB support No

Synchronous Ethernet No

FM5000/FM6000 Datasheet—Frame Processing

42 331496-001

5.2 Application

The FM5000/FM6000 operates as a one-armed IP router combined with an Ethernet L2 switch (see
Figure 5-1). In this architecture, incoming packets are first associated with a VLAN (using the VTAG tag
if present, or by associating a default VLAN), and are then either switched within their respective VLANs
or routed across VLANs or both. The decision to switch, route or drop depends on tables stored in the
FFU (which includes a large ternary CAM to store IP route entries and access control lists), other tables
located in the switch (such as MAC Address table) or tables located in the router (such as ARP table).

The switch includes a set of features such GloRT, distributed link aggregation, inter-switch tags and
advance multicast distribution to enable a set of physical switches to operate as a single logical switch
as shown in the figures that follow. Figure 5-2 shows a stack arrangement, while Figure 5-3 shows a
fat-tree (Clos) architecture. Both examples enable exploitation of the full feature set through a F64 tag
used on internal links. The F64 is described later in this section.

Figure 5-1 FM5000/FM6000 Switch/Router Concept

Figure 5-2 FM5000/FM6000 in a Stack Topology

331496-001 43

Frame Processing—FM5000/FM6000 Datasheet

5.3 Frame Processor

The FM5000/FM6000 series frame processor is designed to handle wire-speed L2/L3/L4 switching in the
context of a single-chip or a multi-chip solution in a variety of topologies. The features offered are:

• Global Layer 3 (L3) routing over multiple devices in fat tree, ring or meshed topologies, with
support for Equal Cost Multipath (ECMP) route selection

• L2 switching with optional automatic address learning and security

• Tunneling support for protocols such as TRILL, MPLS, VPWS, VPLS, Q-in-Q, MAC-in-MAC

• DCB support for PFC, ETS, QCN and DCBx

• Server virtualization support for protocols such as VEPA+

• Basic and extended Access Control Lists (ACLs) for L2/L3/L4 and deep packet inspection

• Snooping of IGMP v1, v2, and v3

• Link aggregation across multiple links using various sources of information from the frame header
to derive the hashing function

• Trapping special frames

• Egress filtering and redirections including mirroring and logging

• Traffic policing with tricolor marking

• Congestion management

• IEEE 802.1ad provider bridging support

• Jumbo packet support (up to 15864 bytes)

• Cut through switching

The frame header pipeline is designed to process the following frame data:

• Source Port (7 bits)

• Source MAC Address (48 bits)

Figure 5-3 FM5000/FM6000 in a Tightly Coupled Clos Topology

FM5000/FM6000 Datasheet—Frame Processing

44 331496-001

• Destination MAC Address (48 bits)

• VLANs (SVLAN and CVLAN) (24 bits)

• VLAN priority and CFI/DEI bit (4 bits)

• Ethernet Type (16 bits)

— The frame Ethernet type is the first type field after VLAN and RLT tags.

• Type of IP packet (IPv4 or IPv6)

• Source IP (32 or 128 bits)

• Destination IP (32 or 128 bits)

• Tunneling Labels (32 bits) or MAC-in-MAC/TRILL Header (128 bits)

— Only one or the other can exist in its given frame, not both.

• Layer 4 (L4) Source Port (16 bits)

• L4 Destination Port (16 bits)

• L4 4 Options (6 bits)

• L4 4 Protocols (8 bits)

• IP TOS (8 bits)

• IP TTL (8 bits)

• IP Flow ID (20 bits)

• Deep packet inspection:

— Extra bytes extracted after the L4 decoding for IP packets and after L2 Ethernet type for non-IP
packets are passed to the FFU for further processing.

• ISL tag:

— Switch priority (4 bits)

— Source GloRT (16 bits)

— Destination GloRT (16 bits)

— User info (8 bits)

— Frame type

The frame processor produces the following information:

• All forwarding information, including a destination port mask, necessary for forwarding and
multicast-replication of each frame.

• Data and directives needed for egress header modifications.

331496-001 45

Frame Processing—FM5000/FM6000 Datasheet

5.3.1 Frame Processing Pipeline

Figure 5-4 shows the basic pipeline structure of the FM5000/FM6000 frame processor. Processing
begins at the parser, which receives the frame's first 112 bytes from the ingress crossbar and extracts
relevant fields for the subsequent stages. All switching, routing, classification, and other forwarding
decisions are made over a sequence of ingress stages up to the scheduler (SCHED). Once these
decisions are made, the scheduler enqueues the frame in the shared memory (or possibly discards it)
and later dequeues one or more copies for transmission. The final transformation of the frame takes
place during egress transmission by the modify stage.

Figure 5-4 also shows the lifetime of various header and internal data fields in the pipeline. Generally,
all L3+ and L2 ingress header fields are consumed during processing.

Figure 5-4 Frame Processing Pipeline

FM5000/FM6000 Datasheet—Frame Processing

46 331496-001

5.3.2 Frame Tail

Once each frame has fully ingressed, the following tail information is passed to the frame processor:

• Packet Length

• End of Frame Status (good CRC, bad CRC, symbol error, disparity error, oversize, undersize)

Some frame actions are defined at the time the header is processed (such as learning), but have to wait
until the tail is received and the frame is confirmed to be a valid frame (good CRC and no error) before
execution. These actions include:

• MAC address learning

• Policed update

• Packet-related interrupt to processor

• Ingress PAUSE execution

• Sampling frames for congestion notification

• Statistics counting

When possible, invalid frames are forwarded by the scheduler. However, in cut-through mode, a frame's
tail might not arrive before egress transmission begins, making it impossible to discard the corrupted
frame. In this case, the switch guarantees that such frames carry incorrect CRCs, and they can be
counted specially by the frame statistics counters.

The EPL contains configuration options to select how to mark a frame (discard or forward) depending on
the type of errors encountered. The default is set to discard each time the frame is erroneous for any
reason.

5.3.3 Coloring

The EPLs are split into two colors (see table Table 5-2), and the maximum installed traffic for each color
must not exceed 320 GbE. For EPL8s, the amount of active traffic per EPL8 (or a pair of EPL4s within
that EPL8) is always limited to a maximum of 40 GbE. The maximum amount of active traffic per
independent EPL4 is also limited 40 GbE. \

Figure 5-5 shows the color map for the switch.

Table 5-2 Group Coloring

Group Members Maximum Bandwidth

Blue_EPLs EPL[3], EPL[4], …..EPL[22], EPL[24] 320 GbE

Red_EPLs EPL[1], EPL[2], …..EPL[21], EPL[23] 320 GbE

331496-001 47

Frame Processing—FM5000/FM6000 Datasheet

The color is related to bit 2 of the internal port number. If bit 2 of the internal port number is 0b, the
port is blue, and if bit 2 is 1b the port is red.

5.4 Chip Management Logic

This section provides an overview of the FM5000/FM6000 management logic (see Figure 5-6). The
management blocks are all connected through a fully provisioned 12 x 12 crossbar, which provides full
bandwidth between multiple blocks simultaneously. As shown, the crossbar interface labels indicate
whether a block act as an Initiator (I), Target (T) or both. All targets can be accessed by up to four
initiators at the same time. The two exceptions are the frame handler manager, which can be accessed
by up to five initiators, and the I2C/CRM block, which can be accessed by up to 3 initiators.

The initiators issue MEM_READ and MEM_WRITE operations. The targets execute MEM_READ and
MEM_WRITE operations. The MEM_READ operation requires a data response. The management targets
contain scratch registers that are used to accumulate atomic data for entries larger than 32 bits. Each
target has one atomic data scratch register per initiator, except for the I2C/CRM block, which has only
three sets of these registers. Each target also has a small FIFO that, when full, sends back pressure to
the crossbar.

The crossbar back pressures an initiator if that initiator tries to push a transaction to a target that has a
full FIFO.

Figure 5-5 EPL Coloring

FM5000/FM6000 Datasheet—Frame Processing

48 331496-001

5.4.1 I2C/CRM Block

The Counter Rate Monitor (CRM) block is used to reduce the need for an external CPU to perform
repetitive periodic operations in the switch. This block also contains I2C, SPI, GPIO and LED interfaces.
This block acts as a initiator to control and monitor other targets, or as a target for other initiators. It
also acts as an initiator and target at the same time.

This block can be accessed by up to three management blocks simultaneously.

5.4.2 EBI Block

The EBI block provides a legacy parallel CPU interface to the switch and acts as a low latency
management interface to external devices for applications such as congestion monitoring.

This block acts as an initiator to control and monitor other targets, as a target for other initiators, or as
an initiator and target at the same time. The EBI block is accessed by up to four management blocks
simultaneously.

The EBI block can be an initiator for I2C (if the FM5000/FM6000 is targeted by a remote I2C initiator to
do a memory read or write) or for CRM, and uses a round-robin arbiter to determine which of these two
devices can initiate a transaction.

Figure 5-6 Management Logic

331496-001 49

Frame Processing—FM5000/FM6000 Datasheet

5.4.3 PCIe Block

The PCIe block provides a high bandwidth CPU interface to the switch and has a packet interface to the
data fabric that includes a data FIFO. This block also acts as an initiator to control and monitor other
targets, as a target for other initiators, or as an initiator and target at the same time.

The PCIe block can be accessed by up to four management blocks simultaneously.

5.4.4 MSB Block

The Management Switch Bridge (MSB) block is a target packet interface to the data fabric. It is mainly
used for packet transfers to the EBI block using a built-in FIFO.

This block can be accessed by up to four management blocks simultaneously.

5.4.5 SPICO JTAG Block

The SPICO micro-controller is a target device used to configure and monitor the SerDes portion of the
EPL logic using a daisy-chained control loop. The operation of the micro-controller can be configured by
other initiator devices connected to the management crossbar. It also contains the external JTAG
interface.

This block can be accessed by up to four management blocks simultaneously.

5.4.6 EPL Manager

The EPL manager is used to configure and monitor the digital portion of the EPL logic. It uses a 16-bit
bus that is connected to the EPL4 blocks through a daisy-chain control loop. The reads and writes are
done through a special command that contains a port/register address followed by two 16-bit data
words, providing 32-bit register access.

This is a target block that can be accessed by up to four management blocks simultaneously.

5.4.7 Frame Handler Manager

The frame handler manager is a target block and is accessed by up to five management blocks
simultaneously. This is an important management block that is used to configure and/or monitor many
of the key frame handler blocks. It operates through a 32-bit wide daisy-chain control loop using a
command that contains a block/register address followed by one, two, three or four 32-bit data words.
This enables up to a 128-bit wide register access.

When reading or writing to the various frame handler tables, these register access commands compete
for part of the frame processing bandwidth. Because of this competition, a Bandwidth Manager (BM)
block is used to ensure management traffic is best effort and does not impact the overall Ethernet
frame processing bandwidth. Because of the daisy-chain bus structure and the potential delays caused
by the bandwidth manager, posted writes are used by the initiators accessing this block.

FM5000/FM6000 Datasheet—Frame Processing

50 331496-001

5.4.8 L2 Sweeper Manager

The L2 sweeper manager is used for maintenance of the L2 lookup table providing hardware
acceleration of common table-wide searches and entry transformations. It contains both an initiator
and target interface to the management crossbar. The target interface is accessed by up to four
initiators, which can configure and monitor the operation of the sweeper functions. The initiator
interface uses the management crossbar to access the L2 lookup table through the frame handler
manager.

This is the reason the frame handler manager supports up to five initiators simultaneously.

5.4.9 Congestion Management Monitor

The congestion management monitor is used to provide a direct, low-latency path to the registers in
the congestion management block. This low latency is important for applications that use external
devices such as CPUs or FPGAs that must receive very fast updates on the state of congestion in the
switch.

This is a target block and can be accessed by up to four management blocks simultaneously.

5.4.10 Scheduler Manager

The scheduler manager is a target block accessed by up to four management blocks simultaneously.
This block is used to configure and/or monitor several frame handler blocks including the schedulers, L3
multicast tables and the egress modification unit. It operates through a 32-bit wide daisy-chain control
loop using a command that contains a block/register address followed by one, two, three or four 32-bit
data words. This enables up to a 128-bit wide register access.

5.5 Parsing and Association

5.5.1 Parser

The FM5000/FM6000 parser processes each frame's incoming byte sequence according to programmed
rules, mapping the frame's conditionally-formatted header fields into fixed hardware channels. At the
hardware level, very little of this functionality is specific to Ethernet, IP, TCP, or any other protocol
supported by the device. The parser's operation is defined almost entirely by microcode-specified
transformations of its internal state and output channels.

At a high level, the parser can be viewed as an iterative state machine that consumes successive four-
byte words of the frame on each iteration. In response to the incoming frame contents and its internal
state, the parser maps the frame data to specific fields of a 88-byte output bus. It also records
properties of interest about the frame by setting specific bits of a 40-bit output flags vector. Finally, it
transforms an internal 32-bit register to preserve and update parsing state from one cycle to the next.

To maintain fully pipelined operation, the parser implementation is physically unrolled in hardware, with
each parser slice representing one iteration of the parsing state machine as shown in Figure 5-7.

331496-001 51

Frame Processing—FM5000/FM6000 Datasheet

Each successive slice receives the next word of frame data and the prior slice's 32-bit state output.
These two 32-bit quantities are combined into a 64-bit key and looked up in a TCAM, the result of which
determines an action specifying the following: how to update the state vector, what flags to set, and
how the frame data should be mapped to the slice's 88-byte output channel that ripples from slice-to-
slice. At the end of the slice array, the 88-byte channel represents the frame's parsed header fields that
are passed on to the association block.

The parser includes 28 slices, providing a maximum parsing visibility of 112 bytes into each frame. The
112 bytes includes any preamble bytes that the EPL might be configured to interpret as frame data.

The HEADER output structure contains the following channels:

• HEADER.FLAGS — 40 flag bits. Any slice can set any bit.

• HEADER.FIELDS[0..43] — 88 bytes of header fields, partitioned into 44 x 16-bit units. These
output header field channels are divided into two categories:

— Initialized fields (FIELDS[0..3] and FIELDS[8..11]): Initialized with per-port defaults. These
fields allow per-byte enables on overwriting the value.

— Power-gated fields (FIELDS[4..7] and FIELDS[12..43]): Not initialized. For power savings
purposes, these fields are only active in the hardware if a slice assigns to them. If an
unassigned field is referenced downstream in the pipeline, it assumes the value 0x0.

• HEADER.CHECKSUM — 16-bit ones-complement checksum. Calculated over specific 16-bit half-
words of the frame payload, as identified by the parsing microcode.

The association stage that follows the parser maps the generic FIELDS channels to specific named
channels representing their expected application usage in the frame processing pipeline.

Figure 5-7 Parser Block Diagram

FM5000/FM6000 Datasheet—Frame Processing

52 331496-001

5.5.2 Channel Initialization

As previously shown, the state vector's initial value is determined by the frame's physical ingress port.
This enables different ports to support different parsing configurations, such as enabling F64-tagging or
matching against a port-specific DMAC. It is expected that 8-16 bits of the state vector is likely
available for such per-port configuration constants. Microcode would leave these bits unmodified
through the slice array.

Note: The source port itself is not automatically included in the state vector, although the initial
state table could be configured to include it at the cost of seven bits.

Eight of the 44 16-bit FIELDS channels are also initialized with values from a source port indexed table.

This mechanism is provided as a way to associate port-dependent default values with optional header
fields such as VLAN IDs and ISL tag values. The other 36 FIELDS values are initialized to zero at the
input to the slice array.

5.5.3 Parser Slice

Figure 5-8 shows the data flow and processing structures within each parser slice.

The CAM and RAM each contain 128 entries. Of all matching entries in the CAM, the highest-numbered
one determines the index looked up in the action RAM. If there is no match, entry 0 is the hit index.

The action entry determined by this index specifies a set of state and header channel transformations
(entry 0 must contain the default action when there is no hit). The state transformation action consists
of four 12-bit operations, one for each byte (STATE8) of the state vector. Each STATE8 operation
specifies one of four transformations:

Figure 5-8 Parser Slice Data Flow and Processing

331496-001 53

Frame Processing—FM5000/FM6000 Datasheet

On the output header transformation side, the following set of actions are supported:

• Flags — Set any of the general-purpose bits in FLAGS[37:0]. Clearing bits are not supported.

• Header Length Assertion — In addition, control is provided for the special-purpose
IncompleteHeader flag (FLAGS[38]): Each action specifies a byte count that is interpreted as an
assertion on the number of FRAME_DATA bytes that must be valid. If the frame ends unexpectedly
and the number of valid bytes does not match this value, the IncompleteHeader flag is set and
parsing terminates.

• Checksum — Add FRAME_DATA[31:16] and/or FRAME_DATA[15:0] to CHECKSUM.

• Fields Assignment — Each 16-bit halfword from FRAME_DATA can be assigned to any FIELDS
channel.

— Before assignment, each halfword might be barrel-shifted by some multiple of four bits.

— Assignment is enabled on a per-byte basis. Any unassigned bytes of any FIELDS channel is
propagated to the next slice unmodified.

• Parsing Termination — This action might specify that parsing is complete, and no more frame
bytes need to be examined. This is to optimize latency, so that the parser need not wait for the
remaining bytes of the frame (though since the parser produces output in frame order, there might
still be a delay if the previous frame needed to be parsed more deeply).

This is illustrated in Figure 5-9.

Absolute GOTO STATE8: = immediate

Relative GOTO STATE8: = STATE8 + immediate

OVERWRITE STATE8: = FRAME_DATA[8*n+7:8*n] + immediate

OVERWRITE2 STATE8: = FRAME_DATA[8*n+7:8*n]*2 + immediate

Figure 5-9 Parser Muxing Dataflow per FRAME_DATA Halfword

FM5000/FM6000 Datasheet—Frame Processing

54 331496-001

5.5.4 Parser Byte Ordering

Incoming packets are simple arrays of bytes. In most protocols, such as 802.3 and TCP/IP, the larger
structures within the packet are transmitted most significant byte first. To facilitate software handling of
the different fields, the parser follows this convention and maps incoming bytes into the CAM and
output multiplexers with the first byte received loaded into the most significant byte of those
structures. Output multiplexers can be programmed to swap the bytes (by rotating by eight bits) if
required but normally does not do so.

This is illustrated in Figure 5-10. Note that the states are encoded differently.

Figure 5-10 does not include the shift transformation that can optionally be applied to each slice's
FRAME_DATA parsing window. See the ShiftNextSlice action field listed in Table 5-3 for an explanation
of this transformation.

Figure 5-10 Big/Little Endian Parsing

331496-001 55

Frame Processing—FM5000/FM6000 Datasheet

5.5.5 Action Encoding

Each parsing slice's actions are encoded in its Action SRAM listed in Table 5-3.

Table 5-3 Parser Action SRAM Encoding

Field Width Description

StateOp0 2 Encodes state transformation operation per STATE8 byte of state vector. For N=0..3:
0 = STATE8 := STATE8 + StateValueN
1 = STATE8 := StateValueN
2 = STATE8 := FRAME_DATA[8 ·M+7:8 ·M] + StateValueN
3 = STATE8 := FRAME_DATA[8 ·M+7:8 ·M] ·2 + StateValueN

All arithmetic is mod 256. The FRAME_DATA byte index M is calculated as:
M=(N+StateFrameRot)%4

where StateFrameRot is a value 0..3.

StateOp1 2

StateOp02 2

StateOp3 2

StateValue0 8

Immediate value for use with StateOp.
StateValue1 8

StateValue2 8

StateValue3 8

StateFrameRot 2 Byte rotation amount to apply to the slice's frame data prior to applying state transformations.

SetFlags 38 Specifies flag bits to be set.
FLAGS : = FLAGS | SetFlags.
Note: Designers cannot directly set these flags: IncompleteHeader and ParityError.

Halfword0Dest 6 Specifies the index of the 16-bit output FIELDS channel to which the top (Halfword0) and bottom
(Halfword1) sixteen bits of the slice's frame data is mapped. If Halfword0Dest = Halfword1Dest,
assignments from the upper 16 bits of frame data have higher precedence.Halfword1Dest 6

Halfword0Rot 2 Specifies the nibble rotation to apply to the top (Halfword0) and bottom (Halfword1) 16 bits of the
slice's frame data (one of four rotations that is applicable to both of the half-word's byte
assignments.) Not supported for the top 8 parsing slices.Halfword1Rot 2

Byte0Enable 1

For each post-rotated byte of frame data, specifies whether to overwrite the corresponding output
data FIELDS as indexed by Halfword XDest.

Byte1Enable 1

Byte2Enable 1

Byte3Enable 1

Halfword0Add 1
Specifies whether the bottom and top 16 bits of frame data are added to CHECKSUM.

Halfword1Add 1

ShiftNextSlice 3 Specifies an additive byte shift offset to apply to the next slice's frame (0..7).
Slice number i sees the following four-byte sequence of frame data:

FRAME_DATA =
FRAME_BYTES[4*i+3-window_shift:4*i-window_shift]

This is also referred to as the slice's parsing window. The three-bit window_shift state is propagated
from slice-to-slice. By setting ShiftNextSlice to a non-zero value, the next slice's window_shift is
advanced by the specified amount (modulo 8).

LegalPadding 2 Specifies the number of valid bytes of frame data (of four) that are required by this slice.
The quantity is encoded in terms of padding bytes, or 4-num_valid_bytes. Hardware evaluates the
following condition:

4-LegalPadding <= num_valid_bytes

If the test fails, the IncompleteHeader flag is set (bit 37), indicating that the frame ended
prematurely.
Note: The frame payload presented to the parser might include the final CRC word.

FM5000/FM6000 Datasheet—Frame Processing

56 331496-001

The mapping of frame data to output FIELDS channel is precisely defined as follows:

5.5.6 Header Flags

Three bits of HEADER.FLAGS have specific fixed-function definitions within the parser (see Table 5-4.)

All other flag bits are set exclusively under microcode control using the SetFlags action. However,
certain ACTION_FLAGS bits that originate as parser flags do have specific interpretation downstream in
the pipeline.

By setting those flags, the parsing microcode can effectively control the operation of the relevant
downstream fixed-function logic. These flag bits are described in Section 5.5.9.

5.5.7 Association Named Channels

The association stage is a thin layer of fixed-function mapping rules at the output of the parser. For the
most part, this association function involves no more than mapping the parser's generic FIELDS
channels (and in some cases, sub-fields of these channels) to specific named hardware channels. The
only logical operations applied by the association stage involve the Quality-of-Service (QoS) fields as
described in the sections that follow.

TerminateAllowd 1 Set if the frame might legally terminate in the slice's parsing window, or in any un-parsed bytes that
might precede the next slice's parsing window.
Note: The latter condition might arise when window_shift is advanced beyond 7. If not set, and the

next slice's parsing window contains no valid bytes, the IncompleteHeader flag is raised.

Terminate 1 Specifies that parsing must terminate at this slice.
No further changes to FIELDS, FLAGS, or CHECKSUM takes effect following any rule that sets this bit
to 1b.

data16[0] := BarrelShiftLeft({frame_data[0],frame_data[1]}, 4·Halfword0Roll)
data16[1] := BarrelShiftLeft({frame_data[2],frame_data[3]}, 4·Halfword1Roll)

FIELDS[Halfword0Dest][15:8] := Byte0Enable ? data16[0][15:8] : FIELDS[Halfword0Dest][15:8]
FIELDS[Halfword0Dest][7:0] := Byte1Enable ? data16[0][7:0] : FIELDS[Halfword0Dest][7:0]
FIELDS[Halfword1Dest][15:8] := Byte2Enable ? data16[1][15:8] : FIELDS[Halfword1Dest][15:8]
FIELDS[Halfword1Dest][7:0] := Byte3Enable ? data16[1][7:0] : FIELDS[Halfword1Dest][7:0]

Table 5-4 Parser Header Flag Definitions

Flag Bit Description

ChecksumError 37 Set in microcode to enable checksum testing. Cleared if the final ones-complement sum of all
halfwords identified by the Halfword{0,1}Add actions equals 0xFFFF; otherwise, remains set,
indicating a bad checksum.

IncompleteHeader 38 Indicates that a slice's header length assertion failed.

ParityError 39 Indicates that a hardware parity error was detected in one of the slice SRAMs.

Table 5-3 Parser Action SRAM Encoding (Continued)

Field Width Description

331496-001 57

Frame Processing—FM5000/FM6000 Datasheet

Table 5-5 lists the fixed mapping between the parser FIELDS outputs and the channels referenced
downstream in the frame processing pipeline. Channels with a yellow background have some fixed-
function interpretation by subsequent stages in the pipeline. The specific handling rules of all other
fields are determined only by microcode and register configuration.

Table 5-5 Parser Fixed Mapping

Channel Width Parser FIELDS
Channel Source1 Notes2

SRC_PORT 7

QOS 24 0/11:8 = ISL_PRI
1/15:12 = L2_VPRI1
2/15:12 = L2_VPRI2
16/7:0 = L3_PRI
11/11:8 = W4

All QoS-related fields with special association rules.
Contains the following fields that are derived from the frame header
and per-port defaults.
Note: All of these mappings from specific header fields are

microcode-dependent.
ISL_PRI (4 bits) — Priority from ISL tag (formerly Switch

Priority in the FM4000 series).
L2_VPRI1 (4 bits) — Priority (+CFI bit) from outer VLAN tag.
L2_VPRI2 (4 bits) — Priority (+CFI bit) from inner VLAN tag.
L3_PRI (8 bits) — Priority (TOS or traffic class) from IP

header.
Note: DSCP field is L3_PRI[7:2], CU is
L3_PRI[1:0].

W4 (4 bits) — Generic priority available for
configurable use. For example, might
be assigned from an MPLS tag's EXP
field.

ISL_FTYPE 3 0/15:14 FTYPE from the ISL tag. Has no fixed-function hardware
interpretation.

ISL_VTYPE 2 0/13:12

ISL_USER 8 0/7:0

L2_VID1 12 1/11:0 Outer or S-Tag VID (source in same FIELD as QOS.L2_VPRI1).

L2_VID2 12 1/11:0 Inner or C-Tag VID (source in same FIELD as QOS.L2_VPRI2).

ISL_SGLORT 16 3 Guaranteed to be non-zero (by microcode).

ISL_DGLORT 16 4

L2_DMAC 48 7 = L2_DMAC[47:32]
6 = L2_DMAC[31:16]
5 = L2_DMAC[15:0]

L2_SMAC 48 14 = L2_SMAC[47:32]
13 = L2_SMAC[31:16]
12 = L2_SMAC[15:0]

L2_TYPE 16 15 EtherType

L3_FLOW 20 (16/15:12,17/15:0) Flow label (IPv6) (>>4 rotation of IPv6 header bytes 0..1 expected
to align traffic class with FIELDS16[16][7:0], putting
FlowLabel[19:16] in FIELDS16[16][15:12].)

L3_LENGTH 16 18 Total IP length (IPv4) or IP payload length (IPv6).

L3_TTL 8 19/15:8

L3_PROT 8 19/7:0 Refers to the L4 protocol number (specified by the L3 header).

FM5000/FM6000 Datasheet—Frame Processing

58 331496-001

In hardware, these fields are all named as previously listed. These names should be viewed as
identifying their default interpretation by the frame processor. To support certain features (such as
MAC-in-MAC or extra-deep inspection), some of these fields (like L3_DIP) might be overloaded for
these alternate purposes. The fixed number of bits available in hardware for header field extraction
represents one constraint on the number of frame processing features that the FM5000/FM6000 can
simultaneously support.

These fields as parsed-and-associated and are referred to by the names previously mentioned. For
example, any reference to L2_DMAC always means the value associated with the ingress frame. L3
action resolution has the capability to select a different DMAC for the egress frame(s), but if it does so,
it annotates this new DMAC into a generic field within the ACTION_DATA channel. The L2_DMAC
channel name always refers to the value produced at the output of parsing and association.

L3_SIP 128 33 = L3_SIP[127:112]
32 = L3_SIP[111:96]
39 = L3_SIP[95:80]
38 = L3_SIP[79:64]
37 = L3_SIP[63:48]
36 = L3_SIP[47:32]
21 = L3_SIP[31:16]
20 = L3_SIP[15:0]

IPv4 SIP goes in L3_SIP[31:0]

L3_DIP 128 33 = L3_DIP[127:112]
32 = L3_DIP[111:96]
39 = L3_DIP[95:80]
38 = L3_DIP[79:64]
37 = L3_DIP[63:48]
36 = L3_DIP[47:32]
21 = L3_DIP[31:16]
20 = L3_DIP[15:0]

IPv4 SIP goes in L3_DIP[31:0]

L4_SRC 16 24

L4_DIST 16 25

FIELD16[A..I] 9 x 16-bits 26..27 = FIELD16{A,B}
8..11 = FIELD16{C,D,E,F}
40..42 = FIELD16{G,H,I}

Leftover generic header fields available for deep inspection and
other configurable uses.
FIELD16A (FIELDS[8]) and FIELD16B (FIELDS[9]) have special
significance to the FFU. Specifically, they map to keys that can be
assigned from action outputs at the Remap point midway through
the slice array:

FIELD16A[7:0] = LABEL8A
FIELD16A[15:8] = LABEL8B
FIELD16B = LABEL16

The FIELD16{A..I} channels have specific fixed-function
interpretation when the parser sets the PAUSE_Frame flag (bit
#34). For PAUSE frames, these channels are used to communicate
the pause time(s) and per-class enable vector to the congestion
management stage for PAUSE reception handling.
Note: The FIELD16{C..F} initial values are programmable per

port.
FIELD16I is used by the QOS mapper, and is not available as an FFU
key.

Unused 16 43

1. Notation is n/hi:lo, indicating the corresponding channel is set from the parser HEADER.FIELDS[n][hi:lo] output.
2. The FIELDS[0..3] and FIELDS[8..11] initial values are programmable per port; FIELDS[4..7] and FIELDS[12..43] initial values are

zero. FIELDS retains their value unless a particular field is changed by the parser.

Table 5-5 Parser Fixed Mapping (Continued)

Channel Width Parser FIELDS
Channel Source1 Notes2

331496-001 59

Frame Processing—FM5000/FM6000 Datasheet

5.5.8 QoS Handling

The parser extracts and associates the following QoS-related fields:

• ISL_PRI (4 bits) — Primary QoS classification in the pipeline.

— In the mapper stage, ISL_PRI can be mapped from each of the other priority fields with
configurable precedence.

— Association rules in the mapper are defined by a configurable CAM/RAM structure.

— Nominally taken from FIELDS[0][11:8].

• L2_VPRI1 (4 bits) — Primary L2 priority.

— Assigned from FIELDS[1][15:12] via a per-port mapping table.

• L2_VPRI2 (4 bits) — Secondary L2 priority.

— Assigned from FIELDS[2][15:12] via a per-port mapping table.

• L3_PRI (8 bits) — L3 priority

— Taken from FIELDS[16][7:0].

— Nominal interpretation: TOS (IPv4) or traffic class (IPv6).

— Top six bits (L3_PRI[7:2]) interpreted and transformed later in the pipeline as DSCP.

• W4 (4 bits) — Extra 4-bit QoS field available for configurable use.

— Assigned from FIELDS[11][11:8] via a per-port mapping table.

— Potential application-dependent definitions:

• MPLS EXP field

• PBB BVLAN tag's PRI+CFI field.

In later stages in the pipeline, these QoS fields are always transformed together as a group. The 24-bit
structured channel is referred to as QoS. As with other structured channels, its sub-channels are
referenced using a dotted notation (such as QOS.ISL_PRI).

5.5.9 Action Flags

In addition to the fixed header fields, the parser's flag bits seed the ACTION_FLAGS channel that
propagates throughout the subsequent stages of the frame processing pipeline. These flags convey
specific properties of interest to downstream logic. In particular the L3 and L2 action resolution stages
respond to the flags by applying different processing actions to the frame. The width of the
ACTION_FLAGS vector begins as the parser's 40 bits of HEADER.FLAGS and expands from stage to
stage in the pipeline as more conditions are evaluated.

To support basic Ethernet switch/router functionality, the parser microcode is expected to define the
following set of flag bits (or one very similar to it). While the parsing stage itself only defines three
fixed-function flag bits (37..39), other specific flags bits are interpreted by downstream fixed-function
logic. These are highlighted in yellow in Table 5-6. All other flag definitions should be interpreted as
suggestions for microcode programming.

FM5000/FM6000 Datasheet—Frame Processing

60 331496-001

Table 5-6 Parser Action Flags

Flag Bit Notes

Unbound 0 Available for configurable use.

ISL_RX_Tagged 1 Indicates that the ingress frame carried an ISL tag.

ISL_Type[1:0] 3:2 If ISL_RX_Tagged = 0x1, indicates the ISL tag format (F32, F64, F96).

ISL_FType[1:0] 5:4 Indicates the frame type as specified by the ISL tag or assigned.

L2_VLAN1_RX_Tagged 6 Has S-TAG; dependent on EtherType match.

L2_VLAN2_RX_Tagged 7 Has C-TAG; dependent on EtherType match.

L3_IsIPv4 8 Dependent on EtherType.

L3_IsIPv6 9 Dependent on EtherType.

ISL_IDGLORT_NonZero 10 Set if ingress DGLORT was non-zero.

ISL_ISGLORT_NonZero 11 Set if ingress SGLORT was non-zero.

L3_DIP_V4InV6 12 DIP[127:32] = 0xFFFF or DIP[127:32] = 0x0

L3-TTL_Expired 13 (ttl = 0x0 or ttl = 0x1).

L3_HeadFrag 14 Head fragment bit.

L3_DontFrag 15 Do not fragment bit.

L3_Options 16 Options present or not.

L3_Mcst 17 Derives from bit 40 of DMAC.

L3_Bcst 18 Derived by (DMAC = 1) comparison.

L3_Mcst 19 Hard-coded condition, depends on v4/v6 and top few bits of DIP.

PBB_RX_Tagged /
MPLS_RX_Tagged[0]

20 Indicates whether the ingress frame was PBB tagged or the MPLS stack depth.

PBB_HeaderType /
MPLS_RX_Tagged[1]

21 Identifies one of two PBB header types or indicates the MPLS stack depth.

L3_IPv6_HopByHop 22

Unbound 23 Available for configurable use.

HdrOffsets[7:0] 31:24 Might encode L3 and L4 header offsets (measured in 32-bit words).
L3AR provides a mux pathway to ACTION_DATA (and eventually MOD_DATA) so that these
bits can be annotated in the egress frame(s). A likely encoding represents the L3 offset
with HdrOffsets[2:0] and the L4 offset with HdrOffsets[7:3].

L2_VID1_Translate 32 Used by the mapper in some configurations. See Section 5.6.2, “VID Tables”

L2_VID2_Translate 33 Used by the mapper in some configurations. See Section 5.6.2, “VID Tables”

PAUSE_Frame 34 Set on pause frames. Instructs the congestion management stage to interpret FIELD16B as
a pause time to apply to SRC_PORT. See Section 5.18.7, “Pause Frame Reception”

PAUSE_CBPFrame 35 Set on class-based pause frames, only relevant when PAUSE_Frame is also set.
Causes FIELD16A and FIELD16{C..I}, in addition to FIELD16B, PAUSE_CBPFrame 35 to
communicate PAUSE-related information for class-based PAUSE handling. See Section
5.18.7, “Pause Frame Reception”

Unbound 36 Available for configuration use.

ChecksumError 37 Indicates that the parser's header checksum calculation did not sum to 0xFFFF as required.

IncompleteHeader 38 Indicates that a slice’s header length assertion failed.

ParityError 39 Hardware parity error.

331496-001 61

Frame Processing—FM5000/FM6000 Datasheet

Note: These flags have mixed-case names since they refer to constant bit index numbers within
this channel.

5.6 Mapper

The mapper stage contains a number of mapping structures, such as maps, CAMs, and range
compares. It serves a number of purposes:

• Recognizes particular header field values of interest (such as IEEE reserved DMAC addresses,
virtual router DMAC addresses, etc.).

• Compresses wide header fields into smaller identifier values when structure is present in those
fields (such as TCP port ranges).

• Remaps the VID1 and/or VID2 (VLAN ID) numbering spaces for software purposes.

• Tags particular header field values of interest with configurable or fixed-function properties (such as
the routable property associated with VLANs, source ports, and DMACs).

• Classifies each frame by assigning it a scenario value, used by the FFU.

The mapper stage transforms the raw frame header fields produced by the parser into a more compact
form for FFU and action resolution processing. Without these compression tables, far more TCAM
resources are required to implement commonly required matching conditions. Some mapper outputs
are available only to the downstream action resolution stages. All other outputs are sent directly to the
FFU, typically for use as TCAM and BST input keys.

Some of the CAMs in the mapper have two or sometimes even three seemingly redundant instances.
The motivation for this redundancy is to provide independent classification sets for different software
layers. For example, the three DMAC_CAMs are provided for independent use by microcode, ACLs, and
routing.

In the structure diagrams shown in Figure 5-11, blue outputs correspond to flag bits that are
aggregated in the ACTION_FLAGS channel. Red outputs are available only to the downstream action
resolution stages: L2 Action Resolution (L2AR) and L3 Action Resolution (L3AR). All other outputs are
sent directly to the FFU, typically for use as TCAM and BST input keys.

5.6.1 SRC_PORT_TABLE

This 76- x 31-bit mapping table produces three eight-bit ID outputs and two flag bits from the frame's
physical source port number.

Figure 5-11 Source Port Mapper

FM5000/FM6000 Datasheet—Frame Processing

62 331496-001

The mapped SRC_PORT_ID values identify port classes that share common sets of FFU rules. Two of
these IDs (ID1 and ID2) are available as keys to the FFU's primary CAM. The lower four bits of
SRC_PORT_ID2 can also be referenced in the initialization of the FFU_DATA.W24 field.

The 8-bit SRC_PORT_ID3 is available in the FFU's SCENARIO_CAM and is intended for power-gating
entire slices that are known to contain no applicable rules. SRC_PORT_ID4 is included in the L3AR CAM
key.

The SRC_PORT_Flag{1,2} bits are available downstream in the pipeline as bits in the ACTION_FLAGS
channel. In particular, SRC_PORT_Flag1 is available in the FFU TCAM slices' SCENARIO_CAM keys. Its
expected use is to encode the L3-routed status of the ingress port. SRC_PORT_Flag2 has direct
application within the mapper unit for the control of VID translation.

The 5-bit SRC_PORT_QOS_TAG value is used internally by the mapper's QOS_CAM structure. It is not
propagated any further down the pipeline.

5.6.2 VID Tables

Two mapping tables are provided for classification and optional remapping of the VID1 and VID2 VLAN
IDs produced by the parser.

The mapping behavior of these two tables is determined by a profile configured in
MAPPER_VID_PROFILE_TABLE (see Table 5-7). The two-bit VID_MapperProfile field, set by the parser
as ACTION_FLAGS[33:32], selects the mapping profile to apply to the frame.

The SelectIndex1 and SelectIndex2 bits in the profile select each table's input index. A value of 0
selects L2_VID1; a value of 1 selects L2_VID2. By default, VID1_TABLE is indexed by L2_VID1 and
VID2_TABLE is indexed by L2_VID2.

The TranslateVID1 and TranslateVID2 bits in the VID_PROFILE_TABLE entry, one per VID table, controls
the output muxing of the L2_VID{1,2} fields that is used downstream in the pipeline. The 2-bit
MuxSelect field and the SRC_PORT_Flag2 bit also factors into this determination.

Figure 5-12 VID Mapping

331496-001 63

Frame Processing—FM5000/FM6000 Datasheet

Regardless of the MuxSelect setting, both the final VID value and the MAP_VID value are available as
FFU keys.

The VID1_TABLE and VID2_TABLE entries also specify TAG and flag values. The 2-bit TAG values are
available as bits in the SCENARIO_CAM. The 1-bit flag values set bits in the ACTION_FLAGS channel,
which are available for more flexible use in both L3AR and L2AR.

Flag bits are different from tag bits in that they can be redefined and overridden under software control
by the action resolution SetFlags action. Flag bits can also control specific fixed-function logic in the
pipeline, such as the L2_VIDx_Translate and SRC_PORT_Flag2 bits do in the mapper stage.

5.6.3 L2 CAM/RAM Mapping

Three CAM/RAM mapping structures are provided on the L2_DMAC and two on both the L2_SMAC
channels and L2_TYPE. Each CAM/RAM structure produces 4-bit or 5-bit IDs that are available as keys
to the FFU or action resolution stages. The highest-numbered matching entry in each TCAM determines
the index to look up in the RAM, which gives the output ID number. If no TCAM entry matches, the ID
from RAM entry 0 is returned.

The DMAC_RAM1 table is special in that it includes a 1-bit L2_DMAC_Flag in addition to the
L2_DMAC_ID1 index. The flag bit sets the corresponding bit in ACTION_FLAGS, which is also available
for muxing into the FFU's SCENARIO_FLAGS channel. The expected use for this flag is to indicate the
L3-routed status of the DMAC. For example, it identifies the router's MAC address.

The DMAC-related structures are shown in Figure 5-13. The SMAC and TYPE pathways are similar,
although neither includes any flag bits.

Table 5-7 Mapper VID Profile Table

MuxSelect TranslateVIDx SRC_PORT_Flag2 MUX Case

0 x x 0

1 x x 1

2 C x C

3 x C C

Note: “X” represents don’t care values. “C” represents the value of the flag.

Figure 5-13 L2 mapping

FM5000/FM6000 Datasheet—Frame Processing

64 331496-001

The expected uses of these ID outputs are:

• L2_DMAC_ID1, L2_DMAC_ID2, L2_SMAC_ID1 — Routing or ACLs

— There are no L2_SMAC_ID2.

• L2_DMAC_ID3, L2_SMAC_ID3 — Microcode, such as:

— CPU MAC identification

— Matching against reserved IEEE MAC ranges

— GMRP, GVRP, LACP, other slow protocol traps

• L2_TYPE_ID1 — ACLs

• L2_TYPE_ID2 — Microcode, such as:

— Pause frame identification

— VCN/QCN frame identification

5.6.4 L3 CAM/RAM Mapping

A collection of CAM/RAM mapping structures are provided on the L3 header fields that commonly
require exact and longest-prefix matching: DIP, SIP, and protocol. Three IDs are mapped from DIP and
SIP each. Figure 5-14 shows DIP CAMs only, same circuit is duplicated for the SIP CAMs) and two IDs
are mapped from the L3 protocol (L3_PROT).

Anticipated uses of the DIP and SIP identifiers:

• ID1 — Routing

• ID2 — ACLs

Figure 5-14 L3 Mapping

331496-001 65

Frame Processing—FM5000/FM6000 Datasheet

• ID3 — Identifies port backbone DMACs when DIP is overloaded for this purpose (PBB). Also
available for general second-order parsing when the DIP and SIP fields are overloaded for other
purposes.

The L3_PROT_IDs are intended for the following applications:

• ID1 — ACL rule compression, especially in conjunction with the L4_SRC_COMPARE and
L4_DST_COMPARE mapping structures.

• ID2 — L4 traps in L3AR.

If no entry matches the input key in any of the L3 CAMs, an index value of zero is produced.

5.6.5 L3_LENGTH_COMPARE

The L3_LENGTH_COMPARE structure implements range-based binning of the IP length header field. It
is configured with 16 lower-bound comparison values LowerBound[0..15]. The comparison structure
generates its L3_LENGTH_BIN output as follows:

The L3_LENGTH_BIN output is available as FFU and L3AR keys. It can be used to maintain statistics on
user-defined length bins for MTU-based dropping decisions, or for length-dependent routing rules.

5.6.6 L4 Port Mapping

The L4_SRC_COMPARE and L4_DST_COMPARE structures provide similar range-based matching of the
L4 source and destination port fields. They differ from the L3_LENGTH_COMPARE structure in the
following respects:

• An additional exact-match test against L3_PROT is included in each comparison.

• An arbitrary 16-bit ID value is specified for the matching entry. If the entry is determined to match
against the input L4_{SRC,DST}, the output L4_{SRC,DST}_ID value is assigned to the configured
ID.

• If there is no match, the mapped output is set to the original input port value, rather than zero.

• Each entry has a configured valid bit which must be set to 1b for the entry to match.

• To match against arbitrary (lower or upper) ranges specified as pairs of entries located anywhere in
the structure, an entry is only selected if the next entry does not match.

These properties enable the L4 port comparisons to support a variety of different usage models. For
example, exact-match port comparisons can be entered alongside range-based comparisons, with only
the mapped ID value then needed in FFU rules. For a given protocol, a list of single-sided range
comparisons can be defined by entering LowerBound points in sorted order, or double-sided ranges can
be defined by pairs of (lower or upper) entries entered in arbitrary order. In the latter usage model, the
upper entry would have their valid bits set to zero.

L3_LENGTH_BIN = 0
for i=0..15
 if (LENGTH_COMPARE[i].LowerBound ≤ L3_LENGTH)
 L3_LENGTH_BIN = LENGTH_COMPARE[i].Bin

FM5000/FM6000 Datasheet—Frame Processing

66 331496-001

The L4_SRC_COMPARE mapping function operates according to the following pseudo code:

The boundary-case index i=64 is evaluated as if LowerBound[64]=216. For example, LowerBound[64]
> L4_SRC always evaluates true. The L4_DST_COMPARE function has an analogous definition.

5.6.7 FFU Initialization

The mapper is responsible for initializing all of the channels that propagate through the FFU slices.
These include both the FFU's key input channels and its action output channels. Most keys are mapped
in a fixed manner from the parser outputs and from the outputs generated by the mapping structures
previously described. The fixed mapping from these fields to named FFU keys is specified in the FFU
register section.

A handful of keys and all of the action data channels are initialized with a limited degree of static
configurability, as described in the sections that follow.

5.6.8 SCENARIO_FLAGS

To minimize the SCENARIO_CAM key width, the FFU's scenario key includes only 16 of the
ACTION_FLAGS' 45 flag bits. Each bit of the 16-bit SCENARIO_FLAGS is individually selected by the
96-bit SCENARIO_FLAGS_CFG register. This muxing is applied after all flag bits defined by the mapper
structures have been set.

5.6.9 FFU Action Data

In many applications, the FFU action data channels must be initialized to meaningful values to properly
handle the case that no action assigns a new value. Fields in the MAPPER_FFU_INIT register specify the
static muxing of each channel's initialization source listed in Table 5-8.

L4_SRC_ID = L4_SRC
for i=0..63
 if (Valid[i] && LowerBound[i] ≤ L4_SRC && Protocol[i] == L3_PROT &&
 (LowerBound[i+1] > L4_SRC || Protocol[i+1] ≠ L3_PROT))
 L4_SRC_ID = ID[i]

Table 5-8 Mapper FFU Initialization Source

Field Bits Mux Select Value Input Source

FFU_DATA.W24 15:0 W24_MuxSelect 0 0 (constant)

1 ISL_DGLORT

2 ISL_SGLORT

3 [SEC_PORT_ID2[3:0], L2_VID2]1

331496-001 67

Frame Processing—FM5000/FM6000 Datasheet

The FFU TAG channels are always initialized to zero.

FFU_DATA.W16A 11:0 W16A_MuxSelect1 0 0 (constant)

1 L2_VID1

2 L2_VID2

3 MAP_VID1

4 MAP_VID2

FFU_DATA.W16A 15:12 W16A_MuxSelect2 0 0 (constant)

1 QOS.L2_VPRI1

2 QOS.L2_VPRI2

FFU_DATA.W16B 11:0 W16B_MuxSelect1 0 0 (constant)

1 L2_VID1

2 L2_VID2

3 MAP_VID1

4 MAP_VID2

FFU_DATA.W16B 15:12 W16B_MuxSelect2 0 0 (constant)

1 QOS.L2_VPRI1

2 QOS.L2_VPRI2

FFU_DATA.W8A 7:0 W8A_MuxSelect 0 0 (constant)

1 [QOS.ISL_PRI, QOS.W4]

2 ISL_USER

3 QOS.L3_PRI

FFU_DATA.W8b 7:0 W8b_MuxSelect 0 0 (constant)

1 [QOS.ISL_PRI, QOS.W4]

2 ISL_USER

3 QOS.L3_PRI

FFU_DATA.W8c 7:0 W8c_MuxSelect 0 0 (constant)

1 [QOS.ISL_PRI, QOS.W4]

2 ISL_USER

3 L3_TTL

1. L2_VID2 muxed by the VID mapping stage. In all cases, the top four bits of W24 is zero.

Table 5-8 Mapper FFU Initialization Source (Continued)

Field Bits Mux Select Value Input Source

FM5000/FM6000 Datasheet—Frame Processing

68 331496-001

5.6.10 QoS Mapping

A number of mapping functions are provided to reconcile frame QoS priorities across different protocol
layers, VLANs, ports, and multi-chip switch domains. Generally, the ISL tag priority (ISL_PRI) is
intended to be interpreted as the frame's canonical priority value. From this four bit value, the
scheduling traffic class and shared memory partition are mapped prior to congestion management and
egress scheduling policy evaluations.

The QoS mapping tables provided on ingress involve three stages of ISL_PRI determination:

1. Source port based normalization of all L2 priority fields. The L3 L3_PRI field is not normalized by
port.

2. Layer-based normalization of all QoS fields.

3. CAM/RAM-based precedence selection of all QoS fields for the final ISL_PRI value. The parser's
action flags and SRC_PORT_QOS_TAG are available as keys in this function.

Figure 5-15 shows the QoS mapping data flow.

As with all other CAM structures in the FM5000/FM6000, if no QOS_CAM entry matches the input key, a
value of zero is produced, which indexes QOS_RAM[0].

A second QOS_CAM/RAM structure (not shown in Figure 5-15) can be used to control an input
assignment stage of the 4-bit QoS fields (L2_VPRI1, L2_VPRI2, and W4). Since the parser does not
support masked assignment of fields smaller than eight bits, for some applications the hard-coded bit

Figure 5-15 QoS Mapping

331496-001 69

Frame Processing—FM5000/FM6000 Datasheet

assignments of the 4-bit QoS fields might be incorrect. To workaround such cases, the parser might
extract the appropriate byte of the header to the FIELD16I channel, and the QOS_CAM/RAM mapping
can be used to select the final assignment of these QoS nibble fields from the appropriate nibble of
FIELD16I.

Both CAM/RAM structures share the same input key. In the register definitions, QOS_CAM1 and
QOS_RAM1 refer to the CAM/RAM structure controlling the QoS nibble field assignments, while
QOS_CAM2 and QOS_RAM2 control the ISL_PRI assignment.

Table 5-9 lists the mux pathways available for these QoS field assignments. The L2_VPRI1_Select,
L2_VPRI2_Select, and W4_Select are each 2-bit fields mapped from QOS_RAM1.

These assignments are made prior to all uses of the QoS fields within the mapper. For example,
QOS_PER_PORT_VPRI1, QOS_L3_PRI_TO_ISL, etc.

5.6.11 Mapper Outputs

Table 5-10 lists all new, non-flag outputs produced by the mapper. also lists the availability of these
fields downstream in the pipeline.X

Table 5-9 QoS Nibble Field Mux Cases

QoS Field
QOS_RAM1.FIELD_Select Case (per field)

0 1 2 3

L2_VPRI1 As parsed FIELD16I[15:12] FIELD16I[11:8] FIELD16I[7:4]

L2-VPRI2 As parsed FIELD16I[15:12] FIELD16I[11:8] FIELD16I[7:4]

W4 As parsed FIELD16I[15:12] FIELD16I[7:4] FIELD16I[3:0]

Table 5-10 Mapper Outputs

Field Width
Downstream Consumers

FFU (S-key)1 FFU (key) L3AR (key) L3AR (mux) L2AR (key)

SRC_PORT_ID1 8 No Yes No No No

SRC_PORT_ID2 8 No Yes No No No

SRC_PORT_ID3 8 Yes No No No No

SRC_PORT_ID4 8 No No Yes No No

L2_VID1 12 No Yes No Yes No

L2_VID2 12 No Yes No Yes No

MAP_VID1 12 No Yes Yes No No

MAP_VID2 12 No Yes Yes No No

VID1_TAG 2 Yes No No No No

VID2_TAG 2 Yes No No No No

L2_DMAC_ID1 4 Yes Yes No No No

L2_DMAC_ID2 4 No Yes No No No

L2_DMAC_ID3 5 No No Yes No Yes

FM5000/FM6000 Datasheet—Frame Processing

70 331496-001

Not listed in Table 5-10 are the FFU_DATA.* initialized channels that are consumed immediately by the
FFU.

All mapper flag bits added to ACTION_FLAGS are listed in Table 5-11.

L2_SMAC_ID1 4 No Yes No No No

L2_SMAC_ID3 5 No No Yes No Yes

L2_TYPE_ID1 4 No Yes No No No

L2_TYPE_ID2 4 No No Yes No Yes

L3_DIP_ID1 4 No Yes No No No

L3_DIP_ID2 4 No Yes No No No

L3_DIP_ID3 5 No No Yes No No

L3_SIP_ID1 4 No Yes No No No

L3_SIP_ID2 4 No Yes No No No

L3_SIP_ID3 5 No No Yes No No

L3_PROT_ID1 4 No Yes No No No

L3_PROT_ID2 4 No No Yes No No

L4_SRC_ID 16 No Yes No No No

L4_DST_ID 16 No Yes No No No

SCENARIO_FLAGS 16 Yes Yes No No No

QOS 24 No Yes Yes Yes Yes

1. -SCENARIO_CAM key.

Table 5-11 Mapper Action Flags

Flag Bit Special Handling

SRC_PORT_Flag1 40 Available in FFU's SCENARIO_CAM keys.

SRC_PORT_Flag2 41 Controls VID1 and VID2 translation from VIDx_TABLEs.

L2_DMAC_Flag 42 Available in FFU's SCENARIO_CAM keys.

L2_VID1_Flag 43 Available in FFU's SCENARIO_CAM keys.

L2_VID2_Flag 44 Available in FFU's SCENARIO_CAM keys.

Table 5-10 Mapper Outputs (Continued)

Field Width
Downstream Consumers

FFU (S-key)1 FFU (key) L3AR (key) L3AR (mux) L2AR (key)

331496-001 71

Frame Processing—FM5000/FM6000 Datasheet

5.7 Frame Filtering and Forwarding Unit
(FFU)

The FM5000/FM6000 FFU is a parallel, flexible frame classification unit characterized by the following
high-level properties:

• Capability to compare up to 24,570 36-bit CAM rules against any frame. Up to 24 of these rules
(one per 1024 set) can apply an action to the frame. Each action can take effect in parallel,
changing different properties of the frame processing.

• Rules in each 1024-entry set (referred to as a slice) can be arbitrarily chained together to form slice
chains with wider input keys. For example, chaining two slices together produces a 1024-entry set
with a 72-bit key.

• Capability to compare up to 65,536 32-bit Binary Search Tree (BST) rules against any frame. BST
rules are resolved to a one-to-four matching rule that can take the same action that an FFU CAM
slice can.

• Rules in the BST can be constructed with 32, 64, 96 or 128-bit wide keys. Each BST slice can be
partitioned into up to 16 partitions that share the same key mux and function.

• Based on the results of the first 12-Kb CAM rules, a remap stage can reassign certain key fields for
comparisons in the subsequent 12-Kb CAM rules.

• Each rule might modify the contents of one of seven generically defined data channels whose
meanings are derived from the microcode. Each rule can also set the encoding of the route and
switch flags to control the inputs to the next hop table.

• Each rule can assign a tag to one of two independent tag channels, for later use by L3AR.

The FFU is primarily intended to implement Access Control Lists (ACLs) and L3 routing tables. However,
the highly flexible interpretation of its action outputs by the L3AR stage enables many other features to
be controlled by the FFU's rules. Examples include flow-based policing, encapsulated MAC address
lookups, MPLS label matching, priority assignment, and control over egress header transformations.

Note: The FM5000/FM6000 only supports 12,288 rules and does not include the BST or the
remapping stage.

5.7.1 Overview

The FM5000/FM6000 FFU has a slice-based structure, as shown in Figure 5-16. In general terms, the
FFU receives a large collection of header-derived input keys from the mapper (96 bytes) and produces
a small set of output actions by matching those keys against its internal rules. The keys are propagated
from input-to-output for continued processing, possibly with certain fields transformed by remapping at
the slice array midpoint.

FM5000/FM6000 Datasheet—Frame Processing

72 331496-001

The FFU's rules are divided into two categories:

• CAM Slices — A collection of 1024 rules that share the same 36-bit input key derived from the
frame's header and mapped fields. The key is matched against all 1024 rules in a ternary CAM, with
a precedence hit detect function resolving the hits to a single winning rule. The winning rule assigns
specific values to a set of action channels that are later interpreted by L3AR. There are 24 CAM
slices, providing a total of 24,510 CAM-based rules.

• BST Slices — An additional collection of 16,383 rules implemented with a BST structure, intended
primarily for longest prefix DIP matching. There are four BST slices, providing a total of 65,532
BST-based rules. Each BST slice supports a key width of 32 bits, but can be combined with up to
three neighboring slices to support matching against keys as large as 128 bits. Any number of low-
order bits of each key can be masked out of the matching, providing support for longest-prefix
route matching. Within one BST slice, only one of the BST's 16-Kb rules match against any given
frame. The winning rule specifies an action in the same manner as the CAM slices.

Note: The BST keys are taken after the remap mid point so that the first half of CAM rules can
influence the BST search.

5.7.2 Keys

There are 768 bits of header-derived keys that propagate unmodified from slice-to-slice. The keys are
organized as follows:

• 8 x 32-bit keys

• 24 x 16-bit keys

• 16 x 8-bit keys

• 32 x 4-bit keys (upper or lower halves of the 8-bit keys, mapped in each slice).

Figure 5-16 FFU Structure

331496-001 73

Frame Processing—FM5000/FM6000 Datasheet

Each slice (CAM or BST) selects some subset of these keys to match against. The CAM slices select a
36-bit key constructed from the keys previously mentioned. Similarly the BST selects a 36-bit key from
the same set of possible keys to match against, but the top 4 bits can only be used to select a partition.
The keys are limited to 32-bit within a partition.

Keys are selected in units of eight key bits, with special handling for the top four bits. The 8-bit keys
have arbitrary alignment (each byte of selected key can be configured to take any 8-bit input key). The
16-bit keys have 16-bit alignment (each byte of selected key selects either the low or high byte of a
16-bit input key); the 32-bit keys have a single alignment per 32-bits of selected key. The top four key
bits are selected among all low and high nibbles of the set of eight bit keys.

5.7.3 Scenario Key

Each CAM or BST slice has an additional 32-bit fixed alignment key which is applied to a 32-entry
SCENARIO_CAM to give a 5-bit frame scenario. In the event of no match, the scenario is said to be
invalid and all subsequent key comparisons in the associated CAM or BST slice are skipped. This feature
can save substantial power when simple properties associated with the frame imply misses in large
numbers of related FFU rules. For example, if the DMAC does not match any of the device's router
addresses, the SCENARIO_CAM can be used to disable matching against all of the FFU's routing rules.

The processing of the frame scenario is similar between CAM and BST slices. In the event that there is
a match in the scenario CAM for CAM slices, the 5-bit scenario value is used to index a 32-entry table
(FFU_SLICE_SCENARIO_CFG) to retrieve a scenario configuration, which includes the following
information:

• Mux selects of the CAM slice primary key

• Slice chaining properties

• Action chaining

• Case selection (2-bit)

The process for the BST slices is similar, the frame scenario is used to index a 32-entry table
(FFU_BST_SCENARIO_CFG) to retrieve a slice configuration register, which includes the following
information:

• Mux selects of the CAM slice primary key

• Slice chaining properties

• Action chaining

• Root keys selection

• Nibble selection.

For the remap point, the frame scenario is directly used to retrieve a remap profile:

• Update fields

• Setup hash profile

The structure of scenario to slice configuration is shown in Figure 5-17.

FM5000/FM6000 Datasheet—Frame Processing

74 331496-001

The 32-bit scenario key bit definitions are listed in Table 5-12.

Each slice has its own scenario CAM. For a particular case value, the scenario CAMs must be consistent
with each other for correct operation. If for a particular case a set of slices implement a slice chain,
each slice needs to have the same set of CAM rules to match scenarios to that case. The first slice in the
chain must start the comparison while the last in the chain must specify the number of actions to take.

5.7.4 Action Channels

The FFU action channel is a 130-bit collection of data fields, some subset of which might be transformed
by any slice. With the exception of two ACTION_FLAGS bits, the action fields are referred to as
components of an FFU_DATA structured channel. Generally these channels are available for
configurable interpretation by L3 action resolution, either as keys, mux inputs, or both. A handful of
these channels play a specific fixed-function role in the subsequent next hop table lookup stage.

All FFU action channels ripple from one slice to the next. If more than one slice assigns the same action
channel, the latest slice (numerically highest) one to assign the channel has precedence.

Figure 5-17 FFU Scenario CAM

Table 5-12 FFU Scenario Key Bit Definitions

Field Bits Description

SCENARIO_FLAGS 15:0 Selected from flags using MAPPER_SCENARIO_FLAGS_CFG.

SRC_PORT_ID3 23:16 Mapped from MAPPER_SRC_PORT_TABLE.

L2_DMAC_ID1 27:24 Mapped from MAPPER_DMAC_CAM/RAM1.

VID1_TAG 29:28 Mapped from MAPPER_VID1_TABLE tag bits.

VID2_TAG 31:30 Mapped from MAPPER_VID2_TABLE tag bits.

331496-001 75

Frame Processing—FM5000/FM6000 Datasheet

The 130 bits of action data are organized as follows:

• Two Action Flags bits (FFU_Route, FFU_Switch) identifying the forwarding action, if one is specified.
These flag bits are mutually exclusive; the pair represents a one-hot encoding of the FFU's
forwarding action.

• 24-bit DATA.W24 is primarily intended for forwarding purposes. If Route=1b, this field specifies the
next hop table indexing. The FFU_Route and FFU_Switch flags are closely associated with this
action channel, and all three fields are set together with the same precedence.

• Three generic 8-bit fields (W8A, W8B, W8C) support bit-masked assignment. Any masked bit can
be preserved as is from an earlier slice's assigned value.

• Two generic 16-bit fields (DATA.W16A, DATA.W16B) support assignment masking on a four-bit
granularity.

• Four 12-bit TAG fields (TAG1A, TAG1B, TAG2A, TAG2B) which, when assigned, fully overwrites an
earlier assignment.

Any slice can assign one W field and one TAG field. Of the TAG fields, only slices 0..11 can assign TAG1A
and TAG1B, and only slices 12..23 can assign TAG2A and TAG2B.

The CAM slices and the BST slices determine how they transform the action channels based on a lookup
in an action SRAM. The action SRAM is indexed by the matching rule number, assuming a rule matched.
The encoding of this SRAM is describe in the Actions section. If no rule matched in the CAM slice or BST
slices, the SRAM lookup is skipped and all action channels are left as is.

5.7.5 Action Precedence

Each slice produces only a single command action and/or a tag action. When multiple rules in one slice
match, the slice uses the rule with the highest index as the active rule. The actions associated with this
rule are combined with the actions resulting from the rest of the slices in the FFU and the action from
the BST slices. Multiple actions from different slices are resolved first by data channel and then by
action precedence. Actions that modify different data channels are considered orthogonal and are
applied in parallel. An example would be one slice specifying a change to the W16A channel while
another slice specifies routing of the frame, changing the W24 channel.

A 3-bit precedence value is associated with each unit of action assignment. Any time an FFU rule
specifies an action W8/W16/W24 or TAG assignment, it also specifies a precedence. The rule's action
data overrides the input action value only if the specified precedence is equal to or greater than the
action channel's input precedence value. As a result, if a slice assigns a specific DATA field a precedence
value of 2, all subsequent CAM or BST slices with an action with precedence 1 has no effect on that data
channel.

Precedence is evaluated and maintained per 1-bit, 4-bit, or 24-bit sub-fields of the DATA.W* channels,
and per 12-bit TAG channel, as follows:

• W8{A,B,C} — Precedence is maintained per bit.

• W16{A,B} — Precedence is maintained per nibble.

• W24 — One precedence value is maintained for the entire channel.

• TAG{1,2}{A,B} — Precedence is maintained per 12-bit tag.

The W24 precedence value is also shared with the FFU_Switch and FFU_Route flags. The W24 channel
and these two flag bits are all set atomically as one unit. Otherwise, the precedence granularity of these
fields corresponds to the masking granularity of each field's assignment actions, as described in the
sections that follow.

FM5000/FM6000 Datasheet—Frame Processing

76 331496-001

Note: A slice's placement in the slice array represents additional low-order bits of action
precedence. If all slices are assigned with the same explicit precedence value, later slices in
the array implicitly have higher precedence than earlier slices. The BST slices actions are
applied at the end of the slice array, giving it highest implicit precedence.

The precedence value of zero has special hardware meaning. It is used to represent an unassigned
action channel for power gating purposes. If a rule specifies an action assignment with precedence
zero, the assignment has no effect. As a result, the FFU practically supports seven explicit precedence
values (1 through 7) as well as ~5 bits of low-order precedence implied by slice placement.

5.7.6 CAM Slice Chaining

If more than 36 bits of key are needed, two or more adjacent slices can be chained or combined
together to create wider condition keys. Two slices chained together support 1024 rules with 72-bit
conditions, while three slices create 108-bit conditions, etc. There is no restriction on the number of
slices that can be chained together, except that the chain cannot cross the mid-point. Therefore, up to
12 slices can be chained together to create 432-bit keys without incurring performance penalties or side
effects).

Each FFU slice has 1024 CAM entries that produce a single bit of “hit.” This produces a 1024-bit hit
vector. The slice produces this hit vector only if its lookup is valid. This is true if the slice's LookupValid
is true, there was a hit in its SCENARIO_CAM and the case specified by the scenario set either or both
ValidLow and ValidHigh to true. If the action is valid for this slice, the highest index hit in the hit vector
corresponds to the action SRAM index to activate. The action is only valid if the slice's ActionValid is set
and the ActionLength is greater than zero.

When two slices are chained together, after the first slice's CAM is looked up, the hit vector is passed to
the chained slice instead of being used to look up an action for that slice. If the second slice's lookup is
valid, the hit vector of the previous slice is ANDed with the hit vector generated by looking up all 1024
rules in the second slice. This ANDed result becomes the hit vector for the slice chain. If the second
slice's action is valid, this hit vector is used to lookup the action corresponding to the highest indexed
rule that hit in both slices. Otherwise, the hit vector representing the combination of both hit vectors is
passed to the next slice. If the next slice's lookup is not valid, the hit vector from the previous slice is
passed through unchanged to the next slice.

Slice chaining is configured by the StartCompare bit in each slice's SCENARIO_CFG register. Slice
chaining cannot extend over the remap stage; slice 12's StartCompare is treated as 1b regardless of its
configured value.

5.7.7 CAM Slice Exclusion Sets

To create an ACL or routing table larger than 1024 entries, multiple hardware slices can be grouped
together to produce at most a single action between them. On a per-case basis, a slice (or chain of
slices) can be disabled if the previous slice (or chain of slices) was found to have an active action. This
enables multiple consecutive slices to produce a single action, where the entries in earlier slices have
precedence over entries in later slices, regardless of the precedence fields of later entries. Slices
grouped in this manner are referred to as slice exclusion sets.

Slice exclusion sets are configured on a per-scenario and per-chain basis using the StartSet field in the
FFU_SLICE_SCENARIO_CFG register. This bit must be set to 1b to start a new set and to 0b to continue
the current set. This bit should be set along with the StartCompare bit that specifies the start of a hit
chain.

331496-001 77

Frame Processing—FM5000/FM6000 Datasheet

Unlike slice hit chaining, exclusion sets can extend through the remap stage.

5.7.8 Action Chains

While each slice can only produce one action, each case can specify usage of multiple consecutive
action SRAMs to specify more than one action for this set of conditions. This enables a rule set (usually
chained with other slices) to specify multiple actions (up to three) that are to be activated in parallel.
This can lead to efficiencies for rule sets that have wide condition keys. Instead of replicating the slice
chains for each action, a single slice chain can specify a set of actions. Slices that have action SRAMs
that are part of an action chain can have their condition CAM used in a separate slice chain, using both
CAM and SRAM structures in the slice. A configuration example of this is represented in Figure 5-18.

Figure 5-18 shows two slice chains, one exclusion set and one action chain. This arrangement is for one
specific case and could be different for another case.

The two slice chains are using slices 0-1-2 and slices 3-4 respectively and are part of one exclusion set.
If the first chain hits, the second chain is skipped over. The first slice chain is using 2 consecutive action
RAMs (2 and 3) enabling up to two actions to be set for a single hit. The second slice chain uses one
action RAM (4) and can only define one action for any hit.

Only the slice starting the action chain needs to specify the number of action SRAMs to be used. It is
considered a mis-configuration to have a slice that is participating in an action chain to also be involved
in another action chain for a given case. If done, the new ActionLength overrides the previous length of
action, setting the end of the action chain to be equal to the number of slices specified by the last
ActionLength field greater than zero.

Figure 5-18 FFU Cascading Slices

FM5000/FM6000 Datasheet—Frame Processing

78 331496-001

Each action SRAM in an action chain can specify a precedence of zero, which causes this action SRAM to
not produce an action. Later action SRAMs in the chain are still evaluated. Not specifying an action
implies that the action channels pass through the slice unmodified. The per-slice ActionValid disables
the actions functionality, possibly in a defective slice, and all action fields are passed through
unchanged.

Slices with actions disabled in this way are skipped over if earlier slices specify that their actions are to
be chained.

5.7.9 Egress Actions

Figure 5-19 shows the linkage between the FFU and the Egress ACLs.

The CAM rules in the FFU's last slice can be interpreted as egress actions by further conditioning their
hit status on the forwarding destination mask determined later in the pipeline. The configured rules are
partitioned into hit sets in units of 32 rules. In each set, only one rule can hit, providing up to 32
independent egress action lists comprising 32 rules each. The winning rule numbers, one per set, are
preserved until the EACL stage of the pipeline where they are tested against the frame's destination
mask to determine their final hit status. The partitioning of the last slice's rules into egress action lists
is configured by the FFU_EACL_CFG register.

See Section 5.16 for a complete description of Egress Actions and their implementation of Egress ACLs.

Note: If any egress ACL rule is used, the scenario case for the last slice must be a hit to produce
the right hit detect vector. If a frame is causing a miss in the scenario for this slice, the hit
detect vector from the previous slice is carried through to the egress ACLs and results in
unwanted egress action matches.

Figure 5-19 FFU Egress ACLs

331496-001 79

Frame Processing—FM5000/FM6000 Datasheet

5.7.10 Remap Stage

Generally, the FFU keys are propagated unmodified from one slice to the next. The exception is at the
remap stage, which offers the capability to set a small number of keys based on the action results from
slices 0..11. The selection of which keys are remapped depends on a REMAP_PROFILE lookup table
indexed by a SCENARIO_CAM, enabling the remapping to be conditioned on the type of frame passing
through the FFU.

The DATA.W16A, DATA.W8A, and DATA.W8B values previously described refer to the state of these
action channels after the TCAM slice immediately prior to the remapping stage (the 12th slice).

At the Remap stage, the state of the two 12-bit TAG channels is captured on the TAG1A and TAG1B
outputs for use by L3AR. The TAG channels otherwise propagate unmodified to the second stage of the
FFU and, at the final output of the FFU, are presented to L3AR as TAG2A and TAG2B.

Slice hit chaining cannot propagate over the remap point. At slice 12, all SCENARIO_CFG StartCompare
values are treated as 1b regardless of their configured values. Exclusion sets and action chaining can be
configured to propagate through the remap stage.

5.7.11 Action SRAM

Once a matching rule has been determined by a CAM or BST slice, the rule number is mapped through
an action SRAM to determine a 42-bit action specification. The specification, encoded as described in
the sections that follow determines how that rule transforms the action channel structure. The most
generic entry format takes the following form listed in Table 5-14.

Table 5-13 FFU Remap Profile Fields

Field Width Description

Select_LABEL16 1 Selects source for 16-bit LABEL16 mux:
0b = FIELD16D (no change)
1b = DATA.W16A

The LABEL16 is mapped to key FFU_BST_LABEL16B

Select_LABEL8A 2 Selects source for 8-bit LABEL8A mux:
00b = FIELD16C[7:0] (no change)
01b = DATA.W8A
10b = TAG1A[7:0]
11b = Reserved

The combination of {LABEL8B,LABEL8A} is mapped to key FFU_BST_LABEL16A

Select_LABEL8B 2 Selects source for 8-bit LABEL8B mux:
00b = FIELD16C[15:8] (no change)
01b = DATA.W8B
10b = TAG1B[7:0]
11b = Reserved

Select_HASH_PROFILE 1 Selects hash key profile index:
0b = 0 (constant)
1b = DATA.W8A[1:0]

FM5000/FM6000 Datasheet—Frame Processing

80 331496-001

5.7.11.1 Route Action

When Route=1b, the route flag is set and a lookup in the next hop is implied. For this action, the
contents of ActionData are interpreted as listed in Table 5-15.

These values are assigned to the DATA.W24 channel for the next hop table's use. As a side effect of this
action, the switch flag is cleared and the value of DATA.W24 as specified by any prior Route=0b action
is be cleared. Thus, according to these semantics, the FFU can only switch or route a frame.

5.7.11.2 Switch Action

When Route=0b, a similar switch flag in bit 23 of ActionData distinguishes between two non-route
actions. Switch=1b is intended for use as a direct destination GloRT assignment action when lookups in
neither the next hop nor MAC table are necessary. In this case, the contents of ActionData have the
following interpretation listed in Table 5-16.

Table 5-14 FFU Action RAM

Field Bits Description

ActionData 23:0 Conditionally formatted action data.

Route 24 Specifies a route action, meaning the FFU_Route action flag is set and a lookup is done in the next hop
table. Exclusive with the switch action, the FFU_Switch bit in ACTION_FLAGS is cleared if set.

TagData 36:25 12-bit tag value, overwrites tag A or tag B depending on TagCmd.

TagCmd 38:37 00b = Do not modify tags.
01b = RSVD.
10b = Set TAG nA.
11b = Set TAG nB, where n=1 for slice numbers 0..11 and n=2 for CAM slice numbers 12..23 and the

BST slices.

Precedence 41:39 Explicit precedence assignment as previously described.

Table 5-15 FFU Route Action Encoding

Field Bits Description

NextHopBaseIndex 15:0 Next hop table index.

NextHopRange 22:16 Entry range size.

NextHopEntryType 23 0b = Narrow
1b = Wide

Table 5-16 FFU Switch Action Encoding

Field Bits Description

SwitchData 22:0 Specifies the value to which DATA.W24[22:0] is assigned.
DATA.W24[23] is set to 0x0.

Switch (1) 23 Encodes a switch action, setting the FFU_Switch flag.
Assuming the action's precedence value is greater than or equal to the precedence of a prior route or
switch action, the FFU_Switch flag is set to 1b, the FFU_Route flag is set to 0b, and DATA.W24 is set to
the contents of ActionData[22:0].

331496-001 81

Frame Processing—FM5000/FM6000 Datasheet

5.7.11.3 All Other Actions

When Route=0b and Switch=0b, the remaining 22 bits of ActionData encode assignments to any one of
the FFU action data channels. In this case, the contents of ActionData[22:0] has the following definition
listed in Table 5-17.

The precedence of each action channel is maintained and evaluated per unit of masking. Thus, for any
DATA.W* bit, the general expression describing its precedence and value transformation is:

where:

• DATA[i] represents any DATA.W* bit and PREC[i] represents its three-bit precedence value.

• ActionMask[i] is the corresponding assignment mask bit as implied by ActionData. For DATA.W24,
the ActionMask is always 0xFFFFF; for DATA.W8*, it is ActionData[15:8]; for DATA.W16*, it is
derived from ActionData[19:16] as follows:

ActionMask = 0xF000 .ActionData[19] + 0x0F00 .ActionData[18] + 0x00F0
.ActionData[17] + 0x000F .ActionData[16]

This enables different rules to set different DATAW16* nibbles in an orthogonal manner.

Table 5-17 FFU Non-route Actions

Field Bits Description

Data 19:0 Payload interpreted based on Cmd. When assigning to FFU action data channels, precedence state is
maintained and evaluated per minimum masked unit of data for each particular channel. Thus,
DATA.W24 is assigned as a 24-bit unit; DATA.W16* fields are assigned with 4-bit granularity, and
DATA.W8* fields are assigned with 1-bit granularity.

Cmd 22:20 Specifies one of six action channel assignments:
000b = Sets DATA.W24 from ActionData[19:0], Route=0, Switch=0.
001b = Sets DATA.W16A from ActionData[15:0] with nibble-masking controlled by ActionData[19:16].
010b = Sets DATA.W16B from ActionData[15:0] with nibble-masking controlled by ActionData[19:16].
011b = Sets DATA.W8A from ActionData[7:0] with bit-masking controlled by ActionData[15:8].
100b = Sets DATA.W8B from ActionData[7:0] with bit-masking controlled by ActionData[15:8].
101b = Sets DATA.W8C from ActionData[7:0] with bit-masking controlled by ActionData[15:8].
110b = Reserved
111b = No action

if (ActionMask[i]==1 && ActionPrecedence PREC[i])
 DATA[i] = ActionValue[i]
 PREC[i] = ActionPrecedence
else
 DATA[i] and PREC[i] remain unchanged

FM5000/FM6000 Datasheet—Frame Processing

82 331496-001

5.7.12 BST Key Generation and Matching

In most respects, the four BST 16K-rule slices operate exactly like a 1K-rule CAM slice. For each BST
slice, a BST_SCENARIO_CAM maps the FFU's SCENARIO_KEY to a 5-bit frame scenario. From each
frame scenario, the BST slice's configuration is looked up in FFU_BST_SCENARIO_CFG[Case],
specifying:

• Chaining of slices to perform lookup for larger keys (64, 96, 128 bits keys)

• Creating distinct exclusion sets to ensure one entry is selected across multiple slices

• Defining key muxing and masking control for the frame's key generation to be used in the BST
search.

• Defining action RAM chain

The frame's BST key muxing is specified in units of eight bits for the lower 32-bit and in a unit of four
bits for the final four bits, the muxing of each field encoded in the same manner as for the CAM slices.
The BST slices also offer a nibble masking stage that follows the muxing.

The BST's frame key is generated from the header fields available after the remap point, so it is
possible to use the first half of the FFU CAM slices to influence key search at BST.

Figure 5-20 shows one BST slice.

As shown in Figure 5-20, the scenario CAM and scenario CFG is used to construct a frame key from the
various keys, which can be masked nibble-by-nibble. The frame key is then compared to the set of root
keys valid for this case.

Figure 5-20 FFU BST Slice

331496-001 83

Frame Processing—FM5000/FM6000 Datasheet

A root key is valid for comparison if the top four bits of the key matches the corresponding CAM entry
and the root key is set valid in the case configuration. The resulting root index is then used to retrieve
a partition number from a partition map. The partition itself is a binary search structure that is walked
through to locate the index i that brackets the frame key search. Software must ensure that the entries
are written in order for both the root keys and within a 1-Kb partition.

KEY[slices,part,i].Value . FrameKey[31:0] < KEY[slices,part,i+1].Value
(last+1 is inifinity)

Note: KEY[*,*,0] is always 0 (cannot be changed). If the key is smaller than KEY[*,*,1], the
resulting index i is zero and hardware considers this a miss (no action).

Slices can be combined to create larger key (64 bits, 96 bits, 128 bits) by using the StartCompare bit in
the scenario configuration profile. Setting the StartCompare creates a new chain of slices starting at
this slice and clearing this bit chains this slice to the previous one to create wider keys. The variable
slices in the previous equation is the set of slices in a chain (1 slice for 32 bit, 2 slices for 64 bits,
etc...). For equal keys, the switch always selects the highest index.

Exclusion sets can be defined to create large key tables that span over multiple slices (16-Kb, 32-Kb,
48-Kb, 64-Kb). This feature is controlled by the StartSet bit in the scenario configuration register.
Setting this bit initiates a new exclusion set, clearing this bit extends the set over multiple slices (or set
of slices for wider entries). During lookup, if a frame key falls in the current set of root keys, all further
lookup is skipped in the follow-on slices (or chain of slices) that are part of the same exclusion set. The
slices must be organized with the highest value keys in the first slice of the exclusion set.

Given the matching rule index [partiton,i], the BST action is then looked up in a 16K-entry
FFU_BST_ACTION table. The encoding of this action RAM is identical to that previously specified for the
CAM slices except for the addition of LPM field to validate the action. The BST's actions are applied after
the final stage of the CAM slice array, so any BST actions overrides any conflicting CAM actions with the
equal or lower precedence value. The FFU_BST_ACTION[*,*,0] are always zero and cannot be changed.

Note: The action is applied only if the frame key prefix matches the BST key prefix found
(FrameKey & ~((1<<LPM)-1)) == (value & ~((1<<LPM)-1)), where the field LPM defines
the number of bits that are ignored.

If no entry in the table matches the frame's key, no BST action lookup is performed and all action
channels are left as-is in their state at the end of the CAM slice array.

Figure 5-21 shows the usage StartSet and StartCompare to chain multiple slices to create wider and
larger tables.

FM5000/FM6000 Datasheet—Frame Processing

84 331496-001

5.7.13 Atomic Modifications

The following registers have special handling:

• For CAM slices:

— FFU_SLICE_MASTER_VALID

• For BST slices:

— FFU_BST_MASTER_VALID

— FFU_BST_SCENARIO_VALID

— FFU_BST_PARTITION_MAP

— FFU_BST_ROOT_KEYS

Each write into these registers is stored into write-only shadow registers and remains in shadow until
software commands those registers to be written into the active configuration. A read to these registers
returns the current active configuration, not the value of the shadow register.

Software must use the FFU_ATOMIC_APPLY register to control the application of these registers. This
register contains two bits. The first bit controls the special CAM slice register application
FFU_SLICE_MASTER_VALID. The second bit controls the special BST slice registers
FFU_BST_MASTER_VALID, FFU_BST_SCENARIO_VALID, FFU_BST_PARTITIONM_MAP, and
FFU_BST_ROOT_KEYS[0..15] applications.

A value of 0b written to either bit is ignored. A write of 1b causes all of the corresponding CAM or BST
registers to be set to their pending shadow values atomically between two frames. This feature cleanly
enables swapping an existing BST or CAM configuration to a new one.

Figure 5-21 FFU Cascading BST Slices

331496-001 85

Frame Processing—FM5000/FM6000 Datasheet

5.7.14 FFU Output

Many of the FFU keys do not persist beyond the last FFU slice. However, certain keys of interest are
propagated on to the L3AR stage where they are available as CAM keys and ACTION_DATA mux inputs.
The final action values are also sent to L3AR. If the route flag is set (such as the final forwarding action
to take effect was a route action), FFU_DATA.ROUTE is sent to the next hop table instructing it to
perform a lookup. If the route flag is not set, no lookup in the next hop table takes place.

All outputs of the FFU are listed in Table 5-18.

Table 5-18 FFU Outputs

Field Width Description

L2_DMAC 48 Preserved key for L2 lookup.

L2_SMAC 48 Preserved key for L2 lookup.

L2_VID1 12 Preserved key for L2 lookup.

L2_VID2 12 Preserved key for L2 lookup.

L3_LENGTH 16 Preserved key (for MTU checking).

L3_SIP 128 Preserved key (for ICMP redirect and configurable overloading).

L3_DIP 128 Preserved key (for deriving DMAC in IPv6 multicast routing case).

QOS 22 QoS channel, preserved un-modified.

SCENARIO 5 Preserved key from mapper.

L3_LENGTH_BIN 4 Preserved key from mapper.

HASH_PROFILE 4 Hash key profile number. Set by remap stage.

FFU_DATA.W8A 8 8-bit DATA8A output from the last slice.

FFU_DATA.W8B 8 8-bit DATA8B output from the last slice.

FFU_DATA.W8C 8 8-bit DATA8C output from the last slice.

FFU_DATA.W16A 16 16-bit DATA16A output from the last slice.
Suggested sub-field definitions include:

VID = 11:0
W4 = 15:12

FFU_DATA.W16B 16 16-bit DATA16B output from the last slice.
Suggested sub-field interpretations are:

VID = 11:0
W4 = 15:12

FFU_DATA.W24 24 Overloaded to carry the data associated with both the route and switch actions. Sent to the
next hop table when routing. This field is also available as an L3AR key.
Sub-field definitions include:

GLORT = 15:0
W4 = 19:16

FFU_DATA.TAG1A 12 Value of action tag A following slice 13 (prior to remap point).

FFU_DATA.TAG1B 12 Value of action tag B following slice 13 (prior to remap point).

FFU_DATA.TAG2A 12 Value of action tag A following the BST_APPLY stage.

FFU_DATA.TAG2B 12 Value of action tag B following the BST_APPLY stage.

FFU_EGRESS_ACLS 32 x 6-bits Egress ACLs hit detects (32 x (1-bit hit detect + 5-bit hit index).

FM5000/FM6000 Datasheet—Frame Processing

86 331496-001

All frame header fields and mapped FFU keys that were not previously listed are discarded at this point
in the pipeline.

Additionally, the FFU sets the following flags in ACTION_FLAGS. The FFU guarantees that switch and
route are mutually exclusive. See Table 5-19.

All outputs colored yellow indicate outputs that are produced or modified by the FFU.

5.8 Frame Hashing

The frame hash unit calculates and assigns a set of hash values to each frame based on a configured
set of header keys. A total of six 16-bit hash values are calculated, three prior to L3AR and three after
based on two dynamically selected hash key profiles.

5.8.1 L2 and L3 Frame Hashing Overview

Table 5-22 shows the architectural partitioning and data flow of the FM5000/FM6000’s frame hashing in
the larger frame processing pipeline.

The FM5000/FM6000 calculates two sets of frame hash values at two different points in the pipeline.
The first stage calculation occurs prior to routing and other L3AR transformations of the frame's header
fields. The second set of hash values is calculated after L3AR. The first stage calculation has full access
to all of the frame's header fields as presented to the FFU, while the second stage calculation has a
reduced set of header fields available to it.

Table 5-19 FFU Action Flags

Field Bits Description

FFU_Switch 45 Set when the final forwarding action to take effect specifies Switch=1b.

FFU_Route 46 Set when the final forwarding action to take effect specifies Route=1b.

FFU_12aEqVID1 47 Indicates FFU_DATA.W16A[11.0]==L2_VID1.

FFU_12aEqVID2 48 Indicates FFU_DATA.W16B[11.0]==L2_VID2.

Figure 5-22 Hashing Blocks

331496-001 87

Frame Processing—FM5000/FM6000 Datasheet

The first stage hash calculation is primarily intended for ECMP and other L3 + load-balancing
applications involving the next hop table. For that reason it is referred to as the L3 Hash, or L3_HASH.
The second stage hash calculation is primarily intended for link aggregation and other link-layer load-
balancing applications involving the destination mask table. It is referred to as the L2 hash, or
L2_HASH.

Each hash value calculation operates on a fixed-size key constructed from the available set of header
fields. The frame's hash key profile determines the selection and bit-masking of those header fields. 16
programmable hash key profiles are supported for each hash calculation stage. The FFU remap stage
determines the first-stage hash key profile based on FFU actions and a SCENARIO_CAM lookup (see
Section 5.7.10). By default, the L2 hash key profile is selected by the same index as the L3 hash key's
profile, although the L3AR might override the index with its SetHashKeyProfile action.

The hash key generation logic supports symmetrization of certain source- and destination-specific
fields. When enabled, symmetrization of these fields ensures that frames sent from a network host A to
some other host B have the same hash value as frames sent from host B-to-A, assuming all other
header fields are the same. This in turn guarantees that frames belonging to a given conversation
follow the same path through the network, which might be desirable in some applications.

5.8.2 Hash Rotations

The FM5000/FM6000 hardware is capable of calculating up to three 16-bit hash values per frame: one
for load balancing over next hop entries (L3_HASH) and two that can be used for load balancing over
L2F table entries or for applying LAG filtering (L2_HASH_A and L2_HASH_B). To assure uncorrelated
port selection over different switches in a network and across different hierarchical levels of hashing in
multi-chip systems, each of these hash values can be selected from a set of thousands of independent
hash functions that the FM5000/FM6000 supports. The particular independent hash function is referred
to as the hash rotation, specified by a 20-bit HASH_ROT value.

The HASH_ROT value used in the calculation of L3_HASH is selected by the FFU remapping stage. The
frame's FFU_REMAP_PROFILE entry specifies HASH_ROT as either a constant configured in the profile
or indirectly as an assignment from {FFU_DATA.W8A[7:4],FFU_DATA.W16B}. The latter mode enables
the hash function to be chosen by an FFU rule.

L3AR can subsequently modify HASH_ROT for use in the L2 hash. For each hash value, the L2 hash
profile specifies whether to use the L3AR-modified HASH_ROT or a constant hash rotation number
configured in HASH_LAYER2_PROFILE.

Different specific HASH_ROT values give hash functions of differing quality, in terms of hashing
uniformity and cross-rotation independence. Selecting high-quality HASH_ROT values (16-bit mantissa,
4-bit exponent) is listed in Table 5-20.

Table 5-20 High-Quality HASH_ROT Values

51407, 15 29347, 14 3709, 11 23167, 13 4483, 12 3877, 11 18637, 14 20407, 14

27017, 14 5591, 12 2309, 11 26951, 14 62873, 15 31873, 14 50857, 15 3559, 11

49411, 15 34877, 15 4883, 15 4243, 15 15193, 13 57163, 15 49451, 15 5659, 12

22051, 14 64151, 15 64237, 15 64319, 15 13841, 13 48869, 15 52973, 15 22871, 14

50221, 15 62201, 15 3499, 11 49871, 15 52631, 15 27827, 15 28879, 14 14533, 13

FM5000/FM6000 Datasheet—Frame Processing

88 331496-001

5.8.3 Random Hashing

The FM5000/FM6000's hash function includes a 16-bit pseudo-random number generator. For load
balancing applications that do not require frame order preservation within flows, the frame's hash value
can be overridden by this random number. A randomize configuration bit per hash value specifies this
behavior in each hash profile.

The random number generator has a period of 2,147,483,647 frames. The number is advanced on
every frame that the FM5000/FM6000 processes with a randomized hash profile, without regard for
source port, flow association, or any other frame-specific property.

5.8.4 L3 Key Generation

The L3 hash keys have the following header fields listed in Table 5-21.

The meaning of the symmetrization sets defined here are explained in the sections that follow.

5.8.5 L2 Key Generation

The L2 hash key is constructed from the following header fields listed in Table 5-22.

Table 5-21 L3 Hash Keys

Field Bytes Masking Support Symmetrization Set

L3_SIP 15:0 Per byte. S1

L3_DIP 31:16 Per byte. S1

QOS.L3_PRI 32 Per bit. -

L3_FLOW 35:33 Per bit. -

ISL_USER 36 Per bit. -

L3_PROT 37 Per bit. -

L4_SRC 39:38 Per bit. S2

L4_DST 41:40 Per bit. S2

FIELD16[B,A] 49:46 Per byte. -

[LABEL16,LABEL8B,LABEL8A1

1. These are the FIELD16[D,C] keys following the FFU midpoint remapping stage.

45:42 Per byte. -

Table 5-22 L2 Hash Key Header Fields

Field Bytes Masking Support Symmetrization Set

MA1_MAC1 5:0 Per bit. S3

MA2_MAC2 11:6 Per bit. S3

L2_TYPE 13:12 Per bit. -

(EVID1,QOS.L2_VPRI1 15:14 Per bit. -

331496-001 89

Frame Processing—FM5000/FM6000 Datasheet

When the UseL3A or UseL3B hash profile bits are set to 1b, the 16-bit L3_HASH is XORed into the early
stages of the L2_HASH_A or L2_HASH_B hash calculations, respectively. Thus, when so configured, the
L2 hash key also includes the L3 hash key.

5.8.6 Symmetrization

Header fields belonging to the same symmetrization sets previously defined have an equal number of
source and destination-specific bytes. Symmetrization is enabled per symmetrization set in each hash
key profile.

When enabled, the source and destination key fields are derived from the header fields by a per-byte
comparison:

Where MAX and MIN refer to a simple numeric comparison.

5.8.7 Outputs

Three statistically independent 16-bit hash values, referred to as rotations, are calculated for each of
the frame's L2 and L3 hash keys. The HASH_LAYER3_PROFILE and HASH_LAYER2_PROFILE registers
specify which of these rotations are to be used by downstream logic. One L3 hash rotation and two L2
rotations are selected.

(EVID1,QOS.L2_VPRI2 17:15 Per bit. -

ACTION_DATA.W16[A,B,C] 23:18 Per 2 bytes. -

1. L3AR selects the configuration; nominally L2_DMAC.
2. L3AR selects the configuration; nominally L2_SMAC.

foreach i in 0..num_bytes(field)-1:
 symmetrized_src_field[i] = MAX(src_field[i], dst_field[i])
 symmetrized_dst_field[i] = MIN(src_field[i], dst_field[i])

Table 5-23 Hashing Stage Output

Hash Value Output Width Description

L3_HASH_NEXTHOP 16 L3_HASH value used by the next hop table for ECMP-style load balancing.

L3_HASH 16 L3_HASH value sent to downstream frame processing stages, in particular to L3AR and the L2
hash function.

L3_HASH_A 16 L2 hash rotations, selected by the RotationA and RotationB fields, respectively, of
HASH_LAYER2_PROFILE[profile]. Used for load balancing over L2F table entries and in the
fixed-function LAG filtering stage. For more details, see Section 5.14, “GloRT Lookup”.L3_HASH_B 16

Table 5-22 L2 Hash Key Header Fields

Field Bytes Masking Support Symmetrization Set

FM5000/FM6000 Datasheet—Frame Processing

90 331496-001

5.9 Next Hop Table

The next hop table, formerly known as the ARP table, is a wide and deep mapping table indexed by the
FFU's route action. Its primary role is to determine the next-hop L2 header in the context of IP routing,
although in the FM5000/FM6000 it performs a more generalized next-hop header resolution function for
a variety of different hierarchical network forwarding applications.

5.9.1 Overview

The general operation and capabilities of the next hop table are described as follows.

• Two entry types:

— Narrow (64 bits) — Minimal entry size, optimized for standard IP routing with no support for
additional tunneling features.

— Wide (128 bits) — Double size entry. Supports additional fields for tunneling and other optional
features at the expense of fewer total entries in the table.

• Capacity for 64-Kb narrow entries or 32-Kb wide entries. Each index in the table is individually
selected to be either narrow or wide.

Note: Entries 65534,65535 (narrow) and entry 32767 (wide) are not available and must not
be used.

• Lookup specified by a 16-bit base index, a 1-bit entry size, a 16-bit hash value, and a 10-bit Equal
Cost Multi-Path (ECMP) range size. Given these inputs, a specific table index is calculated, and
either a narrow or wide entry is looked up and passed on to the L3AR stage.

5.9.2 Input Interface

The FFU resolves a single routing action over its 28-Kb TCAM and 64-Kb BST rules. If a routing action is
specified (FFU_Routed=1b), the routing command's FFU_DATA.W24 contents are passed to the next
hop table and its 24 bits are interpreted as listed in.

In addition, a 16-bit L3_HASH value is provided for the lookup based on the frame's L3 hash
calculation.

Table 5-24 Next Hop Routing Command Contents

Field Bits Description

NextHopBaseIndex 15:0 Base index into NEXTHOP_TABLE.

NextHopRange 22:16 Encodes the range over which an entry is chosen based on the frame's L3_HASH value or from the
low-order bits of its L3_DIP field.

NextHopEntryType 23 0b = Narrow
1b = Wide

331496-001 91

Frame Processing—FM5000/FM6000 Datasheet

5.9.3 Index Calculation and Lookup

Given the previous inputs, a specific entry index is calculated and the entry is looked up in the table. In
addition to the base index and range fields specified in the FFU routing command, the frame's L3 hash
value and L3_DIP field can be used to identify the specific next hop table index to look up.

Case 1 (Hashed):

If NextHopRange[6:3] is any value other than 15, the index that is looked up is calculated using the
frame's L3 hash value and division-based binning.

First, the entry range size is calculated over which the entry is uniformly selected.

range_size = (2 * NextHopRange[2:0] + 1) << NextHopRange[6:3]

By configuring NextHopRange[2:0]=7 and NextHopRange[6:3]=12, it is possible to select a range
as large as 60-Kb. Values larger than 60-Kb can be encoded, but these lead to undesirable
(nonuniform) aliasing over the 64-Kb entries in the table.

Next, based on the L3_HASH hash value, an index is selected from the calculated range of entries:

index = NextHopBaseIndex + (((L3_HASH * range_size) / 65536) << NextHopEntryType)

Case 2 (DIP-derived):

If NextHopRange[6:3]=15, the frame's hash value is not used. Instead, the index is directly
mapped from the bottom NextHopRange[2:0]+1 bits of L3_DIP, as specified as follows:

index = NextHopBaseIndex + L3_DIP[NextHopRange[2:0]:0] << NextHopEntryType

In all cases, any index value exceeding 65535 aliases to NEXTHOP_TABLE[index%65536].

If NextHopEntryType=0, the 64-bit entry at NEXTHOP_TABLE[index] is looked up and passed on to
L3AR. Otherwise, the two entries at NEXTHOP_TABLE[index & 16'hFFFE] and NEXTHOP_TABLE[(index &
16'hFFFE) + 1] are looked up, and the aggregate 128-bit wide entry is passed on.

Regardless of the entry type, the generic data fields specified in the lookup entry are grouped together
into a NEXTHOP_DATA structured channel. The tag fields are passed on as a single NEXTHOP_TAG
channel.

5.9.4 Narrow Entry Formats

The narrow entry type (NextHopEntryType=0) offers two entry format options for use in L3 action
resolution. These two entry formats define different bit field partitions that are motivated by the needs
of unicast and multicast routing applications. These entry aliases are intended to help simplify
application programming. The same bits are available to L3AR regardless of which entry type is in use.
For example, a mux input referencing the field NEXTHOP_DATA.W12A could be equivalently written
(NEXTHOP_DATA.(W4,W8C,TAG[5:2]).

FM5000/FM6000 Datasheet—Frame Processing

92 331496-001

Note: Since many of the fields in these two entries have different names but reference the same
bits, there is aliasing between the components of the NEXTHOP_DATA structured output
channel. For example, NEXTHOP_DATA.W8A equals NEXTHOP_DATA.W16B[7:0], and
TAG[7:4] equals W16B[15:12]. This aliasing does not occur on a wide entry lookup.

5.9.5 Wide Entry Format

A wide entry lookup occurs when the FFU specifies a NextHopEntryType value of one. The bit field
partitioning of this entry format is formed by concatenating the two narrow-format entries. This
provides a suitably diverse collection of field bit widths without requiring any unique hardware handling
for this entry type.

Table 5-25 Next Hop Unicast Table Entry Format

Field Name Bits Description

W16A 15:0

Available as an input source of egress DMAC selection.W16B 31:16

W16C 47:32

W12A 59:48 Available as an input source for egress VID selection.

TAG[3:0] 63:60 Generic 4-bit tag field. A use example would be to use 1 bit to indicate if the entry is multicast or
unicast.

Table 5-26 Next Hop Multicast Table Entry Format

Field Name Bits Description

W16A 15:0 Available as an input source for DGLORT selection.

W8A 23:16 Available for eventual assignment to MOD_DATA.W8A for egress frame modification. Expected use is
Virtual Router ID.

W8B 31:24 Available for eventual assignment to MOD_DATA.W8B for egress frame modification.

W8C 39:32 Available for MOD_DATA.W8C and for QoS muxing.

W4A 43:40 Generic 4-bit field.
Available as an input source for MTU_INDEX selection. Expected to be set to correspond to the
minimum MTU over all VLANs associated with this multicast distribution. Also available for QoS muxing
in L3AR.

TAG[7:4] 47:44 Generic tag bits available as L3AR key.

W12A 59:48 Available as an input source for egress VID selection.

TAG[3:0] 63:60 Generic 4-bit tag field.
A use example would be to use 1 bit to indicate if the entry is multicast or unicast.

Table 5-27 Next Hop Wide Table Entries

Field Name Bits Description

W16A 15:0 Available for MAC mapping and MOD_DATA.W16D.

W16B 31:16 Available for MAC mapping and MOD_DATA.W16E.

W16C 47:32 Available for MAC mapping and MOD_DATA.W16D.

331496-001 93

Frame Processing—FM5000/FM6000 Datasheet

5.9.6 Outputs

Based on the type of entry looked up in NEXTHOP_TABLE, either 62 or 124 bits of meaningful output
data are passed on to L3AR, in the form of NEXTHOP_TAG (available as a key input) and the
NEXTHOP_DATA structured channel. In addition, three fixed-definition flag bits are calculated and set in
ACTION_FLAGS.

W12A 59:48 Available for VID mapping (in particular EVID1).

TAG[3:0] 63:60 Generic tag bits available as L3AR key.

W16D 79:64 Available for GloRT mapping and MOD_DATA.W16C.

W8A 87:80 Available for MOD_DATA.W8A.
Expected use is to encode one of up to 256 destination virtual router IDs.

W8B 95:88 Available for MOD_DATA.W8B.

W8C 103:96 Available for MOD_DATA.W8C and for QoS muxing.

W4A 107:104 Available for MOD_DATA.W4, W8D, and for QoS muxing.

W4B 111:108 Available for MOD_DATA.W8D muxing.

W12B 123:112 Generic 12-bit field available for EVID2.

TAG[7:4] 127:124 Generic tag bits available as L3AR key.

Table 5-28 Next Hop Data Path Outputs

Field Name Width Description

NEXTHOP_TAG 8 Taken from NEXTHOP_DATA.TAG fields.

NEXTHOP_DATA.W* 120 Contents of a narrow entry lookup are promoted to the width of the wide entry format with
aliasing between fields as previously described.

NEXTHOP_IDX 16 Final table index used in the lookup. Sent to L3AR for muxing to ACTION_DATA.W16G, then to a
RX_STATS.IDX16{A,B} channel in L2AR. It is expected that 64K saturating 1-bit counters are set
by this index in the Statistics stage to flag next hop entries that have been recently accessed.

Table 5-29 Next Hop Action Flags

Field Name Bits Description

NEXTHOP_EntryType 49 Indicates the entry lookup specified by the FFU route action.
0b = Narrow
1b = Wide

NEXTHOP_12aEqVID1 50 Indicates NEXTHOP_DATA.W12A = L2_VID1.

NEXTHOP_12aEqVID2 51 Indicates NEXTHOP_DATA.W12B = L2_VID2.

Table 5-27 Next Hop Wide Table Entries (Continued)

Field Name Bits Description

FM5000/FM6000 Datasheet—Frame Processing

94 331496-001

5.10 L3 Action Resolution

The Layer 3 Action Resolution (L3AR) stage in the FM5000/FM6000 frame processing pipeline is
responsible for a number of high-level packet handling decisions, including:

• Deciding whether to route, and if so, resolving the mechanics of this operation based on the output
of the FFU and NEXT_HOP tables.

— Selecting the next-hop VLAN/SMAC/DMAC.

— Distinguishing between L3 unicast and multicast.

— Checking TTL.

— Identifying ICMP redirect conditions.

• Deciding whether to tunnel the packet (MPLS, MAC-in-MAC, etc.).

• Culling the set of header fields and other data associated with the packet for downstream use.

• Specifying the L2 lookup and filtering policies to apply to the packet.

5.10.1 Overview

The L3AR stage uses a TCAM/slice/mux architecture, which is implemented in microcode and has the
following general properties:

• Total number of rules: 160

• Total number of TCAM slices sets: 5

• Number of rules per precedence set: 32

• Number of serial application stages: 5

• Total number of keys: 18

• Total key width: 251 bits

• Number of sequential actions: 6

• Number of output mux actions: 21

Figure 5-23 shows the basic components and data flow of the TCAM/slice/mux architecture.

331496-001 95

Frame Processing—FM5000/FM6000 Datasheet

Figure 5-23 TCAM/Slice/Mux Architecture

FM5000/FM6000 Datasheet—Frame Processing

96 331496-001

5.10.2 Keys

Each L3AR slice has the following channel inputs available as TCAM keys as listed in Table 5-30.

Table 5-30 L3AR Input Keys

Key Width Description

ACTION_FLAGS 52 Contains the parser's HEADER_FLAGS as well as the results of fixed-function flag
evaluations from the intervening stages. See Section 5.10.5 for the specific flag bits that
are available at the L3AR stage of the pipeline.
Note: The L3AR's SetFlags action enables all configurable flag bits to be redefined at this

stage of the pipeline.

SRC_PORT 7 Source physical port number.

SRC_PORT_ID4 8 Mapper-associated SRC_PORT ID.

ISL_SGLORT 16 Source GloRT from ISL tag.

ISL_PRI 4 ISL priority as assigned by the QoS mapping stage.

L2_TYPE_ID2 4 Mapper-associated EtherType ID.

L2_DMAC_ID3 5 Mapper-associated DMAC ID.

L2_SMAC_ID3 5 Mapper-associated SMAC ID.

L3_DIP_ID3 5 Mapper-associated DIP ID.

L3_SIP_ID3 5 Mapper-associated SIP ID.

L3_PROT_ID2 4 Mapper-associated L4 protocol ID (from L3 header).

MAP_VID1 12 Mapped L2_VID1 value from MAPPER_VID1_TABLE.

MAP_VID2 12 Mapped L2_VID2 value from MAPPER_VID2_TABLE.

L3_HASH 16 L3 hash value.

FFU_DATA.W8{A,B,C} 24 FFU 8-bit DATA outputs (3 x 8-bits).

FFU_DATA.W16{A,B}_TOP 8 Top four bits of each of the FFU's 16-bit DATA outputs (2 x 4-bits).

FFU_DATA.TAG1{A,B} 24 FFU tag fields (2 x 12-bits), prior to the remapping point.

FFU_DATA.TAG2{A,B} 24 Tag fields (2 x 12-bits) from FFU output.

FFU_DATA.W24[23:16] 8 Top eight bits of the FFU's 24-bit route/switch action data payload.

NEXTHOP_TAG 8 NEXTHOP_TABLE entry tag.

331496-001 97

Frame Processing—FM5000/FM6000 Datasheet

5.10.3 Actions

L3AR supports the following actions. All implied action operands, such as valid bits, are not listed in
Table 5-31. Each action is described in the Action Detail section that follows.

Table 5-31 L3AR Actions

Action Type Configuration Operands Description

SetFlags SMS Value (52 bits)
Mask (52 bits)

ACTION_FLAGS Masked assignment of
ACTION_FLAGS[51:0].
Changes accumulate serially from one
application stage to the next.
Note: Flags values seen in all L3AR slice

TCAM keys is a copy of the
ACTION_FLAGS channel at the
input of the L3AR stage. Thus any
changes applied by this action in
a given slice is not visible to the
TCAM keys of downstream slices.

SetAlu13CmdProfile
SetALU46CmdProfile

SCS ALU13_CMD_PROFILE (5 bits)
ALU46_CMD_PROFILE (5 bits)

- Sets command profiles for the ALU stage.
One profile controls ALUs 1-3, the other
controls ALUs 4-6. The ALU operand inputs
are selected with a MuxOutput action.

SetL2LookupCmdProfile SCS L2L_CMD_PROFILE (4 bits) - Specifies the L2 lookup command profile.

SetDestMaskCmdProfile SCS DMASK_CMD_PROFILE (4 bits) - Specifies the DMASK Generation command
profile, used in the L2F, EACL, and LAG
stages of DMASK transformation.

SetTrapHeaderCmd SC ENABLE (1 bit)
IDX (1 bit)

Many Stores the packet's header fields in
L3AR_HEADER_TRAP_DATA[HdrIdx.

SetHashKeyProfile SD Profile (4 bits) HASH_PROFILE If specified, overrides the L2 hash key
profile index from its default value (the L3
hash key profile index) to the specified
ProfileIdx value.

MuxOutput_DGLORT
MuxOutput_SGLORT

MCM Profile (5 bits) Many Specifies the mux-and-masking profile for
two 16-bit output channels (DGLORT and
SGLORT). Thirty-two profiles are
supported for each.

MuxOutput_W8ABCD
MuxOutput_W8E
MuxOutput_W8F

MCM Profile (5 bits) Many Specifies the mux-and-masking profiles
for six 8-bit ACTION_DATA output
channels partitioned into three mux sets.
Thirty-two profiles are supported for each
set. All mux sets have MCM-type
assignment, enabling constant-
assignment of arbitrary bits of each 8-bit
field.

MuxOutput_W16ABC
MuxOutput_W16DEF
MuxOutput_W16GH

MCO Profile (5 bits) Many Specifies the mux profiles for seven 16-bit
ACTION_DATA output channels partitioned
into three mux sets. Thirty-two profiles
are supported for each of the ABC/DEF/GH
action data channel sets. As an MCO-type
action, each 16-bit field must be muxed or
assigned in its entirety; bit-masking is not
supported for these ACTION_DATA fields.

MuxOutput_MA1_MAC
MuxOutput_MA2_MAC

MCO Profile (5 bits) Many Mux control actions for the L2 lookup keys'
MAC fields. 32 profiles are supported for
each.

FM5000/FM6000 Datasheet—Frame Processing

98 331496-001

All actions are applied serially from one precedence set to the next. An action specified by an earlier
(lower-numbered) precedence set can be overridden by a later precedence set's action.

Note: Most non-mux actions defined here only specify commands or command profiles for
downstream units in the pipeline. Such commands are executed once by the downstream
logic, based on the final state of the command, regardless of how many actions overwrite the
command state.

MuxOutput_MA_FID MCO Profile (5 bits) Many Mux control action for the L2 lookup keys'
FID fields. The muxing of both
MuxOutput_MA_FID MCO profile (5b)
many lookup keys (L3AR_MA1_FID and
L3AR_MA2_FID) are controlled together
from one of 32 mux profiles.
Note: These MAC table key FID values

produced by L3AR might be
overridden by L2 lookup's FID
mapping logic.

MuxOutput_VID MCO Profile (5 bits) Many Mux control action for all ingress and
egress VID fields. 32 profiles are
supported. This action implements the
final routing decision (namely the
assignment of EVID1 and EVID2).

MuxOutput_CSGLORT Profile (5 bits) Many

MuxOutput_HASH_ROT MCO Profile (5 bits) Many Mux control action for the HASH_ROT
channel used by the L2 hash function. The
HASH_ROT channel is initially set by the
FFU Remapping point and by default is left
unmodified. By assigning to HASH_ROT
from the output of the FFU or a next hop
entry, it is possible to override the L2 hash
function based on an FFU classification or
route action.

MuxOutput_ALU13_OP
MuxOutput_ALU46_OP

MCO Profile (5 bits) Many Mux control action for the ALU operand
channels. The 12 operand channels (two
per ALU) are muxed in two sets, one for
ALUs 1-3, the other for ALUs 4-6. 32
profiles are supported for each.

MuxOutput_POL1_IDX
MuxOutput_POL2_IDX
MuxOutput_POL3_IDX

MCO
MCM

Profile (5 bits) Many Mux control action for the policers index
channels. Policer banks 1 and 2 have
MCO-type index muxing; Policer bank 3
has MCM-type index muxing.

MuxOutput_QOS MCM Profile (5 bits) Many Mux control action for all five QoS fields
(24 bits total). All QoS fields share the
same muxing profile. The profile also
specifies the source QoS field that
indexes each of the two
POLICER_QOS_MAP{1,2} tables. 32
profiles are supported.

Table 5-31 L3AR Actions (Continued)

Action Type Configuration Operands Description

331496-001 99

Frame Processing—FM5000/FM6000 Datasheet

5.10.4 Outputs

Table 5-32, Table 5-33 and Table 5-34 list the outputs that are consumed, modified, and produced by
L3AR.

Rows colored yellow indicate outputs that are modified by L3AR. All others are new channels produced
by the L3AR stage.

This section defines:

1. The behavior of actions that have special handling within the L3AR stage.

2. The mux fan-in pathways defined for each output mux action.

Table 5-32 L3AR Generic Fields

Field Width Notes

ACTION_FLAGS[51:0] 41 Modified by SetFlags.

ACTION_DATA.W8{A..D} 32 General communication to L2AR and (ultimately) MOD_DATA initialization.

ACTION_DATA.W8E 8 For CPU code assignment.

ACTION_DATA.W8F 8 For L2AR QoS key visibility and QoS field remapping.

ACTION_DATA.W16{A..G} 112 General communication to L2AR and (ultimately) MOD_DATA initialization.

Table 5-33 L3AR Evolution of Names Frame Header Fields

Output Field Primary Input Field Width Notes

QOS QOS 34 Modified by MuxOutput_QOS, width increased from 24 to 34 bits due to
new MAP{1,2}_IDX channels.

QOS.MAP1_IDX 4 Index for 16-entry POLICER_QOS_MAP1 table. (new at the L3AR stage).

QOS.MAP2_IDX 6 Index for 64-entry POLICER_QOS_MAP2 table. (new at the L3AR stage).

DGLORT ISL_DGLORT 16 Modified by MuxOutput_DGLORT.

SGLORT ISL_SGLORT 16 Modified by MuxOutput_SGLORT.

CSGLORT ISL_SGLORT 12 Canonical SGLORT field, set by MuxOutput_CSGLORT.

IVID1 L2_VID1 12

Set by MuxOutput_VID.
IVID2 L2_VID2 12

EVID1 L2_VID1 12

EVID2 L2_VID2 12

Table 5-34 L3AR Outputs Consumed Before L2AR

Output Field Width Notes

L2L_CMD_PROFILE 4 L2 Lookup command profile, from SetL2LookupCmdProfile.

ALU13_CMD_PROFILE 5 Command profile for ALUs 1..3, set by SetAlu13CmdProfile.

ALU46_CMD_PROFILE 5 Command profile for ALUs 4..6, set by SetAlu46CmdProfile.

DMASK_CMD_PROFILE 4 DMASK generation command profile, from SetDestMaskCmdProfile.

HASH_PROFILE 4 L2 Hash profile, set by SetHashProfile.

HASH_ROT 20 Layer 2 hash rotation selection.

FM5000/FM6000 Datasheet—Frame Processing

100 331496-001

5.10.5 SetFlags

The SetFlags action provides bit-level control over the 52-bit ACTION_FLAGS channel, based on the
value and mask operands:

ACTION_FLAGS?Œ = ACTION_FLAGS & Mask | Value

The output ACTION_FLAGS’ value is initialized with ACTION_FLAGS and ripples serially from one action
stage to the next. Thus, any bits or fields not overwritten with a SetFlags action remain as seen by the
L3AR ACTION_FLAGS key.

The transformation of ACTION_FLAGS that occurs in L3AR represents an important frame processing
action for two reasons:

• Identifies frame handling cases based on data fields that are not propagated to L2AR (such as L3
header fields and mapper classification indices).

• Begins the process of formulating ACTION_FLAGS for its eventual destination as MOD_FLAGS,
FORWARD_FLAGS, TAIL_FLAGS, and STATS_FLAGS. For a better interpretation of these flags bits,
see Section 5.17.7, “Output Flags”.

The ACTION_FLAGS channel is 52 bits wide at L3AR. Fixed-function circuitry in the stages that follow
expand the channel by another 16 bits before it is passed to L2AR.

MA1_MAC 48 MA1 lookup (DMAC) MAC key field, set by MuxOutput_MA1_MAC.

MA2_MAC 48 MA2 lookup (SMAC) MAC key field, set by MuxOutput_MA2_MAC.

L3AR_MA1_FID1 12

MA{1,2} lookup FID{1,2} fields, which can be overridden in L2 Lookup, set by
MuxOutput_MA_FID.

L3AR_MA1_FID2 12

L3AR_MA2_FID1 12

L3AR_MA2_FID2 12

ALU1_X 16

Operands to ALU stage, set by MuxOutput_ALU_OP.

ALU2_X 16

ALU3_X 16

ALU1_Y 16

ALU2_Y 16

ALU3_Y 16

ALU4_X 16

ALU5_X 16

ALU6_X 16

ALU4_Y 16

ALU5_Y 16

ALU6_Y 16

POL1_IDX 12

Policer indices, per bank. Set by MuxOutput_POL{1,2,3}_IDX.POL2_IDX 12

POL3_IDX 10

Table 5-34 L3AR Outputs Consumed Before L2AR (Continued)

Output Field Width Notes

331496-001 101

Frame Processing—FM5000/FM6000 Datasheet

Note: SetFlags has arbitrary control over the bits in ACTION_FLAGS. Care should be exercised
when setting bits that are interpreted with fixed-function logic.

5.10.6 TrapHeader

The TrapHeader action provides a flexible way to save the header fields of a particular frame of interest
for later software inspection. When a rule specifies the TrapHeader action by setting
TRAP_HEADER_ENABLE to 1b, it identifies one of two storage registers (TRAP_HEADER_IDX) for the
frame’s header data. Any subsequent frames that are header-trapped to the same storage index
overwrites the previous frame's contents.

Two storage registers are provided mainly to simplify software coherency concerns. It's expected that
software would ping-pong between the two registers according to the following procedure:

1. Receive interrupt for rule X specifying TrapHeader with TRAP_HEADER_IDX=A.

2. Change TRAP_HEADER_IDX of all TrapHeader rules to TRAP_HEADER_IDX=1-A.

Note: Any other headers trapped during this period while TRAP_HEADER_IDX still equals A
overwrites the earlier trapped header(s).

3. Read and interpret contents of TRAP_HEADER_DATA[A].

4. Return to step 1, now looking at TRAP_HEADER_IDX=1-A.

The following header fields and other information associated with the frame are stored in
TRAP_HEADER_DATA[TRAP_HEADER_IDX].

Table 5-35 L3AR Action Flags

Bit Range Usage Notes

23:0 Originally set from HEADER_FLAGS, these bits eventually become MOD_FLAGS. Therefore, conditions relevant for
egress processing need to be flagged in this range.

 32:24 Scratch bits in HEADER_FLAGS recommended for propagating intermediate conditions between parsing, L3AR, and
L2AR.
These bits eventually become FORWARD_FLAGS bits that control specific fixed-function features of the scheduler.

33 StrictDestGlort.
Specifies the DGLORT's default strict handling in the GloRT Lookup stage. Determines whether the DGLORT maps to
a single DMASK entry, or the frame's L2_HASH value is used in the mapping.

35:34 Flag bits that ultimately control fixed-function PAUSE frame reception logic.
Since the parser is critically involved in identifying and parsing these PAUSE frames, it is unlikely that L3AR could
use these flag bits for any other purpose over the middle stages of the pipeline

39:36 Flag bits that carry error status conditions from the parser.
Bit 39 (ParityError) has a fixed definition throughout the pipeline since any stage with an SRAM can set this bit
when an unrecoverable parity error is detected. It is acceptable for microcode to collapse these three error cases to
the single bit 39 at L3AR, freeing up three flag bits for other purposes.

51:40 Flag bits set by fixed-function circuitry in the mapper, FFU, or next hop stages.
These bits might or might not be relevant to L3AR, depending on the application. It is likely that many of these bits
could be redefined for other purposes at this stage.

FM5000/FM6000 Datasheet—Frame Processing

102 331496-001

In addition, the L3AR rule number that last set the TRAP_HEADER_ENABLE command bit to 1b is stored
in L3AR_TRAP_HEADER_RULE[TRAP_HEADER_IDX].The TrapHeader action is provided mainly for ICMP
redirect support. However, it might also be useful for FPGA-assisted load balancing and CN algorithms.

5.10.7 MuxOutput

The tables that follow list the mux pathways available for the L3AR MuxOuput actions. These actions
are described in an abbreviated form, with the table columns indicating the following properties:

• Set Name — A descriptive identifier associated with the output mux set. These names correspond
to names that appear in the action RAM MuxOutput specification fields.

• Type — Indicates the type of the mux action. A type MCO action implies that the MUX_PROFILE
entry contains a constant Value field of width Width. A type MCM action's MUX_PROFILE entry
additionally includes a mask field.

• Npro — Number of profile entries defined for this output (span of allowable Src values).

• Output# — For multi-output mux sets, a numeric ID is assigned to each output channel in the set
to unify the MUX_PROFILE encoding formats.

• Output Channel — Name of the output channel to be muxed.

• Width — Bit width of the output channel.

• Nsrc — Maximum number of input source channels supported in the mux profile encoding for the
particular output channel.

• Src# — Specific source select values that are configured in the output's profile entry.

• Source Channel — Input channel that is mapped to the output channel when the specific Src value
is configured in the mux profile entry.

For all MCO cases, as described in the Action Resolution section, the maximum Src value always selects
the constant value configured in each mux profile entry.

Table 5-36 L3AR Trap Header Data Fields

Field Bit Width Definition

L3_SIP 128

Frame header fields as produced by the parser.

L3_DIP 128

L3_PROT 8

L4_SRC 16

L4_DST 16

IVID1 12
As muxed by MuxOutput_VID.

EVID1 12

NEXTHOP_IDX 16 Next hop table index, if a lookup was performed (undefined otherwise).

331496-001 103

Frame Processing—FM5000/FM6000 Datasheet

5.10.7.1 GloRTs

Typically, the L3AR muxes would assign the final SGLORT and the initial (flood) DGLORT values
associated with the frame.

5.10.7.2 Action Data W8{A..D}

Generic ACTION_DATA channels that ultimately become MOD_DATA fields on the forward channel:

Table 5-37 L3AR GloRT Data

Set Name Type Npro Output Channel Width Nsrc Src# Source Field

DGLORT MCM 32 DGLORT 16 8

0 ISL_DGLORT (post-association)

1 FUU_DATA.W24[15:0]

2 FUU_DATA.W16A

3 FUU_DATA.W16B

4 NEXTHOP_DATA.W16A

5 NEXTHOP_DATA.W16D

SGLORT MCM 32 SGLORT 16 8

0 ISL_SGLORT (post-association)

1 FUU_DATA.W24[15:0]

2 FUU_DATA.W16A

3 FUU_DATA.W16B

4 NEXTHOP_DATA.W16D

Table 5-38 L3AR Generic Action Data

Set Name Type Npro
Channel
Number Channel Width Nsrc Src# Source Field

W8{A..D} MCM 32

0 ACTION_DATA.W8A 8 4

0 NEXTHOP_DATA.W8A

1 FFU_DATA.W8A

2 NEXTHOP_TAG

1 ACTION_DATA.W8B 8 4

0 NEXTHOP_DATA.W8B

1 FFU_DATA.W8B

2 ACTION_FLAGS[23:16]

2 ACTION_DATA.W8C 8 4

0 NEXTHOP_DATA.W8C

1 FFU_DATA.W8C

2 ACTION_FLAGS[31:24]

3 ACTION_DATA.W8D 8 4

0 NEXTHOP_DATA.{W4B,W4A}

1 FFU_DATA.W8A

2 FFU_DATA.W8B

3 FFU_DATA.W8C

FM5000/FM6000 Datasheet—Frame Processing

104 331496-001

5.10.7.3 Action Data W8{E,F}

5.10.7.4 Action Data W16{A..C}

Output mux sets defined for L2 hash selection, MOD_DATA initialization, and other configurable uses:

Table 5-39 L3AR Generic Communication to L2AR

Set
Name Type Npro

Channel
Number Output Channel(s) Width Nsrc Src# Source Field

W8E MCM 32 0 ACTION_DATA.W8E 8 8

0 FFU_DATA.TAG1A[7:0]

1 FFU_DATA.TAG1B[7:0]

2 FFU_DATA.TAG2A[7:0]

3 FFU_DATA.TAG2B[7:0]

4 NEXTHOP_TAG

W8F MCM 32 1 ACTION_DATA.W8F 8 8

0 (QOS.W4, QOS.ISL_PRI)
(post-MuxQOS)

1 (QOS.L2_VPRI1, QOS.L2_VPRI2)
(post-MuxQOS)

2 QOS.L3_PRI (post-MuxQOS)

Table 5-40 L3AR W16 Data

Set Name Type Npro Output Channel(s) Width Nsrc Src# Source Field

W16ABC MCO 32

ACTION_DATA.W16A 16 8

0 FFU_DATA.W16A

1 FFU_DATA.TAG1A (12 bits)

2 FFU_DATA.TAG2A (12 bits)

3 L2_VID1 (12 bits)

ACTION_DATA.W16B 16 8

0 FFU_DATA.W16B

1 FFU_DATA.TAG2B (12 bits)

2 FFU_DATA.TAG2B (12 bits)

3 L2_VID2 (12 bits)

ACTION_DATA.W16C 16 4

0 FFU_DATA.(W8C,W8B)

1 NEXTHOP_DATA.W16D

2 L3_CHECKSUM

331496-001 105

Frame Processing—FM5000/FM6000 Datasheet

W16DEF MCO 32

ACTION_DATA.W16D 16 8

0 DMAC[15:0]

1 NEXTHOP_DATA.W16A

2 NEXTHOP_DATA.W16D

3 L3_DIP-derived[15:0] (L3 multicast case)

4 L3_SIP[15:0] (overloaded for DMAC)

ACTION_DATA.W16E 16 8

0 DMAC[31:16]

1 NEXTHOP_DATA.W16B

2 L3_DIP-derived[31:16] (L3 multicast case)

3 L3_SIP[31:16] (overloaded for DMAC)

ACTION_DATA.W16F 16 8

0 DMAC[47:32]

1 NEXTHOP_DATA.W16C

2 L3_DIP-derived[47:32] (L3 multicast case)

3 L3_SIP[47:32] (overloaded for DMAC)

W16GH MCO 32

ACTION_DATA.W16G 16 8

0 FFU_DATA.TAG2A (12 bits)

1 FFU_DATA.TAG2B (12 bits)

2 FFU_DATA.W16A

3 FFU_DATA.W16B

4 NEXTHOP_DATA.W16D

5 NEXTHOP_IDX

ACTION_DATA.W16H 16 8

0 FFU_DATA.TAG1A (12 bits)

1 FFU_DATA.TAG1B (12 bits)

2 FFU_DATA.W16A

3 NEXTHOP_DATA.W12A (12 bits)

4 NEXTHOP_DATA.W12B (12 bits)

5 NEXTHOP_DATA.W16A

6 NEXTHOP_DATA.W16D

Table 5-40 L3AR W16 Data (Continued)

Set Name Type Npro Output Channel(s) Width Nsrc Src# Source Field

FM5000/FM6000 Datasheet—Frame Processing

106 331496-001

5.10.7.5 L2 Lookup Channels

L3AR is responsible for specifying the frame's final VID associations, the MAC table lookup keys, and
the VLAN/STP filtering table indices for L2 filtering.

Table 5-41 L3AR VID Associations

Set Name Type Npro
Channel
Number Output Channel(s) Width Nsrc Src# Source Field

MA1_MAC MCO 32 0 MA1_MAC (DMAC) 48 8

0 L2_DMAC

1 NEXTHOP_DATA.(W16C,W16B,W16A)

2 L3_DIP-derived (L3 multicast case)1

3 L3_DIP[47:0]

4 L3_SIP[47:0]2

5 Undefined

6 Undefined

7 Profile-specified constant

MA2_MAC MCO 32 0 MA2_MAC (SMAC) 48 4

0 L2_SMAC

1 L3_SIP[95:48]2

2 Undefined

3 Profile-specified constant

MA_FID MCO 32

0 L3AR_MA2_FID1 12 4
0 IVID1

1 FIELD16C[11:0]3

1 L3AR_MA2_FID2 12 4
0 IVID2

1 {FIELD16D,FIELD16C}[23:12]3

2 L3AR_MA1_FID1 12 4

0 EVID1

1 FIELD16C[11:0]3

2 NEXTHOP_DATA.(W8A,W16A)[11:0]3

3 L3AR_MA1_FID2 12 4

0 EVID2

1 {FIELD16D,FIELD16C}[23:12]3

2 NEXTHOP_DATA.W12A

331496-001 107

Frame Processing—FM5000/FM6000 Datasheet

VID MCO 32

0 IVID1 12 8

0 L2_VID1

1 L2_VID24

2 NEXTHOP_DATA.W12A

FFU_DATA.W16A[11:0]

4 FFU_DATA.W16B[11:0]

1 IVID2 12 8

0 L2_VID2

1 L2_VID44

2 NEXTHOP_DATA.W12A

3 FFU_DATA.W16A[11:0]

4 FFU_DATA.W16B[11:0]

2 EVID1 12 8

0 L2_VID1

1 L2_VID24

2 NEXTHOP_DATA.W12A

3 FFU_DATA.W16A[11:0]

4 FFU_DATA.W16B[11:0]

3 EVID2 12 8

0 L2_VID2

1 L2_VID14

2 NEXTHOP_DATA.W12A

3 FFU_DATA.W16A[11:0]

4 FFU_DATA.W16B[11:0]

5 NEXTHOP_DATA.W12B

CSGLORT MCM 32 0 CSGLORT 16 2

0 ISL_SGLORT5

1 L3_HASH6

2 SGLORT7

1. Assignment from the IPv6 L3_DIP EUI-64 field is as follows:

 MA1_MAC[23:0]= L3_DIP[23:0]
 MA1_MAC[47:24] = L3_DIP[63:40] ^ 0x020000 (toggle bit 57, U/L flag)

2. Available for overloading with encapsulated (inner) DMAC/SMAC fields.
3. Intended use: PBB ISID.
4. Provided as a way to swap VID1 and VID2 fields, due to concern that the parser might not be able to assign these appropriately

in the context of double-8100 tagged frames.
5. Canonical, relies on MCM masking support.
6. Provided for (SMAC, Hash(SIP)) security support.
7. Output of L3AR_SGLORT_PROFILE transform.

Table 5-41 L3AR VID Associations (Continued)

Set Name Type Npro
Channel
Number Output Channel(s) Width Nsrc Src# Source Field

FM5000/FM6000 Datasheet—Frame Processing

108 331496-001

5.10.7.6 Layer 2 Hash Rotation

The HASH_ROT value initially set by the FFU remapping point for the L3 hash calculation might be
overridden by L3AR.

5.10.7.7 ALU Operands

The six ALU operand pairs (X, Y) are muxed in two sets. All ALUs have identical sources of X and Y
channels inputs.

Table 5-42 L3AR HASH_ROT Operands

Set Name Type Npro Output Channel(s) Width Nsrc Src# Source Field

HASH_ROT MCO 32

HASH_ROT_MANTISSA 16 4

0 ISL_DGLORT (post-association)

1 FFU_DATA.W24[15:0]

2 FFU_DATA.W16A

HASH_ROT_EXPONENT 4 4

0 FFU_DATA.W16B

1 NEXTHOP_DATA.W16A

2 NEXTHOP_DATA.W16D

Table 5-43 L3AR ALU Operands

Set Name Type Npro Output Channel(s) Width Nsrc Src# Source Field

ALU13_OP MCO 32

ALU1_X
ALU2_X
ALU3_X

16 16 0..15 See X operand in Table 5-44.

ALU1_Y
ALU2_Y
ALU3_Y

16 16 0..15 See Y operand in Table 5-44.

ALU46_OP MCO 32

ALU4_X
ALU5_X
ALU6_X

16 16 0..15 See X operand in Table 5-44.

ALU4_Y
ALU5_Y
ALU6_Y

16 16 0..15 See Y operand in Table 5-44.

331496-001 109

Frame Processing—FM5000/FM6000 Datasheet

Each ALU's X and Y operands are selected from the following mux sources:

5.10.7.8 Policer Indices

One output mux set is defined per policer bank to select the bank's source counter/policer index. For a
discussion of how these indices are used, see Section 5.13, “Policers”.

Table 5-44 Sources for ALU X and Y Operands

Src# X Source Channel Y Source Channel

0 FFU_DATA.W16A FFU_DATA.W16B

1 L3_LENGTH NEXTHOP_DATA.{W8B,W4A}

2 CSGLORT1

1. For comparison of the canonical SGLORT to the MA1_GLORT for port security.

NEXTHOP_DATA.{W8B,W8C}

3 SGLORT2 DGLORT

2. Provided for mapping to L2F_DMASK_IDX channels to support SGLORT-based distribution trees. These bits identify a DMASK in
L2F that would prune the distribution appropriately for this FM5000/FM6000's forwarding hop.

NEXTHOP_DATA.W12A

4 <SGLORT[15:8],DGLORT[15:8]>3

3. Similar to footnote in that it provides support for (S,D)GLORT-based distribution trees. Notation indicates bit interleaving: for
i=0..7:

 L3AR_DMASK_IDX1[2 i] = SGLORT[8+i]
 L3AR_DMASK_IDX1[2 i+1] = DGLORT[8+i]

NEXTHOP_DATA.W16A

5 ACTION_DATA.W16H

6 L3_HASH[15:0]4

4. Provides pathways between the frame's hash values and L2F indexing and/or the L2AR key.

EVID1

7 L3_CHECKSUM EVID2

8 L3_TTL (8b) MA1_GLORT (after L2 lookup)

9 SRC_PORT (7b) MA2_GLORT (after L2 lookup)

10 IVID1 L2L_ETAG1 (12b, after L2 Lookup)

11 IVID2 L2L_ETAG2 (12b, after L2 lookup)

12 L3_DIP[15:0] L2_HASH_B4

13 L3_DIP[31:16] L2_HASH_RANDOM

14 Unused (gated)

15 Per-profile constant value

Table 5-45 L3AR Policer Indices

Set Name Type Npro
Channel
Number Output Channel(s) Width Nsrc Src# Source Field

POL1_IDX MCO 16 0 POL1_IDX 12 16

0..7 From L3AR inputs

8..9 From L2 lookup outputs

15 (Profile constant)

POL2_IDX MCO 16 0 POL2_IDX 12 16

0..7 From L3AR inputs

8..9 From L2 lookup outputs

15 (Profile constant)

FM5000/FM6000 Datasheet—Frame Processing

110 331496-001

The specific source channel mappings for policer banks 1 and 2 are defined as follows:

POL3_IDX MCM 16 0 POL3_IDX 10 8

0 SRC_PORT

1 FFU_DATA.TAG1A

2 FFU_DATA.TAG1B

3 FFU_DATA.TAG2A

4 FFU_DATA.TAG2B

5 ALU1_Z[9:0]1

6 ALU2_Z[9:0]1

7 ALU3_Z[9:0]1

1. Muxed downstream in the pipeline. The MCM mask and constant value do not apply for this mux case. The entire ALU3_Z value is
selected instead.

Table 5-46 L3AR Policer Index Source

Src Source Channel (Bank 1) Source Channel (Bank 2) Description

0 FFU_DATA.TAG2A FFU_DATA.TAG2B FM4000 series compatible.

1 FFU_DATA.TAG1A FFU_DATA.TAG1B Tag values prior to remapping point.

2 FFU_DATA.W16A[11:0] FFU_DATA.W16B[11:0] Alternative FFU index source,
Enables use of TAGs for other purposes.

3 IVID1 EVID1 As muxed after L3AR.

4 IVID2 EVID2 As muxed after L3AR.

5 ITAG1 ETAG1 From L2L_{E,I}VID1_TABLE.
Enables policing per ingress/egress VLAN (or classes
of VLANs).

6 ITAG2 ETAG2 From L2L_{E,I}VID2_TABLE.
Enables policing per ingress/egress VLAN (or classes
of VLANs).

7 MAC1_TAG MAC2_TAG Zeroed if !HIT.

8 ALU1_Z[11:0] ALU4_Z[11:0] Result of ALU 1.

9 ALU2_Z[11:0] ALU5_Z[11:0] Result of ALU 1.

0 ALU3_Z[11:0] ALU6_Z[11:0] Result of ALU 1.

Table 5-45 L3AR Policer Indices (Continued)

Set Name Type Npro
Channel
Number Output Channel(s) Width Nsrc Src# Source Field

331496-001 111

Frame Processing—FM5000/FM6000 Datasheet

5.10.7.9 QoS

The MCM-type mux action defined for the QoS collection of fields is provided in the sections that follow
in a somewhat different format from those previously defined.

Table 5-47 L3AR QoS Channel MUX Profiles

Field Width Description

Value 24 Constant value to OR into the output post-masking and post-muxing.

Mask 24 Mask to AND with the mux output post-muxing.

Select_QOS.ISL_PRI 3 Selects mux input for ISL_PRI.

Select_QOS.L2_VPRI1 3 Selects mux input for L2_VPRI1.

Select_QOS.L2_VPRI2 3 Selects mux input for L2_VPRI2.

Select_QOS.L3_PRI 3 Selects mux input for L3_DSCP.

Select_QOS.W4 3 Selects mux input for the generic W4 field.

Select_QOS.MAP{1,2}_IDX 3 Selects the source QoS field for each of the policers' QOS_MAP{1,2} mark-down mapping
tables.

Table 5-48 L3AR MUX Source Field Definitions per QoS Subfield

Src
Source Channel

Description
ISL_PRI L2_VPRI1 L2_VPRI2 W4 L3_PRI

0 ISL_PRI L2_VPRI1 L2_VPRI2 W4 L3_PRI Default.

1 FFU_DATA.W16A[15:12] FFU_DATA.W8A Bottom 12 bits intended for VID.

2 FFU_DATA.W16B[15:12] FFU_DATA.W8B Bottom 12 bits intended for VID.

3 FFU_DATA.W8C[3:0] FFU_DATA.W8C Generic QoS association.

4 FFU_DATA.W8C[7:4] {FFU_DATA.W8C[7:4],
L3_PRI[3:0]} Generic QoS association.

5 NEXTHOP_DATA.W8C[3:0] NEXTHOP_DATA.W8C Generic QoS assignment from wide-
entry NEXTHOP_DATA.

6 NEXTHOP_DATA.W4A 4-bit generic wide-entry
NEXTHOP_DATA source.

7 W4 L2_VPRI2 L2_VPRI1 L3_PRI[7:4] W4 Cross-field assignment.

FM5000/FM6000 Datasheet—Frame Processing

112 331496-001

5.11 L2 Lookup

The L2 lookup stage performs source and destination MAC address lookups, which are essential for
Ethernet forwarding and learning. The 64-Kb-entry MAC address hash table (MAC table) maps each
frame's destination MAC address and, optionally, its source MAC address to corresponding source and
destination GloRTs. These GloRTs are then processed by downstream stages to determine a L2
forwarding distribution (from the destination GloRT) and security and learning actions (from the source
GloRT).

The MAC table is unique in the chip for the complexity of its management and in its support for
hardware self-modification. It supports the following features:

• Partitioning of the MAC address space with a 24-bit Forwarding ID (FID).

• Four different entry precedence levels, which, for example, can be used to distinguish learned
entries from software-locked entries.

• Two statically configured table modes trading off number of entries (32-Kb versus 64-Kb) for
performance (fully-provisioned versus opportunistic source MAC lookups).

• A flexible writeback mechanism, which, under the control of the L2AR stage, provides automatic
MAC address learning and aging. The mechanism can also be used to record and report entries on
which security violations are observed.

• A sweeper mechanism providing hardware acceleration of common table-wide searches and entry
transformations.

• Support for reporting all table changes to software through an event notification FIFO.

The diagrams that follow make use of the following conventions:

• In the L2 lookup stage, as in other stages of frame processing logic, fixed-function operations are
controlled by command bits mapped from a profile value specified by L3AR. The L3AR
SetL2LookupCmdProfile action specifies an L2L_CMD_PROFILE value which is then mapped to
specific command bits by the L2L_CMD_PROFILE_TABLE registers. In the diagrams that follow,
points controlled by these mapped command bits are indicated with the following notation:

• All other inputs can be considered part of the frame pipeline data path. In most cases, they are
indirectly controlled by L3AR (in the form of muxing, selection, etc.).

• Red coloring indicates internal non-configurable data dependencies in the L2 lookup data flow.

331496-001 113

Frame Processing—FM5000/FM6000 Datasheet

5.11.1 Basic Architecture

A 48-bit MAC address is too wide to map by a direct lookup table. Whereas application considerations
motivate the use of TCAM and BST structures for the L3 address lookups, properties specific to the L2
lookup motivate a hash table implementation. The hash table architecture provides an excellent area
and power efficiency for large table sizes with wide exact-match keys, especially when two lookups per
frame must be performed with one (the source lookup) requiring only best-effort provisioning.

The FM5000/FM6000's MAC table is organized as 16 sets, each with 4096 entries. The sets can
optionally be paired for performance reasons so that in some applications it effectively offers only eight
4-Kb sets. Thus, subject to key hashing statistics, the table offers an absolute maximum of either
64-Kb or 32-Kb entries, depending on its performance mode. Unlike typical software hash table
implementations, the MAC table uses an independent hash function to calculate each set's key index.
Doing so provides the best possible statistical table use.

Each MAC table entry consists of a 72-bit key, a 2-bit precedence tag, and 36 bits of data payload. To
perform a lookup, the input key is first hashed to give the 12-bit index read in each set. The entries
from all 16 (or eight) sets are then read, and among all entries with matching keys, the one with the
highest precedence value is returned. Up to two keys can be looked up per frame, although in the
table's maximum capacity configuration (64-Kb entries), only the first (destination) lookup is
guaranteed to succeed.

Throughout this datasheet the two lookup operations are referred to as MA1 and MA2. In the MAC
table's expected application usage, the MA1 lookup searches for the destination MAC key and the MA2
lookup searches for the source MAC key.

The MAC table key has the bit structure shown in Table 5-49.

The data payload of each entry has the bit structure shown in Table 5-50.

Table 5-49 MAC Table Key Structure

Field Width Description

MAC 48 Set by L3AR's MuxOutput action.

FID1 12 Primary forwarding ID. Identifies the forwarding domain to which the entry belongs, nominally mapped
from VID1 by the VLAN tables in the L2 Lookup stage.

FID2 12 Secondary forwarding ID, nominally mapped from VID2 in a manner symmetric to FID1.

Prec 2 2-bit precedence tag associated with the key. This field is not specified as part of the input key, but it does
play an important role in the matching operation.

Table 5-50 MAC Table Data Structure

Field Width Description

GLORT 16 Primary output result of the lookup operation. Uniquely identifies the virtual port entity associated with the
entry's MAC and FID fields.

TAG 12 Software-defined tag field available as an input key to the L2AR stage.

DATA 8 Software-defined data field available as an input to data muxes in the L2AR stage.

FM5000/FM6000 Datasheet—Frame Processing

114 331496-001

5.11.2 FID Mapping

The 12-bit FID1 (spanning-tree forwarding ID) and FID2 fields associated with each key are mapped
from either the EVID{1,2} channels (for the MA1 lookup) or IVID{1,2} (for the MA2 lookup), as muxed
by L3AR.

As shown in Figure 5-24, the FID fields can also be taken directly from the L3AR_MA{1,2}_FID{1,2}
values as specified by L3AR, and in the case of FID2, a bit from the corresponding FID1_TABLE entry
might select either the mapped FID2 or the L3AR_MA{1,2}_FID2 value on a per-VID1 basis. The
MA1_FID2_CMD and MA2_FID2_CMD bits control this behavior as follows. Although noted here for
MA1_FID2_CMD, the MA2 case is similar.

In addition to the FID fields needed for the MAC table lookup operations, generic VID-associated TAG
and IDX fields are mapped in these tables. These ITAG{1,2}, ETAG{1,2}, and {I,E}T_IDX fields are
available to downstream units, such as the ALUs, L2F stages, and L2AR, for a variety of microcode-
programmable uses.

Figure 5-24 L2 Lookup FID Mapping

Table 5-51 L2 Lookup FID Table

MA1_FID2_CMD[1:0] MA1_FID2_IVL MA1_FID2

0 0 L3AR_MA1_FID2

0 1 EVID2

1 X MA1_FID2_TABLE[EVID2]

2 X L3AR_MA1_FID2

3 X EVID2

331496-001 115

Frame Processing—FM5000/FM6000 Datasheet

5.11.3 Performance Versus Capacity

The MAC table supports two modes of operation, statically configured by the FullTableMode field in
MAC_TABLE_CFG. When FullTableMode is set to 1b, the table is organized as 16 independent
4-Kb-entry sets. In this mode, the table provides sufficient access bandwidth to support MA1 lookups at
the maximum frame rate. However, in this mode, the table is unable to also perform MA2 lookups at the
maximal frame rate. Instead the table relies on average-case traffic loads and statistical memory bank
alternation in the implementation of each set to support two lookups per frame.

When FullTableMode is set to 0b, the table's 16 sets are grouped into pairs, providing eight dual-ported
4-Kb sets. The redundancy of this mode enables the MAC table to sustain MA1 and MA2 lookups at the
maximum frame rate at the expense of reducing the total table capacity to 32-Kb entries. In this split-
mode of operation, the addressing of the table is aliased such that any hardware or software write to
any index (i <32,768) applies to both paired sets.

5.11.4 Key Precedence

The role of key precedence in the MAC table’s lookup function is shown in Figure 5-25.

Among all entries with matching keys, the entry with the highest precedence value is returned. In this
example, this is set 4's entry with a precedence value of 3, while all other matching sets have lower
precedence values.

Figure 5-25 also shows the Hit-Precedence-Vector (HPV) and Miss-Precedence-Vector (MPV) values that
are produced with each lookup operation. These outputs indicate which precedence classes are
represented among all the entries that matched (HPV) and did not match (MPV) the input key. The HPV
and MPV vectors are passed on to L2AR so that it can:

1. Determine how to interpret the lookup's hit result, if there was one.

2. Decide whether to clobber an existing entry when writing the MA2 key back to the table.

Figure 5-25 MAC Table Lookup Function

FM5000/FM6000 Datasheet—Frame Processing

116 331496-001

In cases of precedence ties, the higher numbered set always wins. For example, when key B is looked
up with the set state as shown in Figure 5-25, the payload associated with set 6's entry is returned (not
set 3's).

5.11.5 Source Lookup Writeback

Unlike any other table in the device, the MAC table has the capability to write new entries and update
old entries without software intervention. This capability is referred to as entry writeback. The feature is
only supported on the MA2 (source MAC) lookup operation.

Following a successful MA2 lookup, two indices are recorded: the index corresponding to the hit entry
whose data was returned by the lookup (hit index), and the index of the lowest precedence entry that
did not match the key (miss index). Based on higher-level application programming, the L2AR stage
determines whether the MA2 key should be written back to one of these two indexed locations. To write
the entry back to its existing location in the table (at its hit index), L2AR sets the MAC_WriteBack flag in
its TAIL_FLAGS output. To write the entry into the miss index location (intended to be the best available
location for a new entry), L2AR sets the MAC_WriteNew bit in TAIL_FLAGS.

An example application of the WriteBack behavior is to implement age bit refresh updates. The
WriteNew behavior is used to learn new entries in the table or to record notable exceptional events,
such as SMACs on which security violations are observed.

In the split table mode of operation, each index maps to two sets, one in each half of the table. Each
time an entry is written back into the table, it is stored identically in both halves so on subsequent
lookups, both MA1 and MA2 lookups see the new or updated entry.

Note: The hit and miss indices derived from the MA2 lookup are not exposed to the L2AR stage
and therefore might not be reassigned by microcode.

5.11.6 Output Handling

Figure 5-26 shows the handling of the MAC table’s MA1_GLORT and MA2_GLORT outputs. Channels
colored red are produced and consumed internally within the L2 lookup block.

331496-001 117

Frame Processing—FM5000/FM6000 Datasheet

The MA1 (DMAC) and MA2 (SMAC) lookup pathways are very similar. As previously explained, the two
lookup operations differ in only two respects:

• MA1 does not support a best-effort lookup mode, whereas the MA2 lookup can be no better than
best-effort. This distinction is only relevant in the full-table mode of operation. Otherwise, the table
is provisioned with sufficient bandwidth for both lookups.

• Only the MA2 lookup supports entry writeback.

Otherwise, outside of the MAC table, the MA1 and MA2 pathways are completely symmetric. Based on
the L3AR-specified command bits, the GloRT output of a lookup hit is assigned to the DGLORT or
SGLORT output channels. An independent control bit determines whether the entry's GloRT field is
assigned to the ALU Y operand pathway.

The interface presented to the rest of the FPP does not depend on the table's split versus full mode
configuration. The only observable effects of the table's configuration relate to the capacity and
performance of these lookup operations.

Figure 5-26 MAC Table GloRT Outputs

FM5000/FM6000 Datasheet—Frame Processing

118 331496-001

5.11.7 Command and Result Encodings

The MA1_CMD and MA2_CMD fields are specified with each frame by L3AR. As with all other L2 lookup
command bits, they are mapped from the frame's L2L_CMD_PROFILE and have the following
encodings:

In Figure 5-26, the MA1_RESULT and MA2_RESULT outputs represent information about the status of the
lookup operations that is passed on to L2AR on the following channels:

The MA1_HIT and MA2_HIT intermediate signals referenced in Figure 5-26 are calculated from each
lookup operation's HPV vector and the corresponding value of HitPrecMask in the MAC_TABLE_CFG
register. The HitPrecMask configuration determines whether a matching entry of each precedence level
is considered a valid hit in the table. It is calculated as:

HIT = (HPV & HitPrecMask != 0)

Table 5-52 L2 Lookup Command Encodings

Bit Value Definition

0
0b Do not perform lookup.

1b Must perform lookup (MA1) or attempt to perform best-effort lookup (MA2).

1
0b Map input DGLORT/SGLORT to output DGLORT/SGLORT unconditionally.

1b Map DGLORT/SGLORT from lookup result if there was a matching entry.

2
0b

Map the input DGLORT/SGLORT to the ALU Y operand channel.
Note: This mapping is inconsequential unless the L3AR block has correspondingly selected the

L2L_MAn_GLORT input as an ALU input operand.

1b Map the L2 Lookup's Y ALU operand channel from the lookup GloRT result if there was a hit, or from the input
DGLORT/SGLORT otherwise.

Table 5-53 L2 Lookup Action Channels

Sub-Field Width Definition

Lookup 1 One indicates whether a lookup was performed.
For MA1, this is the same as the input MA1_CMD. For MA2, this equals MA2_CMD unless the lookup
was skipped.

HPV 4 HPV.
Indicates which precedence levels had matching entries.

MPV 4 (MA2 Only) MPV.
Indicates which precedence levels had non-matching entries.
Note: In general, HPV != ~MPV.

WriteBackEnabled 1 (MA2 Only) Indicates whether this key's lookup entry might be written back to the table. Writeback
can be disabled due to two reasons:

1. Management access (or sweeper) clobber protection.
2. A previous table entry write associated with this frame's source port has not yet completed.

This bit is communicated to L2AR on ACTION_FLAGS[MA2_WriteBackEnabled].

WriteNewEnable 1 (MA2 Only) Indicates whether a new entry may be written into the table associated with this key. A
new entry may be disallowed for the following reasons:

1. Management access (or sweeper) clobber protection.
2. A previous table entry write associated with this frame's source port has not yet completed.

This bit is communicated to L2AR on ACTION_FLAGS[MA2_WriteNewEnabled].

331496-001 119

Frame Processing—FM5000/FM6000 Datasheet

Typically, HitPrecMask is set to 0xC0 such that the hit condition corresponds to an OR over the top two
bits of the HPV vector. For example, MA1_RESULT.HPV[3:2]=0b. The lowest precedence level,
corresponding to HPV[0], is reserved for invalid (or empty) entries, so is not included in the hit
determination. The second lowest precedence level, corresponding to HPV[1], might be reserved for
provisional entries. For example, entries that have been learned into the table but are not yet validated
for use.

The unit preserves up to two indexes; one for updates and one for new entries. The update index is the
index for the highest precedence hit. For new entry index is the index of the lowest precedence miss.
The pseudo code for MA2 lookup is as follows (assume N is 16 for full mode and 8 for half mode).

The MA2_WriteBackEnabled and MA2_WriteNewEnabled bits are produced by the MA2 lookup and
added to ACTION_FLAGS.

5.11.8 Direct Management Access

The MAC table memory space is divided into 16 4-Kb ranges, one for each FullTableMode set. The key
and payload fields are accessed atomically as a single four-word unit. In terms of four-word entry
indices, sets and entries within the set are addressed as follows:

SSset = idx[15:12]
entry = idx[11:0]

In split table mode, the top-most address bit is ignored. Writes with idx[15] as either 0b or 1b
atomically affects both sets idx[14:12] and idx[14:12]+0x8. Reads can also be issued to either aliased
set in this mode.

5.11.9 Table Sweepers

To accelerate common MAC table management operations, an autonomous sweeper mechanism is
provided for software use. The mechanism consists of two sweeper timers that sequence through all
entries in the table at independently configured rates. Each entry read from the table is evaluated
against the keys of up to 16 sweeper rules divided between the two timers. Any matching rule applies
one or more configured actions to the entry.

A sweeper can be configured to process all entries in the table (or some configured subset of entries).
Alternatively, a sweeper can be configured to iterate over a specified range of MAC table entries
indefinitely.

foreach i (0..N)
 if (the lookup matches the table value,
 AND HitPrecedenceMask[prec] is set AND
 and this is the highest hit precedence seen so far)
 Save hit address
 Set MA2_WriteBackEnabled
 else if (the HitPrecedenceMask[prec] is zero AND
 this is the lowest miss precedence seen so far)
 Save the miss address
 Set MA2_WriteNewEnabled

FM5000/FM6000 Datasheet—Frame Processing

120 331496-001

Once a sweeper timer has processed the stop index entry, it posts an interrupt in the SWEEPER_IP
register.

Each sweeper rule’s match condition is configured as a standard TCAM (KeyInvert, Key) pair that it
applies to the following fields:

• MAC Entry key (MAC, FID1, FID2, Prec)

• MAC Entry payload (DATA, TAG)

• Sweeper timer number (Timer:1)

• MAC Entry error bit (Error:1), indicating whether the entry contains an uncorrectable ECC error. A
sweeper rule applies its action to a given entry only if all fields of the key match.

The sweepers support three types of actions:

• Field Replacement — Any of the matching entry's GLORT, DATA, TAG, or Prec fields can be
replaced by a configured constant value. The constant assignment is restricted by a bit mask per
field:

FIELDnew = FIELD & ReplaceMaskFIELD | ReplaceValueFIELD

• Entry Reporting — Matching entries can be posted to a 512-entry sweeper FIFO. The entry index
and the sweeper rule number are recorded in each FIFO entry. If the 512-entry FIFO is full when a
sweeper attempts to post a new entry, the sweeper state machine blocks it until space is available.
Software dequeues entries from the FIFO by writing to the SWEEPER_FIFO_HEAD register.

• Masked Field Decrement (DATA field only) — In addition to a constant masked value assignment,
the 8-bit DATA field supports a decrement-by-1 transformation. With this action, the complete
expression specifying the transformed DATA value becomes:

DATAnew = DATA & ReplaceMaskDATA | ReplaceValueDATA |
 ((DATA & DecrementMaskDATA) - 1) & DecrementMaskDATA

The two sweeper timers have independent configurations and can operate concurrently. Their rate of
iteration through the table is configured by the L2LookupPeriod0 and L2LookupPeriod1 fields in the
LSM_SWEEPER_CFG register. The sweepers have lower priority access to the table than the hardware's
lookup and writeback operations, so the actual sweep rate might be slower than expected. Basic state
and statistics information is reported in the SWEEPER_STATUS register to facilitate debugging.

More than one sweeper rule can transform the same table entry. Each sweeper rule is evaluated and
applied sequentially. The following example shows the behavior of a single sweeper timer when it
accesses some MAC table entry at index idx:

1. Read Entry X = (MAC_TABLE_KEY[idx], MAC_TABLE_PAYLOAD[idx]); initialize X' = X.

2. For each Sweeper rule R = 0..15:

If R.matches(X) and R.matches(Timer):

• X' = R.transformEntry(X')

• Set ReportMask[R] = R.ReportMatch

Else:

• Set ReportMask[R] = 0

3. Write X' back to (MAC_TABLE_KEY[idx], MAC_TABLE_PAYLOAD[idx]).

4. If ReportMask != 0:

• Wait for space in SWEEPER_FIFO

• Post (idx, ReportMask) to SWEEPER_FIFO

331496-001 121

Frame Processing—FM5000/FM6000 Datasheet

5. Depending on the sweeper timer configuration, do one of the following:

• Proceed to the next table index idx next;

• Halt, optionally raising an interrupt.

The SWEEPER register definitions provide more details regarding their operation and actions.

5.11.10 Table Access Arbitration

• The MAC table might be accessed by multiple independent sources in the FM5000/FM6000.
Specifically, the following accesses can arise at any time and must be arbitrated by the table:

• Direct software R/W access

• Frame header MA1 and MA2 lookups

• Hardware entry writeback, triggered by frame tail arrivals

• Sweeper read-modify-write access

The direct software and the sweeper accesses share the management interface to the MAC table.
Together they share any excess bandwidth that the MAC table has available after lookups and write
backs are serviced. Accesses between software and the sweepers is fairly arbitrated.

Among head lookups and tail write-back operations, the MA1 lookup is given higher-priority access over
write-back access. Regardless of the lookup load, the write-back mechanism is guaranteed to receive at
least 1/128th of the table bandwidth, and shares any excess bandwidth fairly with management and the
sweepers. In split table mode, the MA2 lookup is unconditional and shares the MA1 lookup's
prioritization. In full table mode, the MA2 lookup is performed in a best-effort fashion and is given
lowest priority access.

Since write-back operations have a lower priority than the MA1 (and possibly MA2) lookups and tail
write backs are not guaranteed to complete. However, at least one write-back request originating from
each ingress port is buffered indefinitely until the lookup event rate is low enough to service the
pending writeback operations. Under anomalous conditions, this could result in large delays from the
time frames are forwarded by the switch to the time the MAC table is updated with the same frames'
newly-written MA2 MAC addresses.

All hardware-initiated entry write backs are written atomically with respect to software and sweeper
writes. In some cases, pending write-back operations can be invalidated to avoid overwriting a software
or sweeper write that conflicts with the pending writeback index.

The sweepers issue read-modify-write accesses to the table and as a result expose a window of time
(between the read and the write) when a conflicting software write might be subsequently overwritten.
To avoid this hazard, a write indirection mechanism is provided that allows software to safely sequence
its write operations with respect to the sweeper state machines. Each master in the management
domain has a dedicated pair of L2L_SWEEPER_WRITE_COMMAND and L2L_SWEEPER_WRITE_DATA
registers that it can use to specify an index and the data value to write to the MAC table. The sweepers
issue these write operations to the MAC table on behalf of the master between its own read-modify-
write accesses.

FM5000/FM6000 Datasheet—Frame Processing

122 331496-001

5.12 ALU

The ALU stage performs various arithmetic and logic operations on inputs produced earlier in the
pipeline. It replaces a handful of fixed-function evaluations in the FM4000 series pipeline, such as the
MTU check, and provides the flexibility to implement a number of optional features.

The ALU stage is viewed as a special key evaluation stage for L2AR. The ALU operations provide a richer
set of key matching functions than the TCAM's simple masked-compare-to-constant test. However, the
ALU functionality has a much larger implementation cost than a TCAM rule, so its matching capability is
restricted to a small and aggressively muxed set of keys.

5.12.1 Overview

The ALU stage includes six functional units, referred to as ALU1..6. Each functional unit either adds,
subtracts, or XORs two unsigned 16-bit input operands (X and Y) and generates overflow and
equal-to-zero flags based on the value of its Z output. A number of transformations can be applied to
the input operands:

• Bit-masking, to limit inputs to a specific bit width or to combine disjointed bit slices from the two
operands.

• Mapping through a 16-entry by 16-bit table (Y operand only), providing operand compression when
table entry bit resources are limited. In this case, only the bottom four bits of the Y operand are
used.

• Swapping of X and Y operands.

• Barrel roll, to align fields from user-defined table entry formats (only supported on ALUs 1 and 4).

The functional units produce a 16-bit unsigned data output, passed on as potential inputs to the
policers and L2AR units. Two result status bits (indicating equal-to-zero and overflow) are added to
ACTION_FLAGS. These bits are available as L2AR keys and can be used to indicate equality or
comparison relationships between the input operands.

The X input operand comes directly from L3AR mux outputs. The source of the Y input operand is also
fully specified by L3AR, but in some cases its value is taken from the outputs of the L2 lookup stage.
See Section 5.10.7 for details.

Figure 5-27 ALU Functional Unit

331496-001 123

Frame Processing—FM5000/FM6000 Datasheet

All ALU function units support two's complement arithmetic. For checksum calculation purposes, ALUs 2
and 5 additionally support ones-complement arithmetic, as indicated by the OneTwo control signal
shown in Figure 5-27.

Table 5-54 lists the different capabilities of the six ALU functional units.

5.12.2 Inputs

The ALU stage receives two sets of inputs, one for ALUs 1..3, the other for ALUs 4..6. Each set consists
of a command profile index (ALU13_CMD_PROFILE and ALU46_CMD_PROFILE) specified by L3AR as
well as the input operands for the functional units.

For each ALU functional unit, either the ALU13_CMD_PROFILE or ALU46_CMD_PROFILE input indexes a
32-entry ALU n_CMD_TABLE[0..31]. The 44-bit command returned by this table fully specifies the
operation of each functional unit.

Table 5-54 ALU Capabilities

Function
ALU Number

1 2 3 4 5 6

Barrel roll on X and/or Y — — — —

Bit-masking of X and/or Y

Mapping of Y[3:0]

Swapping of X and Y

X + Y (two's complement)

X + Y (one's complement) — — — —

X ^ Y (XOR)

Table 5-55 ALU Inputs

Channel Width Description

ALU13_CMD_PROFILE 5
Command profile numbers specified by the L3AR SetAluCmdProfile action.

ALU46_CMD_PROFILE 5

ALU{1,2,3}_X 3 x 16-bits Operand input #1 for each ALU functional unit. These all come directly from L3AR without
modification.ALU{4,5,6}_X 3 x 16-bits

ALU{1,2,3}_Y 3 x 16-bits Operand input #2 for each ALU functional unit. For some cases specified by the L3AR
Output Mux action (see Section 5.10.7), this channel is set from outputs of L2 Lookup
operations.ALU{4,5,6}_Y 3 x 16-bits

FM5000/FM6000 Datasheet—Frame Processing

124 331496-001

5.12.3 Command Encoding

Each ALU receives a 45-bit ALU_CMD_PROFILE-mapped command input, encoded as in Table 5-56:

Note: The sequence of operand transformations is swap, then roll, then mask, then map.

The following abbreviated notations are used to represent common ALU configuration profiles:

X + Y: Function=ADD with OneTwo=0b.

X - Y: Function=SUB with OneTwo=0b.

X (+1) Y: Function=ADD with OneTwo=1b.

X (-1) Y: Function=SUB with OneTwo=1b.

X <<(5,12) Y: RollX=5, MaskX=0xFE0, RollY=0, MaskY=0x1F, Function=ADD.

X>Y: SwapX=0, Function=SUB, OneTwo=1b. Overflow bit is result.

X==Y: Function=SUB, Zero bit is result.

Table 5-56 ALU Command Encoding

Field Bits Description

SwapXY 0 Specifies whether to swap input operands X=ALU_Y, Y=ALU_X.
Following, all operands refer to their post-swapped values. This provides support for ALU_X-ALU_Y as
well as ALU_Y-ALU_X, among other functional variations.

RollX 4:1 Specifies barrel rolling of X operand:
X = (X << RollX) | X[15:(16-RollX)]

Ignored for all ALUs other than 1 and 4.

MaskX 20:5 Specifies the post-roll masking of X:
X = X & MaskX

RollY 24:21 Specifies barrel rolling of Y operand:
Y = (Y << RollY) | Y[15:(16-RollY)]

MaskY 40:25 Specifies the post-roll masking of Y:
Y = Y & MaskY

MapY 41 Specifies whether to map Y through Y_TABLE:
Y = MapY | Y_TABLE[Y[3:0]] : Y

Function 43:42 Specifies the function to execute:
00b = ADD (X + Y)
01b = SUB (X - Y)
10b = XOR (X ^ Y)
11b = NOP (To save power, no output is produced)

OneTwo 44 Specifies ones or twos complement arithmetic.
0b = Twos compliment
1b = Ones compliment

Only ALUs 2 and 5 support a OneTwo value of 1.

OrIntoL2ARKey 45 Specifies whether the ALU's Z output must be ORed into the corresponding ALU13_Z or ALU46_Z
output for use in the L2 Action Resolution TCAM key.

331496-001 125

Frame Processing—FM5000/FM6000 Datasheet

5.12.4 Outputs

Each ALU produces a 16-bit ALUn_Z result. The results are available downstream in the pipeline for the
following uses:

• Mapping to policer indices (see SetPolicerIdxSrc action).

• Selection for L2F table indexing (ALU{1,2,3,4}_Z outputs). See Section 5.15.3.

• L2AR ALU13_Z and ALU46_Z TCAM keys. One ALUn_Z output from each 3-ALU set (1..3 and 4..6)
can be selected for use as an L2AR TCAM key field.

• L2AR Output Channel Muxing. All ALU{1..6}_Z outputs are available as mux sources for a variety of
MOD_DATA and STATS output channels. See Section 5.17.9

Table 5-57 shows a summary of 16-bit output channels.

The ALU stage also produces two action flag bits per functional unit, as shown in Table 5-58.

Table 5-57 ALU Z Outputs

Output Width Description

6 x 16-bits 16-bit result from each ALU functional unit.

ALU13_Z 16 OR over a selected set of ALU{1,2,3}_Z (ALU13_Z) and ALU{4,5,6}_Z (ALU46_Z) outputs. One bit
in each ALU_CMD_TABLE selects whether each ALU's output is ORed into the corresponding
ALU13_Z or ALU46_Z output. These channels are available as L2AR key fields.ALU46_Z 16

Table 5-58 ALU Flag Outputs

Flag Bits Definition

ALU1_Overflow 54

Overflow output.
For example, with Function=SUB, indicates X<Y when OneTwo=0b or X>Y with OneTwo=1b.

ALU2_Overflow 56

ALU3_Overflow 58

ALU4_Overflow 60

ALU5_Overflow 62

ALU6_Overflow 64

ALU1_Zero 55

Equal-to-zero output.
Evaluation of ALU_Z[i]=0b. When OneTwo=1b, this also evaluates to 1b if ALU_Z[i]=0xFFFF or
ALU_Z[i]=0b since both are representations of zero in ones-complement arithmetic.

ALU2_Zero 57

ALU3_Zero 59

ALU4_Zero 61

ALU5_Zero 63

ALU6_Zero 65

FM5000/FM6000 Datasheet—Frame Processing

126 331496-001

5.13 Policers

The policer stage of the FM5000/FM6000 FPP implements per-flow frame counting, tri-color marking,
and drop-based rate-limiting. The early stages of the pipeline (FFU through L3AR) classify incoming
frames and assign them to up to one policer index per policer bank. The policer stage looks up the
count or rate profile state associated with those indices and passes the results on to L2AR.

Rules configured in L2AR determine whether the frame is to be dropped, recolored (a QoS
transformation), or left as is. L2AR also determines whether the policer state associated with each
frame assigned to it is to be credited with the bytes (or count) associated with the frame.

5.13.1 Overview

The policer stage contains two 4096 double-entry banks and one 1024 single-entry bank. The 4-Kb
banks each provide two rate limiters or counters per frame, while the 1-Kb banks provide a single rate
limiter or counter per frame. The 4-Kb banks are intended for flow-based tri-color policing and ACL
counting. The 1-Kb bank is provided as a mechanism to limit the event rates of particular frame
forwarding behaviors such as flooding or trapping to the CPU, possibly on a per-ingress-port basis.

Each 32-bit entry unit can be configured to operate in one of four modes:

• Data rate policing

• Frame rate policing

• Byte counter

• Frame counter

The policing functions are implemented as token buckets configured by a steady-state rate limit and a
burst capacity. The token bucket count is replenished periodically and decremented when frames are
credited to the bucket. When the bucket count goes to zero (or is negative), the token bucket is out of
profile, and this status is indicated to L2AR so the frame can be dropped or down-marked appropriately.

Both entries in the 4-Kb banks can be configured as token buckets enforcing different rate limits to
implement differentiated services tri-color marking (RFC 4115). In the terminology of tri-color marking,
the two rate limits typically represent committed and excess rate profiles. In this mode of operation,
the down-marking of the frame’s DSCP status (and/or other QoS fields) is decided by L2AR, operating
on:

1. The rate status flags reported by the policer evaluation.

2. The down-marked QoS fields and flags generated by the mark-down tables described in
Section 5.13.6.

In counter mode, the entries operate as 32-bit rollover counters that increment each time frames are
credited to the entry by L2AR. If both entries of a 4-Kb bank are configured to have the same counter
type, the 32-bit state is combined to provide a single 64-bit frame or byte counter.

331496-001 127

Frame Processing—FM5000/FM6000 Datasheet

5.13.2 Evaluation, Reporting, and Crediting

For a given frame, any address in each of the two 4-Kb banks and 1-Kb bank can be accessed,
evaluated, and updated. The entries are indexed by the L3AR's POL1_IDX, POL2_IDX, and POL3_IDX
output channels. Thus, a total of five rate limiters or counters can be applied to any single frame,
selected by three independent indices. Among these five entries, the out-of-profile rate status is
reported to L2AR on the following action flag bits:

• POL1_OverRate{1,2} — Token bucket status of the two entries accessed in the first
4-Kb bank.

• POL2_OverRate{1,2} — Token bucket status of the two entries accessed in the second 4-Kb
bank.

• POL3_OverRate — Token bucket status of the entry accessed in the 1-Kb bank.

If any of these token buckets have zero or negative token counts, its OverRate flag is set to 1b. If any
of the entries are configured as counters, their OverRate flags are always reported as zero.

L2AR is responsible for setting a credit tail flag per token bucket or counter entry. By setting this flag,
the bytes or count associated with the frame are credited to the token bucket or counter state. For a
token bucket, this means the token count state is decremented; for a counter, the count state is
incremented. The amount by which the state changes depends on the configured frame-rate/count
versus byte-rate/count mode of the entry. A frame is not eligible for crediting to a token bucket or
counter entry if is dropped due to congestion management. In such an event, all credit tail flags are
overridden to zero.

The 32-bit signed token bucket state values saturate if/when they reach their maximum negative value
(-231). Counter state values are unsigned and roll over to zero upon exceeding 232-1.

The policer stage is located quite late in the pipeline, after L2 lookup. This provides L3AR with a wide
selection of sources for its counter/policer index selection. This makes it possible to count or police any
of the following:

• FFU rules (maintaining full FM4000 series compatibility)

• DMAC or SMAC lookups

• Ingress or egress VLANs

For more specific information about policer index selection, see Section 5.10, “L3 Action Resolution”.

5.13.3 Entry Formats

Each policer entry consists of 32 bits of token bucket or counter state, addressed by the
POLICER_STATE registers, as well as another 32 bits of static configuration, addressed by the
POLICER_CFG registers. The 32-bit configuration state is encoded as shown in Table 5-59

Table 5-59 Policer Configuration Format

Field Width Description

Mode 1 Specifies either counter mode or token-bucket policer mode.
0b = Counter mode
1b = Policer mode

FM5000/FM6000 Datasheet—Frame Processing

128 331496-001

In token bucket mode, the 32 bits of state associated with each entry encodes a signed token count in
units of either bytes or frames, depending on the Unit configuration. Normally software does not have
any reason to write to this state, although write access is supported.

In counter mode, the 32 bits of state encodes an unsigned count that rolls over to zero on overflow.
When the two entries of a 4-Kb bank address are both encoded to have Mode=1b (count) and the same
unit value, the second entry's 32-bit state field (count2) increments each time the Count1 counter
overflows, thus providing a single 64-bit counter.

5.13.4 Token Bucket Dynamics

The operation of an ideal token bucket is straightforward. The bucket's token count is incremented
continuously at the configured rate, saturating when it reaches the bucket's configured capacity.

When a rate-limited frame ingresses the switch, the token bucket state is evaluated. If the token count
is equal to or larger than the frame's length, the token bucket is said to be in profile; otherwise, the
bucket is reported to be out of profile (OverRate flag is set). In either case, the length of the frame (or
1 in frame-rate mode) is subtracted from the token count.

The dynamic behavior of the FM5000/FM6000's token buckets deviates from this ideal definition due to
a number of architectural properties:

• Token bucket state evaluations are performed immediately when frames ingress (at head-of-
frame), before the length of the frame is known.

• In data-rate mode, bucket token count decrement is performed in discrete amounts at the tail of
each ingress segment (such as every 160 bytes or, on the last segment, less). In frame-rate mode,
the bucket token count is decremented on the tail of the frame's first segment.

• Token bucket counts are incremented in discrete lump sums every sweeper period. The average
sweeper period is guaranteed to match the configured value (set by PolicerPeriod in the
LSM_SWEEPER_CFG register), but some variability might arise from one period to the next.

Unit 1 Specifies either frames or bytes as the unit to be counted or rate-limited.
0b = Frames
1b = Bytes

RateMantissa 4 The token bucket steady-state rate limit, encoded in floating point form. Only relevant when mode
is set 1b. The rate unit depends on the configured unit value, and on the policer sweeper period.
Rate = RateMantissa << RateExponent [bytes or frames per sweeper_period]RateExponent 5

CapacityMantissa 4 The token bucket burst capacity, encoded in floating point form.
Only relevant when mode is 1b.

Capacity = CapacityMantissa << CapacityExponent [bytes or frames]
The absolute maximum supported capacity value is the maximum signed token bucket state value,
or 231-1.

CapacityExponent 5

TAG 12 Generic data tag available for encoding actions to perform by L2AR in conjunction with the entry's
rate status.
The top four bits of the TAG are available as key fields in the L2AR slice TCAMs. These are expected
to encode the action type. The bottom 10 bits are available for QoS field assignment in L2AR. All 12
TAG bits are also available for STATS and MOD_DATA channel mux sources so the field can be used
as a general 12b-to-12b mapping pathway.

Table 5-59 Policer Configuration Format (Continued)

Field Width Description

331496-001 129

Frame Processing—FM5000/FM6000 Datasheet

The cumulative effect of these non-ideal properties is to introduce potential inaccuracies in the
adherence to the token bucket's capacity parameter. Selecting a sufficiently large capacity avoids most
of these errors. Since many of these errors only arise in corner-case traffic conditions, it might be
acceptable to configure a lower capacity and accept occasional burst rate violations.

The following system parameters have a quantitative impact on the capacity minimum bounds and
errors:

• fsweeper — Sweeper frequency in GHz (inverse of sweeper_period). A configured constant,
nominally 3e-6 (3 KHz).

• Nports — Number of port tokens in the segment scheduler (typically 64 to 74).

• Nsrc — Maximum number of ingress ports that can receive frames evaluated by the token bucket.
In some applications this can be exactly one; in others, it can be as large as all ports in the switch.

• Npolicer — Maximum number of policer entries that the sweeper must process over all three policer
banks. This is configured in the FC_MRL_UNROLL_ITER register discussed below. Nominally 4095.

• R — Configured rate, in bytes or frames per sweeper period. With a nominal sweeper period of 333
µs, a 10 Gb/s rate would have R = 407 KB [per sweeper_period].

• T — Maximum token refresh jitter (±) that can arise. For the FM5000/FM6000, this is about 0.45,
worst-case.

T = 0.5 N ports N policer f sweeper.

Table 5-60 lists the minimum capacity bounds and errors that arise from the FM5000/FM6000's token
bucket dynamics.

Note: The C min bounds scale linearly with the desired rate limit, R.

Operating in the Cmin,static < C < Cmin,dynamic regime can be entirely reasonable in many applications.
The effect is occasional violations of the specified burst capacity, usually much less than the worst-case
R * T. In addition to the ingress rate falling within the specified range, the errors are furthermore
dependent on the switch experiencing wide fluctuations in the chip-wide aggregate frame rate.

Table 5-60 Policer Capacity Bounds

Parameter Worst-case Value Description Typical Case 1

1. The example provided has the following properties:
125 MB/s rate limit (1 Gb/s)
N ports=64
N src=1

 Covershoot Nsrc * MTU Maximum capacity overshoot beyond the configured value.
This is a fundamental unavoidable error term. It is asymmetric in the
sense that the observed burst capacity always falls in the range
[C,C+ Covershoot].
Note: In frame-rate mode, MTU becomes one.

1522 Bytes

Cmin,static R Minimum capacity needed to avoid systematic rate errors throughout
operation.

41 KB

Cmin,dynamic R (1+T)/(1-T) Minimum capacity needed to avoid errors due to traffic pattern-
dependent effects.

108 KB

Cdynamic R * T Maximum error (±) in observed token bucket capacity if C is
configured in the regime Cmin,static < C < Cmin,dynamic.
This only occurs when the ingress rate R i falls in the following range:

R < R i < R/(1-T) 1.82 * R

18 KB

FM5000/FM6000 Datasheet—Frame Processing

130 331496-001

Table 5-61 lists the dynamic range of rates that the token buckets support.

5.13.5 Sweeper Configuration

The policer sweeper is a background hardware process responsible for periodically replenishing each
policer's token bucket count. The sweeper processes one address in all three banks per access cycle. It
therefore normally requires 4095 access cycles to complete one sweep through all entries, referred to
as sweeper_period or fsweeper (its inverse, measured in GHz).

Two configuration parameters influence the behavior of the policer sweeper and affect the dynamics of
the policers:

• FC_MRL_UNROLL_ITER.Cycles — Identifies the maximum index over all three policer banks that
contains an entry with mode set to 1b (token bucket). This nominally is 4095, the highest index
number. However, the Cmin bounds previously detailed can be reduced by using fewer than the
maximum number of policers, packing those policer entries at the low end of the policer address
range, and then specifying a minimal MaxPolicerIndex value for this parameter.

• LSM_SWEEPER_CFG.PolicerPeriod — Regulates sweeper_period. As the MaxPolicerIndex is
reduced, PolicerPeriod can be commensurately reduced by a factor of MaxPolicerIndex/4095.
PolicerPeriod must not be set too low or else the upper policer entries might not be updated reliably.

5.13.6 QoS Mark-Down Mapping

The policers and discrete rate limiters determine whether a frame belongs to a flow that is out of
profile. The policer stage also includes two QoS mapping tables, POLICERS_QOS_MAP1 and
POLICERS_QOS_MAP2, that determine how such frames’ QoS values are transformed for tri-color
marking purposes. The tables produce two fields: a first-order (First) and a second-order (Second)
marked-down value. Both mark-down values are provided to L2AR so it can select the appropriate final
QoS value based on the results of the policer evaluations.

Each QOS_MAP table is indexed by a QoS input value selected by L3AR (QOS.MAP1_IDX or
QOS.MAP2_IDX) and contains entries explicitly configured with the two First and Second mark-down
fields. It is up to software to ensure that the table is configured to satisfy the following properties:

Table 5-61 Token Bucket Dynamic Range Rates

Parameter Formula Description Typical Case

Rmin fsweeper Minimum rate.
Set by configuring the smallest rate possible, namely one byte
per sweeper period.

3 KB/s

Rmax 2^31 (1-T)/(1+T) fsweeper Maximum rate.
Limited by the dynamic range of the token bucket credit
counter. To avoid clipping caused by traffic-dependent capacity
overruns, the maximum capacity must be set smaller by a
factor of (1- T)/(1+T). Since RC, this constraint also limits
the maximum rate that is reliably sustained. With nominal
settings, Rmax greatly exceeds the maximum aggregate data
rate of the switch.

2,400 GB/s

331496-001 131

Frame Processing—FM5000/FM6000 Datasheet

The green, yellow, and red terms represent equivalency sets of QoS fields associated with the
corresponding markings. Given the previously described properties, L2AR can infer the color of the
initial QoS state IDX (and therefore of the First and Second mark-down cases) based on the following
evaluations:

The previous two independent terms, QOS_Map_Eq01 (IDX == MAP[IDX].First) and QOS_Map_Eq12
(MAP[IDX].First = MAP[IDX].Second), are calculated and passed on to L2AR as action flag bits.

Figure 5-28 shows the hardware structure of the POLICER_QOS_MAP1 table.

The second POLICER_QOS_MAP2 table is similar, except it contains 64 entries and its First and Second
mark-down fields are each eight bits wide. POLICER_QOS_MAP1 is intended for marking down any of
the four bit QoS fields (such as QOS.ISL_PRI or QOS.L2_VPRI1) while the POLICER_QOS_MAP2
supports marking down the wider QOS.L3_PRI field (like DSCP) as well as any of the 4-bit fields.

MAP[MAP[IDX].First] = MAP[IDX].Second
IDX Red or IDX Yellow MAP[IDX].First Red and MAP[IDX].Second Red
IDX Green MAP[IDX].First Yellow and MAP[IDX].Second Red
IDX Green or IDX Yellow IDX MAP[IDX].First
IDX Red IDX == MAP[IDX].First

IDX == MAP[IDX].First IDX Red
IDX MAP[IDX].First and MAP[IDX].First == MAP[IDX].Second IDX Yellow
IDX MAP[IDX].First and MAP[IDX].First MAP[IDX].Second IDX Green

Figure 5-28 Policer QOS Map Table

FM5000/FM6000 Datasheet—Frame Processing

132 331496-001

5.13.7 Outputs

Each policer bank communicates the status of its indexed rate profiles by setting five action flag bits.
The output comparisons of the QoS mark-down tables set an additional four bits in the action flags
vector. All of these status bits are available as L2AR TCAM keys.

The policers also generate 60 bits of TAG outputs available for L2AR TCAM matching and muxing. In
addition, the QoS mark-down tables produce four new QoS values that, on the basis of the previous
rate limiter status evaluations, L2AR might select as the new egress QoS level.

Table 5-62 Policer Outputs

Flag Bit Index Definition

POL1_OverRate1 61

Indicates that the corresponding policer entry that was indexed and evaluated by the
corresponding POL{1,2}_IDX channel is out-of-profile.
Is always be zero for counter entries.

POL1_OverRate2 62

POL1_OverRate1 63

POL1_OverRate2 64

POL1_OverRate 65

QOS_Map1_Eq01 66 Encodes QOS.MAP1_IDX == POLICER_QOS_MAP1[QOS.MAP1_IDX].First

QOS_Map1_Eq012 67 Encodes POLICER_QOS_MAP1[QOS.MAP1_IDX].First ==
POLICER_QOS_MAP1[QOS.MAP1_IDX].Second

QOS_Map1_Eq01 68 Encodes QOS.MAP2_IDX == POLICER_QOS_MAP2[QOS.MAP2_IDX].First

QOS_Map1_Eq12 69 Encodes POLICER_QOS_MAP2[QOS.MAP2_IDX].First ==
POLICER_QOS_MAP2[QOS.MAP2_IDX].Second

Table 5-63 Policer QoS Outputs

Field Width Definition

POL1_TAG1 12

Tag fields associated with each policer entry.

POL1_TAG2 12

POL2_TAG1 12

POL2_TAG2 12

POL3_TAG 12

POLICER_QOS_MAP1_FIRST 4 First-order mark-down mapping of QOS.MAP1_IDX.

POLICER_QOS_MAP1_SECOND 4 Second-order mark-down mapping of QOS.MAP1_IDX.

POLICER_QOS_MAP2_FIRST 8 First-order mark-down mapping of QOS.MAP2_IDX.

POLICER_QOS_MAP2_SECOND 8 Second-order mark-down mapping of QOS.MAP2_IDX.

331496-001 133

Frame Processing—FM5000/FM6000 Datasheet

5.14 GloRT Lookup

Conceptually, the FM5000/FM6000 is a switch-router that operates on a virtualized physical layer.
According to this abstraction, ports can represent LAGs, remote or attached CPUs, or internal loopback
entities such as the IPL. More significantly, these virtualized ports can map to physical ports spread
across any number of FM5000/FM6000 instances. These FM5000/FM6000 instances form a multi-chip
domain, unified by a fabric tag. These virtualized ports are referred to as Global Resource Tags, or
GloRTs.

The GloRT Lookup stage in the pipeline provides the linkage between the GloRT-virtualized ports and
the FM5000/FM6000 instance-specific physical ports. Given a destination GloRT from the L2 lookup
stage, the GloRT Lookup stage is responsible for producing a destination port mask index (abbreviated
DMASK_IDX). The index is then passed on to the L2 filtering stage for the final mapping to an 76-bit
destination port mask.

5.14.1 Overview

The GloRT Lookup function consists of three parts:

1. Matching the DGLORT in a 1-Kb-entry TCAM/RAM structure, which provides an index into the
destination port mask table, along with other associated information.

2. Mapping the DMASK_IDX in a 16-Kb-entry destination mask table to obtain the destination port
mask. This mapping can, optionally, involve the frame's L2_HASH value, useful for load balancing,
link aggregation, and other stochastic frame forwarding applications. This hash-based
transformation of DMASK_IDX is referred to as LAG pruning.

3. Hash-based filtering of the destination mask, primarily intended for link aggregation. This function
is referred to as LAG filtering.

These DMASK_IDX mapping steps are shown schematically in Figure 5-29.

The LAG filtering mask (LAG_MASK) is generated by the GloRT lookup stage since it is closely related to
the LAG pruning calculation. The mask is passed on to L2 filtering where it can be applied to the final
destination port mask. L2AR also has access to the LAG_MASK so it can re-apply LAG filtering in case it
further transforms the destination port mask.

Figure 5-29 GloRT Lookup Block Diagram

FM5000/FM6000 Datasheet—Frame Processing

134 331496-001

Two of four 16-bit L2 hash rotations calculated by the L2_HASH unit are available for use in the GloRT
Lookup stage, as mapped by the HASH_ROTATION_CFG register. In the GloRT lookup stage these
mapped rotations are referenced as rotations A and B, and are selected per GloRT entry (in the
GLORT_RAM) or LAG group (in the GLORT_LAG_TABLE).

5.14.2 GloRT CAM and Table

The first-stage mapping of the DGLORT through the GLORT_CAM and GLORT_TABLE structures is a
standard TCAM/RAM lookup operation. Each of the GLORT_CAM's 1024 entries stores a (Key, KeyInvert)
pair. The highest-numbered entry i that satisfies the condition provides the index for the GLORT_TABLE
lookup. If no entry hits in the CAM, the index is set to zero. Thus, regardless of how entry zero is
configured, it behaves as if Key[0]=0xFFFF and KeyInvert[0]=0xFFFF.

(DGLORT & Key[i] == DGLORT) & (~DGLORT & KeyInvert[i] == ~DGLORT)

Each GLORT_TABLE entry stores the following fields:

Table 5-64 GloRT Table Entries

Field Width Description

HashCmd 2 Determines how the StrictDestGlort flag and L2_HASH value are used when mapping the
destination GloRT to the forwarding destination mask.
The GloRT is said to be strictly mapped if its the frame's hash value is ignored in this function.
Four mapping cases are defined:

00b = Strictly mapped only if the StrictDestGlort Action Flags bit is set to 1; otherwise the
L2_HASH value is used in both the LAG Pruning and LAG Filtering DMASK mapping steps
(see Section 5.14.3 and Section 5.14.4).

01b = Same as case 0, except LAG Filtering is always strict (see Section 5.14.4).
10b = Not strict, overriding the StrictDestGlort flag.
11b = Strict regardless of StrictDestGlort.

DMaskBaseIdx 16 Base index into the L2F_GLORT_DMASK_TABLE, which maps to a forwarding destination port mask
following the hashing transformations.
Note: The L2F_GLORT_DMASK_TABLE is abbreviated as DMASK_TABLE.

RangeSubIndexA 8 Defines the position and size of a sub-index A taken from the DGLORT value.
The first four bits (RangeSubIndexA[3:0]), OffsetA, give the starting bit position within DGLORT of
the sub-index; the second four bits (RangeSubIndexA[7:4]), LengthA, give the width of the sub-
index field.

RangeSubIndexB 8 Defines the position and size of a second sub-index B taken from the DGLORT value. Interpreted in
the same manner as RangeSubIndexA.

DMaskRange 7 Specifies a LAG pruning range size of 1-Kb to 16-Kb.

HashRotation 1 Specifies one of two L2_HASH rotations for the LAG pruning operation (either rotation A or B).

DGlortTag 1 1-bit tag associated with the DGLORT for use as an L2AR key.

331496-001 135

Frame Processing—FM5000/FM6000 Datasheet

5.14.3 LAG Pruning

The mapping of DMaskBaseIdx to DMASK_IDX involves a complicated set of fixed-function rules
motivated primarily by multi-chip link aggregation considerations. For the Strict=0b (hashed) case, the
index is calculated according to the following equation:

DMASK_IDX = DMaskBaseIdx +
 (LagBin(L2_HASH[HashRotation],DMaskRange[2:0],DMaskRange[6:3]) <<
 LengthA) + SubIndexA

where SubIndexA = DGLORT[(LengthA+OffsetA-1):OffsetA].

The LagBin function distributes the indices over a range of entries specified by the L2_HASH value and
the DMaskRange specification.

LagBin(x,Select[2:0],Shift[3:0]) = (x % (2 Select + 1)) << Shift | x[Shift-1:0]

With this binning function, DMASK_IDX is distributed uniformly over the following range of entries:

range_size = (2 * DMaskRange[2:0] + 1) << DMaskRange[6:3].

Note: This binning function is isomorphically equivalent to the modulo operator. For a fixed
DMaskRange and x=0..216-1, LagBin(x, DMaskRange) might be 1-to-1 mapped to
x%range_size.

The purpose of including LengthA and SubIndexA in the index calculation is to most efficiently use the
GLORT_CAM and L2F_GLORT_DMASK_TABLE (DMASK_TABLE) resources. A GLORT_TABLE entry can be
thought of as specifying a template for deriving an index location from a matching DGLORT. The
template can be shared among multiple DGLORTs (each corresponding to a LAG) to better deal with the
under-provisioning of the GLORT_CAM compared to the DMASK_TABLE.

Figure 5-30 GloRT Lookup LAG Pruning Example

FM5000/FM6000 Datasheet—Frame Processing

136 331496-001

The specific form in which LengthA and SubIndexA factors into the index calculation enables LAGs with
sizes that are not a power of two to efficiently pack into the DMASK_TABLE (see Figure 5-30). In this
example, four DGLORTs, each representing 3-port LAGs, map to the same GLORT_TABLE entry. Thus,
they all share the same DMaskBaseIdx, LengthA, and their SubIndexA are taken from the same bit slice
from their DGLORT values. However, the next available DMASK_TABLE entry is only 3 x 4 = 12 entries
above DMaskBaseIdx (marked x), whereas a more intuitive index calculation formula would put the
next available location at 4 x 4 = 16 entries above DMaskBaseIdx.

For Strict=1b entries, the sub-index in the calculation previously presented that is dependent on the
frame's hash value, [namely LagHash(L2_HASH, DMaskRange)], is taken directly from the DGLORT.
This enables strict GloRTs to represent specific physical ports that might otherwise belong to a LAG or
PSG. For these strict DGLORTs, the index calculation becomes:

DMASK_IDX = DMaskBaseIdx + (SubIndexB << LengthA) + SubIndexA

where SubIndexB = DGLORT[(LengthB+OffsetB-1):OffsetB].

This first-stage mapping of the DGLORT over a range of DMASKs based on a frame hash value is
primarily intended for pruning a LAG GloRT's distribution over a multi-chip domain. A subsequent
filtering of the DMASK returned by the GLORT_DMASK_TABLE in L2 filtering provides a second-stage
resolution of each LAG DGLORT to a single destination physical port.

The use of these mechanisms to implement multi-chip link aggregation and other traffic load-balancing
features are described further in Application Analysis sections.

5.14.4 LAG Filtering

The LAG filtering function has the responsibility of selecting at most one physical port of each LAG to
which the frame should be forwarded. Generally, it is expected that the DMASK produced by the
DMASK_TABLE has ones in all bit locations corresponding to external physical ports belonging to each
LAG in the frame's forwarding distribution. The LAG filtering operation involves ANDing this DMASK with
a LAG_MASK that leaves (at most) only a single one of these external ports one in the destination port
mask. A basic example is shown in Figure 5-31.

Figure 5-31 GloRT Lookup LAG Filtering Example

331496-001 137

Frame Processing—FM5000/FM6000 Datasheet

The white bits in the DMASK represent ports that are members of some LAG of interest. All bits are set
to one in the DMASK returned by the DMASK_TABLE (labeled GLORT_DMASK), indicating that the frame
is to be forwarded to this LAG. Based on the frame's hash value, the LAG_MASK is calculated to set only
one bit of the LAG's port members to one, so the frame ends up being forwarded to only one
destination port (indicated in yellow).

There are two different methods to define a LAG_MASK:

rev A: LAG_PORT_TABLE

rev B and above: LAG_FILTERING_CAM

In both cases, for LAG pruning and LAG filtering to work together in a coherent fashion, it is important
that they both use the same hash values and binning functions. The resulting LAG_MASK is also passed
on to L2AR for use with the TransformDestMask action (see Section 5.17.6).

5.14.4.1 Rev A: LAG_PORT_TABLE

For the rev A silicon, each bit of the LAG_MASK is calculated based on per-port configured properties
and the frame's hash value. The LAG_PORT_TABLE register specifies the following per-port properties:

Given these properties, each bit p of the LAG_MASK is calculated as

LAG_MASK[p] = Strict | (LagBin(L2_HASH(HashRotation),LagSelect,LagShift) == Index)

where LagBin is defined as for LAG pruning.

5.14.4.2 Rev B+: LAG_FILTERING_CAM

For the rev B silicon, the filtering stage was updated to use a 76-entry CAM (one entry per PORT) where
the 76-bit match result is the LAG_MASK.

LAG_MASK[p] = Strict | (LAG_FILTERING_CAM[p].Key & key == key &&
 LAG_FILTERING_CAM[p].KeyInvert & ~key == ~key)

Table 5-65 GloRT Lookup Port LAG Properties

Field Width Description

LagSelec 3 Defines the total number of ports belonging to the LAG. The actual LAG size is equal to:
LagSize = (2*LagSelect+1)<<LagShiftLagShift 3

Index 7 Identifies the particular member index associated with the port.
No two ports belonging to the same LAG should be assigned the same index number.

HashRotation 1 Selects one of two L2_HASH rotations to use in the filtering function.
The hash key and rotation must be configured the same for all ports belonging to the same LAG. Value
zero specifies rotation A, value one rotation B.

FM5000/FM6000 Datasheet—Frame Processing

138 331496-001

The 64-bit key presented to the CAM has the following structure:

If a port is not part of any LAG, the actual content of hash A and B for that port must be set to all ones
(ignored).

If the port is part of a LAG where packets must be distributed according to hashA, then hashB part of
the key must be set to all ones (thus ignored) while the hashA part must be set such that each port in
that LAG watches for a particular pattern of the value/modulo combination. Vice versa if hashB is to be
used and hashA is to be ignored.

For power of two group size, distribute using the hash value directly.

Name Width Bits

hashA 8 7:0

modulo(hashA,3) 2 9:8

modulo(hashA,5) 3 12:10

modulo(hashA,7) 3 15:13

modulo(hashA,9) 4 19:16

modulo(hashA,11) 4 23:20

modulo(hashA,13) 4 27:24

modulo(hashA,15) 4 31:28

hashB 8 39:32

modulo(hashB,3) 2 41:40

modulo(hashB,5) 3 44:42

modulo(hashB,7) 3 47:45

modulo(hashB,9) 4 51:48

modulo(hashB,11) 4 55:52

modulo(hashB,13) 4 59:56

modulo(hashB,15) 4 63:60

Never filtered
LAG_MASK[p].key = 0xFFFFFFFF_FFFFFFFF
LAG_MASK[p].keyInvert = 0xFFFFFFFF_FFFFFFFF

Ports 1..4 are in a 4-port LAG using hash rotation A
LAG_FILTERING_CAM[1].Key = 0xFFFFFFFF_FFFFFFFC
LAG_FILTERING_CAM[2].Key = 0xFFFFFFFF_FFFFFFFD
LAG_FILTERING_CAM[3].Key = 0xFFFFFFFF_FFFFFFFE
LAG_FILTERING_CAM[4].Key = 0xFFFFFFFF_FFFFFFFF
LAG_FILTERING_CAM[1].KeyInvert = 0xFFFFFFFF_FFFFFFFF
LAG_FILTERING_CAM[2].KeyInvert = 0xFFFFFFFF_FFFFFFFE
LAG_FILTERING_CAM[3].KeyInvert = 0xFFFFFFFF_FFFFFFFD
LAG_FILTERING_CAM[4].KeyInvert = 0xFFFFFFFF_FFFFFFFC

331496-001 139

Frame Processing—FM5000/FM6000 Datasheet

For an odd size group, distribute using the pre-computed modulo for the desired rotation.

For even size group not a power of two, use a combination of hash value and pre-computed modulo to
create the distribution. As an example, if ports 10..15 are in a 6-port LAG (2 x 3) on hash rotation A,
use 1 bit of HashAValue and use the 2 bits of HashAModule3 to create the 6-way uniform distribution:

5.14.5 Outputs

The GloRT lookup stage produces the following channel outputs:

Ports 11..19 are in a 9-port LAG using hash rotation A
LAG_FILTERING_CAM[11].Key = 0xFFFFFFFF_FFF0FFFF
LAG_FILTERING_CAM[12].Key = 0xFFFFFFFF_FFF1FFFF
LAG_FILTERING_CAM[13].Key = 0xFFFFFFFF_FFF2FFFF
....
LAG_FILTERING_CAM[19].Key = 0xFFFFFFFF_FFF8FFFF
LAG_FILTERING_CAM[11].KeyInvert = 0xFFFFFFFF_FFFFFFFF
LAG_FILTERING_CAM[12].KeyInvert = 0xFFFFFFFF_FFFEFFFF
LAG_FILTERING_CAM[13].KeyInvert = 0xFFFFFFFF_FFFDFFFF
....
LAG_FILTERING_CAM[19].KeyInvert = 0xFFFFFFFF_FFF7FFFF

LAG_FILTERING_CAM[10].Key = 0xFFFFFFFF_FFFFFCFE
LAG_FILTERING_CAM[11].Key = 0xFFFFFFFF_FFFFFCFF
LAG_FILTERING_CAM[12].Key = 0xFFFFFFFF_FFFFFDFE
LAG_FILTERING_CAM[13].Key = 0xFFFFFFFF_FFFFFDFF
LAG_FILTERING_CAM[14].Key = 0xFFFFFFFF_FFFFFEFE
LAG_FILTERING_CAM[15].Key = 0xFFFFFFFF_FFFFFEFF
LAG_FILTERING_CAM[10].KeyInvert = 0xFFFFFFFF_FFFFFEFF
LAG_FILTERING_CAM[11].KeyInvert = 0xFFFFFFFF_FFFFFEFE
LAG_FILTERING_CAM[12].KeyInvert = 0xFFFFFFFF_FFFFFDFF
LAG_FILTERING_CAM[13].KeyInvert = 0xFFFFFFFF_FFFFFDFE
LAG_FILTERING_CAM[14].KeyInvert = 0xFFFFFFFF_FFFFFCFF
LAG_FILTERING_CAM[15].KeyInvert = 0xFFFFFFFF_FFFFFCFE

Table 5-66 GloRT Lookup Outputs

Field Width Description

DMASK_IDX 16 Specifies a 76-bit DMASK for L2 filtering.
Propagated to the forward channel where it identifies the L3 multicast replication index in the frame
scheduler's mid stage.

LAG_MASK 76 LAG filtering mask.
Passed to L2AR for use with its TransformDestMask action. Needed for mirroring to LAGs.

DGLORT_TAG 1 Tag associated with the DGLORT's DGLORT_TABLE entry.
Might indicate that the DMASK as returned by the L2F_GLORT_DMASK_TABLE was zero. For example,
that the frame was dropped due to an invalid DGLORT.)

FM5000/FM6000 Datasheet—Frame Processing

140 331496-001

5.15 Destination Mask Generation

5.15.1 Overview

One of the primary purposes of the FPP between the GloRT lookup and scheduler stages is to determine
the specific set of physical destination ports to which each frame is forwarded. The forwarding
distribution is represented by a 76-bit destination mask (DMASK). If bit i of this mask is set to 1b, at
least one copy of the ingress frame is forwarded to port number i. A number of mapping, filtering, and
other transformation steps are involved in the determination of each frame's final DMASK. The specific
nature of many of these steps are application-dependent. An example DMASK generation sequence
might be the following:

1. Map initial DMASK from the GLORT_DMASK_IDX returned by the GloRT lookup.

2. Filter the DMASK by the VLAN membership mask of the frame's egress VID.

3. Filter the DMASK by the frame's egress spanning tree.

4. Filter the DMASK such that the frame is forwarded to only one port of each destination LAG.

5. Zero the DMASK if the frame is determined to have violated any security policies.

6. Override the DMASK to include only the CPU port if the frame should be trapped.

7. OR additional ports into the DMASK for mirroring or logging purposes.

8. Filter the DMASK for congestion management purposes.

Each stage of the DMASK generation section of the pipeline is, to varying degrees, microcode-
configurable in how it transforms the DMASK. Each stage includes a custom-function sub-stage that
determines a DMASK transformation command which is then applied by a shared DMASK transformer
sub-stage. The structure of the DMASK generation pipeline is shown in Figure 5-32.

Figure 5-32 DMASK Generation Pipeline

331496-001 141

Frame Processing—FM5000/FM6000 Datasheet

As shown in Figure 5-32, the DMASK generation occurs in five sections:

1. Layer 2 Filtering (L2F) — Responsible for performing all DMASK-related mapping
transformations. At a minimum, an initial DMASK is mapped by one or more L2F tables from a
DMASK index determined by the L3AR or GloRT lookup stages. Typically, other filtering masks are
applied to the DMASK based on the frame's VLAN membership, source port, spanning tree and
other indexed associations. The L2F section includes eight 4-Kb-entry mapping tables and four
256-entry tables.

2. Egress ACLs (EACL) — Responsible for determining and applying the EACL actions identified by
the final FFU TCAM stage based on the state of the DMASK at this point in the pipeline. In particular,
the permit/deny action produces a permit mask which further filters the frame's forwarding.

3. LAG — Responsible for selecting exactly one port of each link aggregation group to which the frame
is forwarded, based on the L2 hash value.

4. Loopback Suppress Filtering (LBS) — Responsible for preventing packets from being looped
back to the port they come from.

5. L2AR — Responsible for applying all final DMASK transformations that are a function of the frame's
header and the microcode-programmed forwarding policies. Each L2AR slice maps a DMASK
transformation command based on a typical CAM/RAM architecture shared with other Action
Resolution stages of the frame processing pipeline.

The common DMASK transformer function of each stage operates on up to two DMASK channels,
referred to as DMASK_A and DMASK_B. These channels run the entire length of the DMASK generation
pipeline. DMASK_A is the primary DMASK; its final value at the output of L2AR is propagated on to the
congestion management and scheduler stages, whereas DMASK_B terminates. DMASK_B is intended as
a scratch register for propagating transitory DMASK operands from stage to stage. For example, the
LAG_MASK produced by the LAG stage can be mapped to DMASK_B so that LAG filtering can later be
applied to any additional LAGs added by L2AR to DMASK_A.

5.15.2 DMASK Transformer

The DMASK transformer function is shared among all DMASK generation stages. Its purpose is to
transform two 76-bit input DMASK channels, A and B, according to a 7-bit input command and an input
M DMASK operand. It supports a wide variety of 3-input, 2-output logical operations (see Table 5-67).

If the input DMASK_A is non-zero and the application of the command results in an output DMASK_A'
that is zero, an 8-bit DROP_CODE that ripples from stage-to-stage is set to a value associated with the
current stage. The final DROP_CODE value identifies which transformation, if any, caused the frame to
be dropped. It is presented as a TCAM key to L2 and statistics action resolution stages to enable these
frames to be appropriately counted for system diagnostics purposes.

Figure 5-33 shows the structure of each DMASK transformer.

FM5000/FM6000 Datasheet—Frame Processing

142 331496-001

• Either A or B outputs might depend on the M input.

• Output A takes B as an input, but not vice versa.

The input command is split between a 4-bit CmdA for the FA function and a 3-bit CmdB for the FB
function. The transformation commands supported and their encodings are as follows.

Only the DMASK_B channel supports power gating. Each time this scratch channel is not needed, it
should be turned off to save power by specifying a CmdB of four.

Figure 5-33 DMASK Transformer

Table 5-67 DMASK Transformation Commands

Value CmdA Function CmdB Function

0 A' = A B' = B

1 A' = M B' = M

2 A' = A & M B' = B | M

3 A' = A | M Power-gate B' output

4 A' = A & (M | B) —

5 A' = A | M & B —

6 A' = A & B | M —

7 A' = B & M —

8 A' = (A | M) & B —

9 A' = A & B —

10 A' = A | B —

11 A' = B —

12 A' = B | M —

13 A' = A | B | M —

14 A' = A & B & M —

15 A' = A & M | B —

331496-001 143

Frame Processing—FM5000/FM6000 Datasheet

In any of these cases, if all input channels are unavailable, for example due to power-gating of B or due
to not performing an L2F table lookup, the command reverts to case zero. That is, the assignments
become either A' = A or B' = B, depending on the channel.

Otherwise, if the operands are only partially valid, the missing terms are treated as either all-one's or
all-zero's in the transformation equations previously listed. If the term is combined in an AND
expression (&), the unavailable mask is interpreted as all-ones, while in an OR expression (|), it is
interpreted as all-zeros.

At the beginning of the DMASK generation pipeline, the rippling channels are initialized as follows:

• DMASK_A: All-ones

• DMASK_B: Power-gated

• DROP_CODE: 0

Figure 5-34 shows some example transformation functions supported by the DMASK transformer.

Figure 5-34 DMASK Example Transformations

FM5000/FM6000 Datasheet—Frame Processing

144 331496-001

5.15.3 L2 Filtering Tables

The initial L2F phase of DMASK generation consists of a sequence of 13 table lookups that each provide
76-bit masks (M) and command operands to DMASK transformers. Each stage transforms four rippling
channels:

• DMASK_A, DMASK_B (76 bits) — Manipulated by the stage's DMASK transformer as previously
described.

• DROP_CODE (8 bits) — Set by the DMASK transformer each time the DMASK_A channel
transitions from a non-zero to a zero value. An L2F stage ID (1 through 13) is assigned to either the
high or low four bits of this channel, depending on a bit of the profile command. The unassigned
nibble is left as is.

• ISTATE (13 bits) — Each time a table lookup is performed, producing a 76-bit mask (M), the stage
is set ISTATE[n] to M[SRC_PORT], where n corresponds to the stage number (0 through 12). The
final 13-bit ISTATE value is presented to L2AR as a TCAM key field.

All L2F tables are functionally identical except for their sizes. The first nine tables have 4096 entries,
while the last four have 256 entries.

The lookup index used for each table lookup, as well as other necessary command information, is
determined by L2F_PROFILE_TABLE[n,DMASK_CMD_PROFILE], where n is the L2F stage number. The
DMASK profile number, specified by L3AR's SetDestMaskCmdProfile action, is shared among all L2F
stages. The profile number identifies one of 16 command profiles that might be independently
configured per stage.

The profile table of each L2F stage produces the following 18-bit command:

Figure 5-35 DMASK Layer 2 Filtering Tables

331496-001 145

Frame Processing—FM5000/FM6000 Datasheet

Table 5-68 DMASK L2F Command

Field Width Description

IndexSelect 4 Selects a table index from a pool of 12 possibilities:
• SRC_PORT — For source-based and multi-chip loopback suppression
• IVID1, IVID2, EVID1, EVID2 — For VLAN membership and STP indexing
• L3AR_DMASK_IDX1, L3AR_DMASK_IDX2, L3AR_DMASK_IDX3 — For direct L3AR indexing, such

as L3_DMASK_IDX.
• L2L_ET_IDX, L2L_IT_IDX — Mapped indices from L2 lookup (intended for STP indexing from

VID1)
• GLORT_DMASK_IDX — Primary L2 destination mask index from the GloRT lookup.
• ALU3_Z — Arithmetically generated, available for configurable use.

TableSelect 3 Selects one of six table identifier values.
The selected 4-bit table identifier channel must match the value specified by TableID for a lookup to
be performed. If the channel value does not match TableID, no lookup is performed, regardless of
the value of CmdLookup.
Available TableSelect channels include:
• GLORT_DMASK_IDX[15:12]
• L3AR_DMASK_IDX3[15:12]
• MA1_TAG[11:8]
• MA2_TAG[11:8]
• ALU3_Z[15:12]
• DGLORT_TAG (one bit)
• constant 0

This mechanism enables index ranges larger than 4-Kb to be distributed over arbitrary sets of L2F
stages.

TableID 4 Value to which the selected 4-bit table identifier channel is compared.
A lookup is performed only if the channel value matches TableID.

CmdLookup 1 Controls whether a table lookup is performed or not.
0b = No lookup performed
1b = Lookup performed.

When CmdLookup is set to 1b, a lookup only occurs if TableID matches the corresponding four bits
selected by TableSelect.

CmdA 4 DMASK Transformer DMASK_A command.

CmdB 3 DMASK Transformer DMASK_B command.

DropCodeSelect 1 To support some degree of non-linearity in the drop sequencing among L2F stages, each
configuration stage can set either DROP_CODE[7:4] or DROP_CODE[3:0] according to the value of
this field.

0b = If set to 0b, and DMASK_A goes to zero due to the action of this stage, DROP_CODE[3:0] is
set to DropCode and DROP_CODE[7:4] is left as is.

1b = DROP_CODE[7:4] is set to DropCode and DROP_CODE[3:0] is left as is.

DropCode 4 Constant value to assign to either DROP_CODE[3:0] or DROP_CODE[7:4] when DMASK_A is zeroed.

FM5000/FM6000 Datasheet—Frame Processing

146 331496-001

5.15.4 EACLs

The EACL stage immediately follows the L2 filtering stages. The EACLs take, as their input, the state of
DMASK_A at the output of L2F. One result of the EACLs is a permit DMASK that is normally expected to
be ANDed with DMASK_A. For flexibility and uniformity, the permit DMASK is applied using a DMASK
transformer. The transform commands are determined by a lookup in EACL_PROFILE_TABLE, indexed
by DMASK_CMD_PROFILE.

5.15.5 LAG Filtering

The LAG_DMASK calculated by the GloRT Lookup stage is applied to the DMASK channels immediately
after the EACL stage. Its DMASK transformer commands are determined by LAG_PROFILE_TABLE, also
indexed by DMASK_CMD_PROFILE.

5.15.6 LBS Filtering

The LBS DMASK M is computed at this stage. It is initially set to all ones (frame accepted on all ports).
The source GloRT assigned to the frame being switched is then compared to a canonical source GloRT
assigned to each port, and each matching port is subtracted from the DMASK. Similarly to other DMASK
transforms, the DMASK transformer commands are determined by LBS_PROFILE_TABLE, indexed by
DMASK_CMD_PROFILE. The canonical GloRT for each port is defined in LBS_CAM[0..75] where a match
for a given port removes the port from the DMASK.

5.15.7 Outputs to L2AR

Table 5-69 lists the DMASK-related outputs generated by the L2F, EACL, and LAG stages that are
passed on the to L2AR, the final stage of configurable DMASK processing.

Table 5-69 DMASK-related Outputs

Channel Width Description

DMASK_A 76 Primary L2 destination port mask channel.

DMASK_B 76 Secondary DMASK channel,.
Usually set to LAG_DMASK so any additional ports added to DMASK_A by L2AR
might be LAG-filtered.

DROP_CODE 8 Assigned when DMASK_A becomes zero (indicating the frame is to be dropped to
all destinations) to identify which filtering stage caused the drop. Initializes the
L2AR DROP_CODE field. The DROP CODE is set at the first of DMASK_A getting
to zero and is not changed after even if the DMASK_A is returned to a non-zero
value and zero again.

ISTATE 13 One bit per L2F table, selected as the SRC_PORT bit from the table lookup
output. Expected to contain Ingress VLAN and spanning tree state associated
with the frame's source port and IVID1/IVID2. Presented to L3AR as a TCAM key
for policy handling.

ACTION_FLAGS[DMASK_SingleDest] 1 Tests whether |DMASK_A|==1, where |DMASK_A| represents the total number
of bits set to 0x1 in DMASK_A immediately prior to L2AR.

331496-001 147

Frame Processing—FM5000/FM6000 Datasheet

5.16 Egress ACLs

The EACL unit is responsible for resolving the application of egress access rules. The features supported
are:

• Up to 1024 egress rules

• Up to 32 access control lists

• Allocation of rules to list in set of 32 rules

• Arbitrary assignment of ports to list

• Two actions implemented in fixed hardware:

— Permit/deny action

— Count action

• Four configurable actions:

— Three are shared actions between lists

— One can be uniquely defined per list

5.16.1 Functional Description

Figure 5-36 shows the overall EACL unit and its interaction with the other surrounding units.

FM5000/FM6000 Datasheet—Frame Processing

148 331496-001

The EACL starts at the FFU. The rules must be loaded into the FFU and must terminate at the last slice
of the FFU. This slice contains up to 1024 rules, any portion of which can be used for either ingress or
egress ACLs, in sets of 32 rules (aligned to a multiple of 32). If all 1024 rules are used for egress, up to
32 sets of 32 rules can be defined. By cascading up to 16 sequential sets, a given egress ACL can be
constructed to contain as many as 512 rules. ACLs cannot be cascaded between the lower 16 sets and
the upper 16 sets.

Using the FFU_EACL_CFG register, each set outputs a hitDetect signal to indicate if a rule was hit within
the cascade and a hit-index pointing to the highest priority rule. The FFU_EACL_CFG register defines
two bits per set:

• Valid — Indicates whether each set is used for EACLs.

Defines whether each 32-rule set is used for EACL purposes. If Valid is set to 0b, the set's EACL hit
detect function always returns 0b and the value of its StartList is ignored.

• StartList — Indicates whether each set starts a new list or continues the previous list.

Specifies the partitioning of rules between EACLs in units of 32-rule sets. If StartList for set i is 1b,
only one rule is permitted to hit in all sets starting from set i until the next valid set j>i with
StartList[j]=1b. Within each list, rules in lower-numbered sets have precedence. However, contrary
to other FFU hit detect functions, within a given set, higher-numbered rules have precedence.

Each EACL's preliminary hitDetect, as determined by the FFU, is then filtered based on the content of
the forwarding destination port mask from L2F. The egress rule is canceled if the destination mask
doesn't include any port member of this egress ACL.

Figure 5-36 EACL Block Diagram

331496-001 149

Frame Processing—FM5000/FM6000 Datasheet

The EACL set's port membership is programmed in EACL_CAM1, one entry for each set. The entry
programmed in the CAM is actually the inverse of the membership so that ports that are not members
must be ignored. The destination mask from L2F is presented as a key to the CAM and a hitCam1 bit is
generated for each set. The bit is set to 1b if the destination mask does not include any port member of
this EACL set. This bit is then used to cancel application of the egress rule. As an example, if ports 4, 5,
6, 7 are member of EACL set 16, the entry in the EACL_CAM1[16] must be:

The resulting filtered hit-detect and the hit-index are then used to retrieve actions from a 32x6-bit
SRAM for a given set. There are 32 banks of 32x6-bit RAM, one bank per set. The actions can be any of
the following:

• permit(1)/deny(0)

• count(1)/no-count(0)

• actionA

• actionB

• actionC

• actionExt

The default actions if no hit is detected for a set are the following:

• permit(1)

• no-count(0)

• no-actionA(0)

• no-actionB(0)

• no-actionC(0)

• no-actionEXT(0)

The 32 permit/deny actions are then sent as a key to a second CAM (EACL_CAM2) to produce a permit
DMASK. To achieve this, each entry in the CAM is programmed to define the set list applicable for a
given port. The entry j must be set to look for a 1b for set i if this set applies to port j and for a don't
care bit if this set doesn't apply for this port. The resulting output hit vector from the CAM is a permit
DMASK that is forwarded to a dedicated DMASK transformer (see Section 5.15.2), to be processed with
the DMASKs from L2F stages to produce a new DMASK set. The command to the DMASK transformer
comes from the EACL_PROFILE_TABLE entry indexed by the DMASK_CMD_PROFILE coming from L3AR.

The 32 count actions are sent to STATS for counting. The STATS module includes 32 parallel EACL
counters.

The actionA, actionB and actionC are generic shared actions. The 32 actionA (one per set) are ORed
together and available as a single bit EACL-A of the action flags and thus available as a key to any L2AR
slices. The same process is applied for actionB and actionC. An example usage might be for
implementation of a log, mirror or trap action. If two Egress ACLs both hit on different rules and both
command a log action, the L2AR receives one log bit and can implement the proper action for that
frame to be logged.

EACL_CAM1[16][0].KeyInvert = 0xFFFFFFFF_FFFFFFFF;
EACL_CAM1[16][0].Key = 0xFFFFFFFF_FFFFFF0F;
EACL_CAM1[16][0].KeyInvert = 0xFFF;
EACL_CAM1[16][0].Key = 0xFFF;

FM5000/FM6000 Datasheet—Frame Processing

150 331496-001

The actionExt bits are available as a per-set action definition. The 32 actionExt bits are presented as
EACL_ACTION_EXT to all L2AR slices enabling each L2AR slice to define a distinct action per list. Rule i
in slice j must match EACL_ACTION_EXT[i] if the configuration bit in L2AR_EACL_EXT[j][i] is set.

5.16.2 Registers

The configuration includes the following elements:

5.17 L2 Action Resolution

The Layer 2 Action Resolution (L2AR) stage performs the final configurable processing of each frame
prior to scheduling. It is responsible for finalizing all forwarding decisions and for formulating the
important forward channel, which encodes all egress scheduling and modification directives. Functions
performed by this unit include:

• All policy-based trapping, mirroring, and dropping decisions.

• Precedence resolution among all applicable forwarding policies.

• Special frame classification (such as reserved IEEE DMAC handling).

• Security handling based on SMAC lookup result.

• EACL handling.

• All MAC table learning/update handling, including formulating the entry.

• Final QoS determination and policer-based coloring transformations.

• Selecting frame header fields for statistics counters.

• Formulation of MOD_DATA for egress modification handling.

• Congestion notification frame sampling.

• Ingress rate limiting.

Table 5-70 Egress ACL L2AR Keys

Register/Table Usage

FFU_EACL_CFG Enables sets and defines cascading. Located in FFU unit

EACL_CAM1 Defines port-list per set

EACL_ACTION_RAM Defines actions for each rule for each set

EACL_CAM2 Defines set list per port

EACL_PROFILE_TABLE Defines the DMASK transformation command.

331496-001 151

Frame Processing—FM5000/FM6000 Datasheet

5.17.1 Overview

The L2AR stage functionality is implemented using microcode. Figure 5-37 shows the overall
architecture.

The L2AR stage has the following generic properties:

• 512 rules

— Implemented in 8 precedence sets of 64 rules each

— Total key width per rule of 378 bits

• Two stages of action flags updates

• Three stages of DMASK transform

• 18 mux output blocks

An L2AR rule is defined by its key matching state (value and mask for all keys) and one or more actions
to apply to the frame if the rule is selected. A rule is selected (or wins) if:

1. Its key matching state successfully matches against an ingress frame's corresponding key values.

Figure 5-37 L2AR Block Diagram

FM5000/FM6000 Datasheet—Frame Processing

152 331496-001

2. No higher-precedence (higher-numbered) rule in the same extended precedence set also matches.

A precedence set is a collection of 64 sequential rules from which only one can match at a time.
Configurable precedence sets can be chained together to create larger extended precedence sets. The
total number of eight precedence sets put a limit on the maximum number of rules that can
simultaneously apply to a given frame. Chaining precedence sets together reduces this parallelism.

5.17.2 Keys

The following set of frame properties are available as matching conditions to each L2AR rule. For each
of these keys, a value and mask is configured for TCAM-based comparison:

Table 5-71 L2AR Keys

Key Width Notes

DMASK_A 76 State of the DMASK_A channel after LAG filtering.
This field has bitwise-OR matching semantics. That is, if any DMASK_A bit is set in the key
(Key[i]=1b and KeyInvert[i]=0b), the entire field matches. Used typically for egress mirrors.

SMASK 76 Bit vector over ingress ports matched against decoded SRC_PORT (such as 1<<SRC_PORT). Used
for a number of purposes:
• Ingress mirrors
• General per-SRC_PORT dependent processing

ACTION_FLAGS 76 Action flags as calculated through the pipeline. Action flags for specific bit definitions.

ACTION_DATA.W8F 8 Intended as a generic 8-bit QoS L2AR key as a substitute for all 22 QoS bits.
L3AR muxes some subset of the QoS channel into this field, (QOS.W4, QOS.ISL_PRI) by default.

POL1_TAG1_TOP 4
Top four bits of each entry's TAG value from POLICER_CFG_4K[0].

POL1_TAG2_TOP 4

POL2_TAG1_TOP 4
Top four bits of each entry's TAG value from POLICER_CFG_4K[1].

POL2_TAG2_TOP 4

POL3_TAG_TOP 4 Top four bits of the TAG value from POLICER_CFG_1K.

DROP_CODE 8 Drop code associated with DMASK_A at the input of L2AR.
Identifies the L2F, EACL, or LAG stage (if any) that zeroed DMASK_A.

L2F_ISTATE 13 Ingress STP/VID state, as returned by L2 filtering tables.
Used for:
• Ingress filtering
• Controlling learning

DGLORT_TAG 1 Tag associated with the destination GloRT's DGLORT_TABLE entry.

ALU13_Z 16 OR over selected ALU{1,2,3}_Z outputs as specified by
ALU_CMD_TABLE[0..2,ALU13_CMD_PROFILE].OrIntoL2ARKey.

ALU46_Z 16 OR over selected ALU{4,5,6}_Z outputs as specified by
ALU_CMD_TABLE[3..5,ALU46_CMD_PROFILE]OrIntoL2ARKey.

MA1_FID2_IVL 1 MA1 FID2 mux control bit.
Can be interpreted as 12th bit of ETAG1 in some configurations.

MA2_FID2_IVL 1 MA2 FID2 mux control bit.
Can be interpreted as 12th bit of ITAG1 in some configurations.

MA1_LOOKUP 1 Was a MA1 lookup (DMAC) performed?

MA1_HPV 4 MA1 lookup HPV.

MA1_TAG 12 Tag associated with the MA1 entry (DMAC).

331496-001 153

Frame Processing—FM5000/FM6000 Datasheet

5.17.3 EACL Extended Actions

The EACL extended actions are described in the EACL section. There are up to 32 egress extended
actions, one per egress ACL. Each action is a one-bit condition, that if enabled, defines if the rule
matches on an extended action or not. The bit vector table L2AR_EACL_EXT[0..15] controls if the
extended action is used or not. If the bit i of L2AR_EACL_EXT[n] is 0b, the extended action from list i/2
is ignored for slice n. If the bit is set to 1b, the rule i in slice n only hits if the extended action is 1 for list
i/2.

MA2_LOOKUP 1 Was a MA2 lookup (SMAC) performed?

MA2_HPV 4 MA2 lookup HPV.

MA2_MPV 4 MA2 lookup MPV used for entry write-back control (including learning).

MA2_TAG 12 Tag associated with the MA2 entry (SMAC).

L2L_ETAG1 12 Tag associated with EVID1.

L2L_ETAG2 12 Tag associated with EVID2.

L2L_ITAG1 12 Tag associated with IVID1.
Used to implement per-VLAN configuration:
• Reflect loopback-suppression
• TrapIGMP

L2L_ITAG2 12 Tag associated with IVID2.

DGLORT 16 ISL tag destination GloRT (post-MAC table).

SGLORT 16 ISL tag source GloRT (post-MAC table).

L2_DMAC_ID3 5 Highest precedence match in mapping stage DMAC_CAM3.
Used for:
• CPU MAC address trapping
• 802.1x trapping
• GMRP and GVRP trapping
• LACP trapping
• Other reserved IEEE multicast trapping
• BPDU trapping/dropping

Note: By convention, 0xF should be reserved to indicate no match (all mask bits set to zero),
leaving 15 usable values.

L2_SMAC_ID3 5 Highest precedence match in mapping stage SMAC_CAM[16..31].
Provided mostly for symmetry with DMAC. By convention, 0xF should be reserved to indicate no
match (all mask bits set to zero).

L2_TYPE_ID2 4 Highest precedence match in mapping stage TYPE_CAM[16..31].
Used for pause and other special frame type classification. By convention, 0xF should be reserved
to indicate no match (all mask bits set to zero).

ISL_USER 8 User bits from ISL tag

Table 5-71 L2AR Keys (Continued)

Key Width Notes

FM5000/FM6000 Datasheet—Frame Processing

154 331496-001

5.17.4 Actions

Each L2AR rule supports any of the following set of actions (defined in L2AR_RAM):

For all actions, with the exception of flags tag, the sequential apply resolves which action takes
precedence. The sequential apply proceed as follows:

• Within each precedence set, only one rule can win and actions are recovered for this rule.

• Between precedence sets, the enabled actions of winning rules are evaluated sequentially in
precedence set order (lower number first). The higher precedence set always win.

Table 5-72 L2AR Actions

Action Width Description

FLAGS_TAG 8 Sets an 8-bit tag to be used in two-stage action flag transform.
Each slice has a unique 8-bit set available to this slice.

TransformDestMask 1 Indicates whether this rule requests a DMASK transformer action.

DMT_PROFILE 5 Defines the DMASK transformer profile to use if a DMASK transformer action is
requested.

DMT_NEXT_STAGE 1 If set to 1b, the DMT stage controlled by this rule or any rules in subsequent slices are
incremented. Applies regardless of the value of TransformDestMask. The DMT stage
number begins at zero and saturates at two.

SetCpuCode 1 Enables CPU code assignment action.

SetTrapHeader 1 Enables header trapping action.

SetMirror[0..3] 4x1 Enables mirror action.

MuxOutput_QOS 1 Enables QoS output action.

MuxOutput_MA_WRITEBACK 1 Enables MAC table write back output action.

MuxOutput_DGLORT 1 Enables DGLORT output action.

MuxOutput_W16AB 1 Enables W16{A,B} output action.

MuxOutput_W16CDEF 1 Enables W16{B,C,D,E,E} action.

MuxOutput_W8ABCDE 1 Enables W8{A,B,C,,D,E} action.

MuxOutput_W4 1 Enables W4 action.

MuxOutput_VID 1 Enables VID outputs action.

MuxOutput_DMASK_IDX 1 Enables DMASK_IDX output action.

MuxOutput_STATS_IDX5AB 1 Enables STATS_IDX5{A,B} output action.

MuxOutput_STATS_IDX5C 1 Enables STATS_IDX5C output action.

MuxOutput_STATS_IDX12A 1 Enables STATS_IDX12A action.

MuxOutput_STATS_IDX12B 1 Enables STATS_IDX12B action.

MuxOutput_STATS_IDX16A 1 Enables STATS_IDX16A output action.

MuxOutput_STATS_IDX16B 1 Enables STATS_IDX16A action.

331496-001 155

Frame Processing—FM5000/FM6000 Datasheet

For flags tag, each precedence set output a unique 8-bit value for this slice. This tag is then used during
the action flag updates.

The DMT action profile has special handling. There are three DMT actions for the entire L2AR unit but a
given rule can only specify one DMT action. The DMT transformer selected depends on the accumulated
DMT_NEXT_STAGE bits. for example, each rule that set DMT_NEXT_STAGE causes this rule and any
following one to pick the next DMT transformer (saturation at DMT transformer 2). The initial DMT
transformer used is zero.

All other actions are split between set actions (such as SetCpuCode) and select multiplexer output
profile actions. The index {slice,rule} of the winning rule for this action is used to index the
corresponding L2AR_ACTION table to recover a final value for set actions or an intermediate profile
index for the multiplexer outputs actions. The multiplexer output profile index is then used to recover
the multiplexer output profile.

Table 5-73 L2AR Actions

Action Type Configuration Operands Description

SetCpuCode Set CPU_CODE (8 bits) ACTION_DATA.W8E Set CPU code.

SetMirror[0..3] Set MIR_RX (1 bit)
MIR_TX (1 bit)
MIR_TRUNC (1 bit)
MIR_MAP_PRI (1 bit)

— Specifies the mirroring command for any
of the four mirroring mechanisms.
Setting either MIR_RX or MIR_TX to 1b
enables the mirror. The MIR_TRUNC and
MIR_MAP_PRI parameters influence how
the mirror frame is generated and
scheduled.

Set ENABLE (1 bit)
IDX (1 bit)

— If the final state of
TRAP_HEADER_ENABLE is 1b, specific
frame data fields are stored in
L2AR_HEADER_TRAP_DATA[TRAP_IDX].

SetDestGlort MCM Profile (5 bits) DGLORT Update DGLORT.

MuxOutput_W16AB MCM Profile (5 bits SGLORT
ACTION_DATA

MOD_DATA.W16AB muxing.

MuxOutput_W16CDEF MCO Profile (5 bits) Many MOD_DATA.W16* muxing.

MuxOutput_W8ABCDE MCM Profile (5 bits) Many MOD_DATA.W8* muxing.

MuxOutput_W4 MCM Profile (4 bits) Many MOD_DATA.W4 muxing.

MuxOutput_VID MCO Profile (5 bit)s {I,E}VID{1,2} L2_VID{1,2} muxing for IP multicast
handling and egress modification.

MuxOutput_DMASK_IDX MCO Profile (5 bits) L3AR_DMASK_IDX3
GLORT_DMASK_IDX

IP multicast DMASK_IDX muxing.

MuxOutput_QOS MCM Profile (5 bits) QOS Assigns one of 32 mapping profiles for
the 24-bit QoS collection of fields.

MuxOutput_MA_WRITEBACK MCO Profile (5 bits) Many MA_TABLE writeback entry muxing.

MuxOutput_STATS_IDX5AB
MuxOutput_STATS_IDX5C

MCO Profile (5 bits) Many Muxing for statistics counter 5-bit index
channels.

MuxOutput_STATS_IDX12A
MuxOutput_STATS_IDX12B

MCO Profile (5 bits) Many Muxing for statistics counter 12-bit index
channels.

FM5000/FM6000 Datasheet—Frame Processing

156 331496-001

5.17.5 Action Flags

The 76-bit ACTION_FLAGS vector is an accumulation of properties, conditions, and other tests
evaluated throughout the FPP. One of the L2AR's primary purposes is to determine a final handling
disposition for the frame based on the status of all these conditions.

The first 40 bits of ACTION_FLAGS originate from the parser. Bits 51:40 come from the mapper, FFU,
and next hop table stages. Note that L3AR might arbitrarily overwrite any flag bits it has access to,
namely bits 51:0. Bits 74:52 are set by fixed-function evaluations in the logic between the L3 and L2AR
stages: L2 lookup, the ALUs, and L2 filtering. Bit 75 is not used by the preceding stages of the pipeline
and therefore is always zero at the input of L2AR.

Table 5-74 L2AR Action Flags

Flag Bit Notes

L3AR Flags 51:0 Propagated unmodified from L3AR, except for:
Bit 30 = EACL_A
Bit 31 = EACL_B
Bit 32 = EACL_C

MA2_WriteBackEnabled 52 Indicates the MA2 lookup entry in the MAC table can be written back.

MA2_WriteNewEnabled 53 Indicates whether a new entry might be written into the MAC table associated with the
MA2 key.

ALU1_Overflow 54 Overflow output from ALU1. Indicates X<Y if the ALU operation was SUB with
OneTwo=0b. Indicates X>Y if the ALU operation was SUB with OneTwo=1b.

ALU1_Zero 55 Indicates the output from ALU1 is zero.

ALU2_Overflow 56 Overflow output from ALU2. Indicates X<Y if the ALU operation was SUB with
OneTwo=0b. Indicates X>Y if the ALU operation was SUB with OneTwo=1b.

ALU2_Zero 57 Indicates the output from ALU2 is zero.

ALU3_Overflow 58 Overflow output from ALU3. Indicates X<Y if the ALU operation was SUB.

ALU3_Zero 59 Indicates the output from ALU3U is zero.

ALU4_Overflow 60 Overflow output from ALU4. Indicates X<Y if the ALU operation was SUB.

ALU4_Zero 61 Indicates the output from ALU4 is zero.

ALU5_Overflow 62 Overflow output from ALU5. Indicates X<Y if the ALU operation was SUB with
OneTwo=0b. Indicates X>Y if the ALU operation was SUB with OneTwo=1b.

ALU5_Zero 63 Indicates the output from ALU5 is zero.

ALU6_Overflow 64 Overflow output from ALU6. Indicates X<Y if the ALU operation was SUB.

ALU6_Zero 65 Indicates the output from ALU6 is zero.

DMASK_SingleDest 66 Indicates that exactly one bit is set in DMASK at the input of L2AR.

POL1_OverRate1 67

Indicates the corresponding policer entry is out-of-profile.
See Section 5.13, “Policers”.

POL1_OverRate2 68

POL2_OverRate1 69

POL2_OverRate2 70

POL3_OverRate 71

POLICER_QOS_MAP1_EQ01 72 Indicates the input index to POLICER_QOS_MAP1 equals the first-order mapped output.

POLICER_QOS_MAP1_EQ12 73 Indicates the POLICER_QOS_MAP1's first-order and second-order mapped outputs are
equal.

331496-001 157

Frame Processing—FM5000/FM6000 Datasheet

The L2AR is also responsible for updating the actions flags and generate a new set of output flags for
consumption in follow on stages of the pipeline. The FLAGS_TAG is available to help define the final
action flags. The 8-bit FLAGS_TAG are unconditionally set by the winning rule of each slice. If a slice as
no hit, the FLAGS_TAG are set to zero for that slice. The result is 64 bits of tagging information, which
is then presented as a key to two 64bx76 CAMs.

The output of each CAM lookup is a 76-bit array, one bit per action flag indicating if the 64-bit
FLAGS_TAG key presented match a certain pattern. The match/miss is then used to modify the action
flags using the L2AR_FLAGS_CAM_POLARITY and L2AR_FLAGS_CAM_VALUE as operands. The action
flag apply logic is a flag to the value defined in L2AR_FLAGS_CAM_VALUE[i]{flag} if there is a match
and polarity is zero, or a miss for polarity one. Otherwise the action flag remains unchanged.

At the output of the L2AR flag update stages, bits 23:0 are sent on the forward channel as
MOD_FLAGS, with eventual configurable interpretation by the egress modify stage. Bits 33:24 are also
sent on the forward channel and influence the frame's scheduling behavior, such as store-and-forward
and mirroring. Bits 43:34 are preserved by the FPP as TAIL_FLAGS and these bits influence how the
frame is handled once its tail arrives. Bits 75:44 are sent to the statistics unit where they are
interpreted by the stats action resolution stage for frame counting purposes.

5.17.6 TransformDestMask

The L2AR TransformDestMask action shares the same DMASK transformer function as all stages in the
DMASK generation pipeline. The L2AR action RAM specifies the CmdA, CmdB, M, and DC operands that
are used to transform the DMASK_A and DMASK_B channels that ripple from slice-to-slice. At the end
of the L2AR slices, DMASK_A becomes the final destination forwarding mask, which can be further
modified only by congestion management. DMASK_B propagates no further than the last L2AR slice.

The final DROP_CODE value is available as mux inputs to the MOD_DATA.W8E and the 5-bit
STATS_IDX5{A,B,C} channels.

The DMASK transformer function supports a number of potential DMASK transformations. One expected
usage mode is to drop or add ports to the forwarding distribution while LAG-filtering any additional
ports using DMASK_B. Table 5-75, provided for informational purposes only, lists some possible
operations supported in this usage mode.

POLICER_QOS_MAP2_EQ01 74 Indicates the input index to POLICER_QOS_MAP2 equals the first-order mapped output.

POLICER_QOS_MAP2_EQ12 75 Indicates the POLICER_QOS_MAP2's first-order and second-order mapped outputs are
equal.

foreach i (0..1)
 match = CAM_lookup(L2AR_FLAGS_CAM[i],FLAGS_TAG)
 foreach flag (0..75)
 if (match{flag} ^ L2AR_FLAGS_CAM_POLARITY[i]{flag})
 ACTION_FLAGS{flag} = L2AR_FLAGS_CAM_VALUE[i]{flag}
 else
 ACTION_FLAGS{flag} = ACTION_FLAGS{flag}

Table 5-74 L2AR Action Flags (Continued)

Flag Bit Notes

FM5000/FM6000 Datasheet—Frame Processing

158 331496-001

5.17.7 Output Flags

The L2AR output flags are partitioned into four sets based on the recipient stage:

• MOD_FLAGS[23:0] — Microcode-defined directives influencing the frame's egress modification.

• FORWARD_FLAGS[9:0] — Forwarding directives to the scheduler.

• TAIL_FLAGS[9:0] — Directives for the frame's tail handling.

• STATS_FLAGS[31:0] — Microcode-defined frame properties of interest to the statistics stage.

All bits of FORWARD_FLAGS have fixed-function interpretation by the scheduler. Table 5-76 shows the
definition of these flags.

Table 5-75 L2AR DMASK Action Commands

Transformed DMASK_A Use

DMASK_A | M Used for the default case (NOP) with ACTION_DMASK=0b, or to extend the forwarding
distribution to additional output ports.

DMASK_A & M Exclude (drop) ports from distribution.

M Override DMASK with action-specified value.

DMASK_A | M & LAG_MASK Include additional ports in distribution, with LAG filtering.

M & LAG_DMASK Override DMASK with action-specified value, with LAG filtering.

(DMASK_A | M) & LAG_DMASK Apply alternate LAG filtering mask to DMASK, possibly with additional ports included from M
(prior to LAG filtering).

DMASK_A & LAG_DMASK | M Apply alternate LAG filtering mask to DMASK, possibly with additional ports included from M
(after LAG filtering).

Note: M represents the L2AR action mask, referenced as ACTION_DMASK in the register definitions.

Table 5-76 L2AR FORWARD_FLAGS Definition

Field Bits Description

L2_VID_Select 0 Selects between L2_VID1 or L2_VID2 for the L3-multicast egress VID comparison check in
MCAST_POST. Also selects whether such frames' L2_VID1 or L2_VID2 field is overridden by the
new VID obtained from the MCAST_VLAN_TABLE.

L2_TAG 1 A one-bit tag used in MCAST POST to control loopback suppression. It is compared to the one-bit
TAG in MCAST_VLAN_TABLE and only if the two bits match the frame that is eligible for loopback
suppression.

SNF_Override 2 If set to 0b, the frame is forced into store-and-forward mode only if required by the SAF_MATRIX
lookup (see Section 5.19, “Packet Replication”.)

CN_SampleEligible 3 Controls whether the frame is eligible for congestion notification sampling (see Section 5.18.10,
“Congestion Notification Frame Sampling”).
If set to 1b, the frame is forced unconditionally into store-and-forward mode.

TX_Trunc 4 Setting this flag instructs the scheduler to forward only the first segment of the frame (up to 160
bytes) to all egress ports that have MCAST_TX_TRUNC_MASK[p] set to 1b. The flag only applies
to normally-forwarded frames (such as non-mirrored frames). Truncation of mirrored frames is
controlled by the SetMirror action.
Additionally, the TX_Trunc bit is propagated to the egress modification stage, where is available in
the modify slice TCAM key. Microcode can interpret the flag in a configurable manner to further
truncate individual egress frames to specific lengths less than 160 bytes.

331496-001 159

Frame Processing—FM5000/FM6000 Datasheet

The TAIL_FLAGS field contains flag bits that are preserved until all bytes of the frame are received. At
that point, with the frame's length and error status known, all tail processing functions are then
executed based on the state of these tail flags. The TAIL_FLAGS channel has the following
fixed-function bit definitions, as shown in Table 5-77.

5.17.8 SetMirror

Generating mirror frames is controlled by the SetMirror[0..3] actions. The FM5000/FM6000 supports
four mirror mechanisms that are independently enabled by these actions, each capable of generating
one mirrored copy of the source frame. Thus, by enabling all four mirrors, up to four mirror frames can
be generated from any given ingress frame.

Each mirror action specifies whether its mirror frame is generated based on the ingress state of the
frame (Rx mirroring) or the egress state of the frame (Tx mirroring). Although L2AR might enable each
mirroring action based on any condition it likes, static register configuration downstream in the pipeline
impose the following constraints on Tx mirroring:

• Tx mirroring is enabled only when the DMASK distribution includes one or more of a specific set of
ports, configured by CM_TX_MIRROR_SRC[mirnum].SrcMask.

TX_IgnoreError 5 By default, any store-and-forwarded frame is dropped if a CRC or other line error (referred to as a
tail error) is detected during ingress. Cut-through frames are never dropped.
If this bit is set, such store-and-forwarded error frames are forwarded as normal. For example,
they are not dropped.

Reserved 9:6 Reserved.

Table 5-77 L2AR TAIL_FLAGS Definition

Flag Bit Description

PAUSE_Frame 0 Indicates a pause frame, either port- or class-based.

PAUSE_CBPFrame 1 Indicates if the pause frame is a class-based pause or a normal pause frame.

POL1_Credit1 2

Controls whether the frame (and its associated byte length) is credited to the corresponding
policer entry's counter or token bucket.
These bits are overridden to zero if the frame is dropped by congestion management.

POL1_Credit2 3

POL2_Credit1 4

POL2_Credit2 5

POL3_Credit 6

MA_WriteBack 7 Indicates the MA table entry, as constructed by the MA_WRITEBACK mux set, should be written
back into the MAC table, overwriting the entry that was looked up with the MA2 key.
This directive is only respected if the MA2_WriteBackEnabled flag was set.

MA_WriteNew 8 Indicates a new MA table entry, as constructed by the MA_WRITEBACK mux set, should be written
into the MAC table.
This directive is only respected if the MA2_WriteNewEnabled flag was set and MA_WriteBack is set
to 0b. For any given frame, it is illegal to both update an existing entry and write a new entry in
the MAC table.

Reserved 9 Reserved.

Table 5-76 L2AR FORWARD_FLAGS Definition

Field Bits Description

FM5000/FM6000 Datasheet—Frame Processing

160 331496-001

• The Tx mirror frame is generated according to the VLAN replication and egress modification rules
applicable to a single canonical Tx mirror source port, configured redundantly by the
CanonicalSrcPort fields of MCAST_MIRROR_CFG[mirnum] and MOD_TX_MIRROR_SRC.

No such constraints are imposed on Rx mirroring. If both Rx and Tx mirroring modes are enabled, the
final mode depends on the following condition:

FINAL_DMASK & CM_TX_MIRROR_SRC[mirnum].SrcMask != 0

That is, Tx mirroring takes precedence. The FINAL_DMASK is the DMASK following all drop decisions
applied by the congestion management stage.

Two forwarding modes are supported per mirror:

• Explicit Forwarding — In this mode, when L2AR enables a mirror, it controls where the mirror
frame is sent to by setting the appropriate bit(s) of DMASK_A. For the mirror frame to be generated
correctly, any bits set must also be set in the ExplicitDestMask field as configured in the
CM_TX_MIRROR_DEST and MCAST_MIRROR_CFG registers. This forwarding mode is most useful
for mirroring to a LAG; however, it imposes the following two restrictions:

— On a given egress port, either the source frame or the mirror frame might be sent, bot not
both.

— If more than one explicit mirror is enabled for a given frame, their destination masks must not
overlap.

• Overlaid Forwarding — In this mode, L2AR does not modify DMASK_A when it enables the mirror.
Instead, the destination mirror port is statically specified by the OverlayDestPort field of
MCAST_MIRROR_CFG. During multicast replication, a mirror copy of the frame is synthesized and
sent on OverlayDestPort, in addition to any normally forwarded copies of the frame sent on that
egress port. This forwarding mode must be used when ports cannot be dedicated exclusively for
mirroring.

Both modes of mirror forwarding operate independently, although it is expected that only one would be
used per mirror mechanism. Overlaid forwarding is enabled by setting OverlayEnabled to 1b in the
CM_TX_MIRROR_DEST and MCAST_MIRROR_CFG registers. Explicit forwarding is enabled each time
ExplicitDestMask is a non-zero.

Each mirror supports two optional features that are enabled by the SetMirror action:

• Truncation — If the MIR_TRUNC parameter is set to 1b, only the first segment (160 bytes) of the
frame is forwarded. Egress modification rules might further reduce the frame length less than 160.

• Priority Mapping — If the MIR_MAP_PRI parameter is set to 1b, the overlay-forwarded mirror
frame (if enabled) is scheduled with the traffic class OverlayTC, as configured in
MCAST_MIRROR_CFG, not with the original traffic class of the source frame. The MIR_MAP_PRI
parameter has no effect for explicitly forwarded mirror frames.

The following set of registers specify static mirroring configuration parameters:

• CM_MIRROR_DEST[0..3]

— ExplicitDestMask (76 bits)

— OverlayEnabled (1 bit)

• CM_TX_MIRROR_SRC[0..3]

— SrcMask (76 bits)

331496-001 161

Frame Processing—FM5000/FM6000 Datasheet

• MCAST_MIRROR_CFG[0..3]

— ExplicitDestMask (76 bits)

— OverlayEnabled (1 bit)

— OverlayDestPort (7 bits)

— OverlayTC (4 bits)

— CanonicalSrcPort (7 bits)

• MOD_TX_MIRROR_SRC

— CanonicalSrcPort[0..3] (7 bits)

All fields sharing the same name must be set to consistent values.

In egress modification, the MIR_RX, MIR_TX, and MIR_NUM fields in its TCAM key identify mirror
frames and enable microcode to format these frames appropriately. Most modify mapping tables are
indexed by DST_PORT, which for Tx-mirrored frames is set to the mirror's CanonicalSrcPort. This causes
the frame to be modified according to the rules applicable to the canonical Tx mirror source port, not
the physical port to which the mirror frame is transmitted; in modify, the physical egress port is
TX_PORT, and is expected to influence some aspects of the mirror frame's modification, such as ISL-
tagging).

The memory use of overlay-mirrored frames is tracked in dedicated virtual queues for purposes of
congestion management. Explicitly-mirrored frames are subject to the memory accounting and drop
watermarks as normal frames. In either case, the mirror frames might be dropped due to watermark
evaluations, so they might not always be reliably generated as specified by the SetMirror action.

5.17.9 MuxOutput

One of the primary purposes of the L2AR stage is to formulate the configurable components of the
forward channel. Some of these fields are set indirectly by actions such as TransformDestMask
(DMASK) and SetFlags (MOD_FLAGS). However, many fields, notably all 11.5 bytes of MOD_DATA, are
specified directly with MuxOutput actions.

One additional MuxOutput set is defined for specifying the payload of the MAC table entry that can be
optionally written back to the table.

All L2AR MuxOutput actions have types of either MCM (supporting masked constant assignment) or
MCO (supporting a profile-specified constant override value), with the exception of the very simple
(type M) DGLORT mux action. Since the DGLORT mux action operates on fields that can already be set
in a highly configurable manner (using SetDestGlort and SetCpuCode actions), nothing more than a
type M simple mux action is necessary. See Section 5.17.4 for a description of these action types.

Some of the output sets support a large number of profiles (96-128) to enable application of arbitrary
constants on a per-port basis.

FM5000/FM6000 Datasheet—Frame Processing

162 331496-001

5.17.9.1 MOD_DATA Outputs

Table 5-78 shows the modified data outputs.

Table 5-78 L2AR MUX Output Configurations

Set Name Type Npro Output Field(s) Width Nsrc Src Source Field

W16A MCM 128 MOD_DATA.W16A 16 8

0 SGLORT

1 CSGLORT

2 ACTION_DATA.W16A

3 ALU1_Z

4 ALU4_Z

W16B M 0 MOD_DATA.W16B 16 8

0 DGLORT

1 DGLORT | CpuCode

2 ACTION_DATA.W16B

3 ALU3_Z

4 ALU6_Z

331496-001 163

Frame Processing—FM5000/FM6000 Datasheet

W16CDEF MCO 32

MOD_DATA.W16C 16 8

0 ACTION_DATA.W16C

1 ACTION_DATA.W16G

2 ACTION_DATA.W16H

3 DMASK[15:0]

4 ALU2_Z

5 ALU5_Z

MOD_DATA.W16D 16 8

0 MA1_MAC[15:0]

1 ACTION_DATA.W16D

2 ACTION_DATA.W16G

3 ACTION_DATA.W16H

4 ALU3_Z

5 ALU6_Z

6 DMASK[31:16]

MOD_DATA.W16E 16 8

0 MA1_MAC[31:16]

1 ACTION_DATA.W16E

2 ACTION_DATA.W16G

3 ACTION_DATA.W16H

4 ALU1_Z

5 ALU4_Z

6 DMASK[47:32]

MOD_DATA.W16F 16 8

0 MA1_MAC[47:32]

1 ACTION_DATA.W16F

2 ACTION_DATA.W16G

3 ACTION_DATA.W16H

4 ALU2_Z

5 ALU5_Z

6 DMASK[63:48]

Table 5-78 L2AR MUX Output Configurations (Continued)

Set Name Type Npro Output Field(s) Width Nsrc Src Source Field

FM5000/FM6000 Datasheet—Frame Processing

164 331496-001

W8ABCDE MCM 32

MOD_DATA.W8A 8 4

0 ACTION_DATA.W8A

1 ALU1_Z[7:0]

2 ALU2_Z[7:0]

3 ALU3_Z[7:0]

MOD_DATA.W8B 8 8

0 ACTION_DATA.W8B

1 MA1_DATA

2 ALU1_Z[15:8]

3 ALU2_Z[15:8]

4 ALU3_Z[15:8]

5 POL1_TAG1[7:0]

MOD_DATA.W8C 8 8

0 ACTION_DATA.W8C

1 DMASK[71:64]

2 ALU4_Z[7:0]

3 ALU5_Z[7:0]

4 ALU6_Z[7:0]

5 CN_SRC_TX1

6 POL2_TAG1[7:0]

MOD_DATA.W8D 8 8

ACTION_DATA.W8D

DMASK[79:72]

ALU4_Z[15:8]

ALU5_Z[15:8]

ALU6_Z[15:8]

POL3_TAG[7:0]

ISL_USER

MOD_DATA.W8E 8 8

0 CpuCode

1 ACTION_DATA.W8E

2 DropCode

3 ALU4_Z[7:0]

4 ALU5_Z[7:0]

5 ALU6_Z[7:0]

Table 5-78 L2AR MUX Output Configurations (Continued)

Set Name Type Npro Output Field(s) Width Nsrc Src Source Field

331496-001 165

Frame Processing—FM5000/FM6000 Datasheet

5.17.9.2 Named Forward Channel Outputs

Table 5-79 shows the other forward channel output fields:

W4 MCM 16 MOD_DATA.W4 4 16

0 ACTION_DATA.W8D[3:0]

1 ACTION_DATA.W8D[7:4]

2 ACTION_DATA.W8E[3:0]

3 ACTION_DATA.W8E[7:4]

4 ALU1_Z[3:0]

5 ALU2_Z[3:0]

6 ALU3_Z[3:0]

7 MA1_TAG[11:8]

8 POL1_TAG1[11:8]

9 POL2_TAG1[11:8]

10 POL3_TAG[11:8]

1. The values of these mux cases are not known by L2AR. If selected, these values are set downstream by the congestion notification
sampling stage.

Table 5-79 L2AR Forward Channel Output Fields

Set Name Type Npro Output Field(s) Width Nsrc Src Source Field

VID MCO 32

L2_VID1 12 4

0 EVID1

1 IVID1

2 ALU3_Z[11:0]

L2_VID2 12 4

0 EVID2

1 IVID2

2 ALU6_Z[11:0]

DMASK_IDX MCO 32 DMASK_IDX 12 4

0 L2F_DMASK_IDX

1 ACTION_DATA.W16H

2 ALU3_Z

Table 5-78 L2AR MUX Output Configurations (Continued)

Set Name Type Npro Output Field(s) Width Nsrc Src Source Field

FM5000/FM6000 Datasheet—Frame Processing

166 331496-001

5.17.9.3 QoS

The MuxOutput_QOS action sets the profile number that is used for a Type-MCM transformation of the
QOS fields.

Table 5-80 L2AR Profile Table (QOS_PROFILE_TABLE[0..31])

Field Width Description

Src_ISL_PRI 4 Selects mux source for ISL_PRI.

Src_L2_VPRI1 5 Selects mux source for L2_VPRI1.

Src_L3_PRI 4 Selects mux source for L3_PRI.

Src_L2_VPRI2 5 Selects mux source for L2_VPRI2.

Src_W4 5 Selects mux source for generic W4 field.

Mask 24 Mask to AND with the output post-muxing.

Value 24 Constant value to OR with the output post-masking and post-muxing.

Table 5-81 L2AR Source Channel Values

Src
Source Channel

Description
ISL_PRI L2_VPRI1 L2_VPRI2 W4 L3_PRI1

0 ISL_PRI L2_VPRI1 L2_VPRI2 W4 L3_PRI Default.

1 POLICER_QOS_MAP1_FIRST Assign from four-bit POLICER_QOS_-
MAP1_FIRST output (first-order mapping).

2 POLICER_QOS_MAP1_SECOND
Assign from four-bit POLICER_QOS_-
MAP1_SECOND output (second-order map-
ping).

3 POLICER_QOS_MAP2_FIRST

Assign from eight-bit POLICER_QOS_-
MAP2_1 output (first-order mapping). For all
but L3_PRI, top four bits of the mapped
value are ignored.

4 POLICER_QOS_MAP2_SECOND

Assign from eight-bit POLICER_QOS_-
MAP2_2 output (second-order mapping).
For all but L3_PRI, top four bits of the
mapped value are ignored.

5 QOS.W4 Map any QoS field from generic QOS.W4
(BPRI, MPLS EXP, etc.

6 ACTION_DATA.W8F[3:0]
Assign from bottom four bits for all output
fields. L3_PRI is assigned the all eight bits
of W8F.

7 ACTION_DATA.W8F[7:4] Assign from top four bits. Undefined for L3_-
PRI.

331496-001 167

Frame Processing—FM5000/FM6000 Datasheet

5.17.9.4 MAC Table Write-Back

MAC write-back is used to write learned addresses back into the L2 lookup table.

8 POL1_TAG1[7:4] POL1_TAG1[5:0]

Policer entry TAG assignment cases.

9 POL1_TAG2[7:4] POL1_TAG2[5:0]

10 POL2_TAG1[7:4] POL2_TAG1[5:0]

11 POL2_TAG2[7:4] POL2_TAG2[5:0]

12 POL3_TAG[7:4] POL3_TAG[5:0]

13 POL1_TAG1[9:6] POL1_TAG1[3:0] —

14 POL1_TAG2[9:6] POL1_TAG2[3:0] —

15 POL2_TAG1[9:6] POL2_TAG1[3:0] —

16 POL2_TAG2[9:6] POL2_TAG2[3:0] —

17 POL3_TAG[9:6] POL3_TAG[3:0] —

1. All assignments to L3_PRI from fields of widths less than eight bits are MSB-aligned. For example, POL1_TAG1[5:0] sets
L3_PRI[7:2]. In these cases, unassigned low-order bits are left unmodified unless explicitly assigned by a (Mask,Value) profile
constant.

Table 5-82 L2AR MAC Table Write-Back

Set Name Type Npro Output Field(s) Width Nsrc Src Source Field

MA_WRITEBACK

SC 32 MA_WRITEBACK.PREC 2 0 0 Constant value.

MCM 32

MA_WRITEBACK.GloRT 16 4

0 MA2_GLORT

1 CSGLORT

2 ISL_SGLORT

3 ALU1_Z

MA_WRITEBACK.TAG 12 4

0 MA2_TAG

1 ACTION_DATA.W16A[11:0]

2 {ACTION_DATA.W16A[11:8],
MA2_TAG[7:0]}

MA_WRITEBACK.DATA 8 4

0 MA2_DATA

1 ACTION_DATA.W8B

2 ACTION_DATA.W8C

3 ACTION_DATA.W16A[7:0]

Note: The combination of {MA2_TAG[11:8],MA2_DATA} can be used as a 12-bit tunnel ID. For this purpose, the
ACTION_DATA.W16A[11:0] is mapped to {MA2_TAG[11:8],MA2_DATA} at learning and the
{MOD_DATA.W4,MOD_DATA.W8B} is mapped to recovered {MA1_TAG[11:8],MA1_DATA} for forwarding.

Table 5-81 L2AR Source Channel Values (Continued)

Src
Source Channel

Description
ISL_PRI L2_VPRI1 L2_VPRI2 W4 L3_PRI1

FM5000/FM6000 Datasheet—Frame Processing

168 331496-001

5.17.9.5 Statistics Index Channels

A number of frame properties are sent from L2AR to the statistics counters where they are categorized
and assigned to specific counter index values for counting. Some of these properties are sent over
fixed-function channels, such as the Rx ingress port number, the frame's byte length, and the tail error
status. Others are selected in a configurable manner by L2AR:

• STATS_FLAGS — Set by the L2AR SetFlags action, split off from ACTION_FLAGS.

• STATS_IDX* — Muxed from channels available at the input to L2AR. Available as Rx Per-Index
and CounterNum source values for statistics counter index selection.

The mux definitions for the statistics index channels STATS_IDX{5A,5B,5C,12A,12B,16A,16B} are
listed in Table 5-83.

Table 5-83 L2AR MUX Definitions for Statistics

Set Name Type Npro Output Field(s) Width Nsrc Src Source Field

STATS_IDX5AB MCO 32
RX_STATS.IDX5A
RX_STATS.IDX5B

5 16

0 QOS.ISL_PRI

1 QOS.L2_VPRI1

2 QOS.L2_VPRI2

3 QOS.W4

4 L2F_ITAG1[4:0]

5 L2F_ITAG2[4:0]

6 L2F_ETAG1[4:0]

7 L2F_ETAG2[4:0]

8 MA1_TAG[4:0]

9 MA2_TAG[4:0]

10 ACTION_DATA.W8E[4:0]

11 ALU1_Z[4:0]

12 DropCode[4:0] (IDX5A)
ALU4_Z[4:0] (IDX5B)

13
QOS.TC
(as mapped by CM_TC_MAP in congestion
management).

14
QOS.RXMP
(as mapped by CM_RXMP_MAP in conges-
tion management).

STATS_IDX5C MCO 32 RX_STATS.IDX5C 5 16 0..14 Same as for STATS_IDX5B.

331496-001 169

Frame Processing—FM5000/FM6000 Datasheet

STATS_IDX12A
STATS_IDX12B

MCO 32
RX_STATS.IDX12A
RX_STATS.IDX12B

12 32

0 IVID1

1 IVID2

2 EVID1

3 EVID2

4 L2F_ITAG1

5 L2F_ITAG2

6 L2F_ETAG1

7 L2F_ETAG2

8 MA1_TAG

9 MA2_TAG

10 ACTION_DATA.W8E

11 POL1_IDX

12 POL2_IDX

13 ALU2_Z[11:0]

14 ALU3_Z[11:0]

15 ALU6_Z[11:0]

16 POL1_TAG1

17 POL2_TAG1

18 POL3_TAG

STATS_IDX16A
STATS_IDX16B

MCO 16
RX_STATS.IDX16A
RX_STATS.IDX16B

16 16

0 ACTION_DATA.W16A

1 ACTION_DATA.W16B

2 ACTION_DATA.W16C

3 ACTION_DATA.W16G

4 ACTION_DATA.W16H

5 ALU1_Z

6 ALU4_Z

7 ALU5_Z

8 MOD_DATA.W16A
(Final SGLORT).

9 MOD_DATA.W16B
(Final DGLORT).

Note: All three 5-bit IDX5{A,B,C} indices have the same set of mux input channels. However, IDX5A and IDX5B share a single
profile, while IDX5C has its own. This makes MuxOutput_STATS_IDX5C the best action to use for direct index assignments
from L2AR rules.

Table 5-83 L2AR MUX Definitions for Statistics (Continued)

Set Name Type Npro Output Field(s) Width Nsrc Src Source Field

FM5000/FM6000 Datasheet—Frame Processing

170 331496-001

5.18 Congestion Management

The data produced by L2AR represents, in part, the frame's desired egress forwarding distribution and
scheduling policy. The Congestion Management (CM) stage is then responsible for implementing drop
and sample decisions that are intended to protect the switch, the network, and particular classes of
traffic from the undesirable consequences of network congestion.

The FM5000/FM6000 provides the following mechanisms for managing congestion:

Accounting of memory use by Rx and Tx memory partitions

A particular frame belongs to exactly one Rx memory partition (RXMP) and one Tx memory
partition (TXMP). Its membership is mapped from QOS.ISL_PRI. All drop, pause, and sampling
decisions are applied within the domain of these independent memory partitions.

Private and drop watermarks defined for each ingress port (Rx) per RXMP

As frames arriving from a particular (Rx and RXMP) pair begin to consume too much of the shared
frame memory, this mechanism enables subsequent frames to be head-dropped before they are
queued. Conversely, any (Rx and RXMP) consuming less than its private watermark enables is
guaranteed space in the frame memory regardless of the ingress congestion due to other ports.

Global per-RXMP drop watermarks

These watermarks are applied to any frames whose (Rx and RXMP) usage is above their respective
private watermarks.

Global drop watermark

This watermark is applied to any frame.

Per-port, per-TXMP soft drop watermarks

These watermarks probabilistically drop frames queued to (Tx and TXMP) destinations that are
consuming too much of the shared memory. A probabilistic mechanism is employed on Tx to avoid
reserving excessive amounts of memory to maintain fair egress scheduling.

Generation of PAUSE frames in response to rising Rx memory consumption

Two styles of pause frames can be generated, one for standard IEEE 802.3 per-port pause, the
other for IEEE 802.1Qbb PFC. Port-based pause frames are generated based on Xon/Xoff
watermarks referenced to total Rx port and total shared memory usage. Class-based pause frames
are controlled by Xon/Xoff watermarks referenced to per-(Rx and RXMP) and total RXMP memory
levels. As long as any Xoff watermark is exceeded, the corresponding port's pause frame is
repeated at some timed resend interval configured per port.

Periodic generation of PAUSE frames for link partner rate limiting

Pause pacing is supported on any port or pause class. When enabled, pairs of PAUSE-ON/OFF
frames are generated periodically to limit the rate at which the link partner can transmit on the
given port or pause class.

Tx per-port and per-class reaction to ingress PAUSE frames

Pause frames identified by the parser might provide the egress scheduler with timed per-port or
per-TC pause times. The mechanism supports Xon messages with pause payload-specified IEEE-
standard time values, as well as immediate-response Xoff messages. Each pause frame can specify
these parameters over a vector of up to eight traffic classes. The configurability of the parser
provides support for standard IEEE 802.3 PAUSE frames, IEEE 802.1Qbb PFC PAUSE, as well as
other user-defined frame formats.

331496-001 171

Frame Processing—FM5000/FM6000 Datasheet

Periodic frame sampling per-(TX,TXMP) queue

Running byte counters are maintained per (Tx and TXMP) queue. Every configured interval, up to a
minimum period of 1 µs, frames might be mirrored to a particular GloRT destination. If the
destination is a companion device, the mirrored frames can be reformatted as congestion
notification sample frames and returned to the FM5000/FM6000 to be forwarded back to the
original source. This mechanism can be used to generate IEEE 802.1Qau QCN messages.

Per-Tx port, per-TXMP watermark-based interrupt notification

Each (Tx and TXMP) queue supports high/low watermarks tied to interrupt notification bits. When
the corresponding queue level is above a high watermark, an IP high-limit bit corresponding to that
queue is set. Once the level is below a low watermark, the IP low-limit bit is set. The interrupt bits
are stored in an 80-bit wide register. This mechanism might be used by an external device to
generate virtual output queuing Xon/Xoff messages.

Mirror accounting and tracking

Up to four mirror commands can be attached to a single frame. The CM module keeps track of the
memory use for each mirror in a manner similar to what it does for Tx queues. For example,
through a per-mirror, per-TXMP usage and soft drop watermarks. The mirror event is dropped by
canceling the mirror command.

5.18.1 Linkage to the Frame Processing Pipeline

The CM stage is the last stage of ingress frame processing before frames are queued, multicast-
replicated, and scheduled for transmission. It immediately follows the L2AR stage and has the last
opportunity to drop frames before they are stored in the shared frame memory.

The CM stage primarily operates on the following channels from L2AR:

• ISL_PRI — This 4-bit value represents the frame's comprehensive QoS priority for purposes of
queue mapping and watermark drop evaluations. In CM, three new QoS fields are mapped from
ISL_PRI that factor into these forwarding policies: a Traffic Class (TC) number and two shared
memory partition numbers, one for ingress (RXSMP) and one for egress (TXMP). These parameters
are described in detail as follows.

• DMASK — Drop and sampling decisions made by the CM are implemented as transformations of
the frame's destination port mask. For example, if the frame memory is full and no more frames
can be allowed into the switch, the DMASK is zeroed. If the frame is to be sampled for congestion
notification purposes, the DMASK is augmented with a bit corresponding to the appropriate
sampling destination.

• CM_FLAGS — Compared to earlier stages in the FPP, the CM stage includes a large amount of
highly specific fixed-function logic. A set of flag bits set by L2AR provide per-frame control over
these operations.

Note: Currently this only includes CN_SampleEligible, bit 30 of ACTION_FLAGS.

Figure 5-38 shows a high-level view of the sequence of QoS mapping, sample, and drop operations
applied by the CM stage:

FM5000/FM6000 Datasheet—Frame Processing

172 331496-001

The CM_TC_MAP[0..15], CM_RXMP_MAP[0..7], and CM_TXMP_MAP[0..11] registers define the
mapping from the FM5000/FM6000's 16 ISL priorities (QOS.ISL_PRI) to 12 TCs, and 12 Rx and Tx
memory partitions (RXMP and TXMP). The TC influences egress scheduling policy and is passed on to
the scheduler. The RXMP and TXMP quantities are used locally for memory usage tracking, drop
watermark evaluation, and flow-control. All three QoS values can be propagated to egress modification
with the appropriate QoS mux selection in L2AR.

In addition to the forwarding-related frame processing transformations applied to each frame, the CM
stage implements the following other background functions related to memory management and
monitoring:

• Flow Control — Pause frame handling and generation.

• Egress Traffic Shaping — For architectural reasons, the egress scheduler's traffic shaping is
configured and controlled by the CM stage.

• Interrupt-based TX queue monitoring — Interrupt notification based on (Tx and TXMP) queue
levels.

Figure 5-38 Sequence of QoS Mapping

331496-001 173

Frame Processing—FM5000/FM6000 Datasheet

5.18.2 Memory Management

The FM5000/FM6000 fundamentally is a shared memory switch. Thus its central frame memory is
accessible to all ports on a first-come, first-served basis. To control undesirable crowding of this
memory by different QoS TCs, mechanisms are provided for dividing the memory into independently
managed partitions. This limits the exposure of one QoS class to congestion experienced by another.

Two partitions are supported, one associated with each frame's ingress port (Rx), the other with each
frame's egress port(s) (Tx). Eight Rx and 12 Tx memory partitions are supported, referred to
respectively as RXMP and TXMP. These partitions are overlaid in the sense that each track
independently measures memory consumption.

For congestion management purposes, a port-partition pair, (Rx and RXMP) or (Tx and TXMP), defines a
frame's ingress or egress queue. A frame's RXMP and TXMP values are mapped independently from its
ISL_PRI, although it is expected that the RXMP map is defined over independent sets of TXMPs. For
example, a frame’s RXMP could be mapped uniquely from its TXMP. The TXMP map is also expected to
exactly match the TC map, but for flexibility purposes is not unified with CM_TC_MAP.

Each memory partition tracks usage by port and by total usage. The Rx memory partitions additionally
support a per-port private watermark, which allocates a protected quantity of memory per Rx port. As
long as frames from a particular (Rx and RXMP) queue consume no more than their allocated private
memory, they are guaranteed to never be dropped.

Note: Exceptions might occur when the system of CM watermarks is mis-configured such that the
total absolute frame memory is unexpectedly exceeded.

Also, global memory usage is tracked and a global watermark is used to drop any frame above this
level. The watermark must be set at the top of memory minus worst case in-flight segments expected.
If the system runs out of segments, the MAC is back pressured and overflow conditions are reported by
the EPL.

A number of drop, flow-control, and notification watermarks are defined over the memory levels
tracked by this system. All drop watermarks are evaluated at the head of each frame, before the full
length of the frame is known. Thus a skid-pad memory buffer must be reserved above all drop
watermarks to allow for in-flight frames.

Only frames that are not dropped are queued and credited to their corresponding memory usage
level(s). The frame is accounted for on the receive side (CM_RX_xxxx_USAGE) and on the transmit side
(CM_TX_xxxx_USAGE) as segments are allocated on ingress or freed on egress. A multicast frame is
credited to its ingress port's level once on the receive side and to every possible destination on the
transmit side. On egress, frames are credited in an L2-replicated sense. Thus, regardless of whether
one or 4000 L3 copies of a frame are sent to a particular Tx port, the level associated with that Tx port
reflects only the single source frame that is replicated.

Memory accounting is reported in the CM_xxx_USAGE registers. The units of accounting are frames and
160-byte segments for global and Rx usage counters, and 480-byte segments for Tx counters. They are
incremented for frames that are scheduled for transmission (forwarded somewhere), and are
decremented once the frame has been transmitted or discarded by the scheduler (due to timeout or
port down).

The global usage registers and receive usage registers are decremented only when the segment or
frame is freed. For example, when successfully transmitted or discarded on all possible transmit
queues. The transmit usage registers are decremented upon transmission of each 480-byte segment.
Frames that are discarded before being queued (such as leave the CM stage with a DMASK of zero) are
not counted as they are not stored in memory.

FM5000/FM6000 Datasheet—Frame Processing

174 331496-001

The Tx port numbers 76..79 are virtual ports used only for mirror frames. Each of the FM5000/
FM6000's four mirror mechanisms is mapped to one of these virtual ports when it is configured to use
overlaid forwarding. For more information about overlaid forwarding, see Section 5.17.8, “SetMirror”.

For congestion management purposes, each mirror mechanism has two queues on each virtual port
corresponding to the two MIR_MAP_PRI cases. In all Tx CM registers indexed by Tx port number and a
QoS value (either ISL_PRI or TXMP), the QoS value is taken from the corresponding mirror's
MIR_MAP_PRI value.

For example, for mirror ports 76..79, the CM_PORT_TXMP_USAGE[TX,TXMP] register has the following
definition:

• CM_PORT_TXMP_USAGE[76..79,0] — Memory usage of mirror 0..3 frames with
MIR_MAP_PRI[MIRROR_NUM]=0b.

• CM_PORT_TXMP_USAGE[76..79,1] — Memory usage of mirror 0..3 frames with
MIR_MAP_PRI[MIRROR_NUM]=1b.

• CM_PORT_TXMP_USAGE[76..79,2..11] — Unused.

Figure 5-39 Memory Management Usage Tracking

Register Description Tracks

CM_GLOBAL_USAGE Tracks global memory usage, regardless of memory partitioning.
This represents the sum over all RXMPs.

Number of frames
and number of
160-byte segments.

CM_RXMP_USAGE[0..11] Tracks the total memory usage of each RXMP.
Used for the RXMP-based Tx soft drop mechanism.

Number of 480-byte
segments.

CM_SHARED_RXMP_USAGE[0..11] Tracks usage of shared (non-private) memory per RXMP.
A segment or frame is included in this counter only if its source
port has exceeded its corresponding private watermark. If the
egress transmission of a particular frame causes its ingress
source port to drop below its private watermark, only the
segments required to bring the port's usage below the watermark
is decremented from this counter.

Number of frames
and number of
160-byte segments.

CM_PORT_RXMP_USAGE[0..75,0..11] Tracks per-port, per-RXMP memory usage.
If multiple ISL_PRIs map into the same RXMP, memory usage for
frames in these priorities are tracked together.

Number of frames
and number of
160-byte segments.

CM_GLOBAL_TXMP_USAGE[0..11] Tracks total memory usage per TXMP. Number of 480-byte
segments.

CM_PORT_TXMP_USAGE[0..79,0..11] Tracks per-port, per-TXMP memory usage.
If multiple ISL_PRIs map into the same TXMP, memory usage for
frames in these priorities are tracked together.

Number of 480-byte
segments.

331496-001 175

Frame Processing—FM5000/FM6000 Datasheet

5.18.3 Watermarks

All watermarks listed in Table 5-84 are evaluated with greater-or-equal-to semantics. Thus, a
watermark value of zero evaluates true for all frames handled by the CM stage regardless of memory
use.

Table 5-84 Memory Management Watermarks

Register Description Limits

CM_GLOBAL_WM Defines an upper-bound limit to memory use for new
frames.
This limit is typically set to the maximum memory minus the
maximum frame size times the number of active ports.

Total frames and 160-
byte segments.

CM_SHARED_RXMP_WM[0..15] Defines the upper-bound limit of shared RXMP memory per
switch priority.
The watermark is mapped from the frame's ISL priority and
is compared against the corresponding
CM_SHARED_RXMP_USAGE level. This limit is typically set
to the desired RXMP size minus an allowance for in-flight
frames and all per-port private allocations.

Per-RXMP frames and
160-byte segments.

CM_PORT_RXMP_PRIVATE_WM[0..75,0..11] Defines the size of each Rx port's private memory per RXMP.
Indexed by (Rx and RXMP).

Per-(Rx and RXMP)
frames and 160-byte
segments.

CM_PORT_RXMP_HOG_WM[0..75,0..15] Defines the maximum CM_PORT_RXMP_USAGE beyond
which frames belonging to the corresponding (RX,RXMP)
queue are dropped.
Indexed by (RX,ISL_PRI) so different ISL priorities
belonging to the same RXMP are limited to different levels of
memory consumption.

Per-(RX,ISL_PRI)
frames and 160-byte
segments.

CM_PORT_TXMP_PRIVATE_WM[0..79,0..15]
CM_PORT_TXMP_HOG_WM[0..79,0..15]

Defines watermarks on (Tx and TXMP) egress queues,
indexed by (Tx and ISL_PRI).
Tx dropping is disabled until PrivateSegmentLimit is
exceeded, at which point the queue becomes eligible for
probabilistic soft dropping. All frames are dropped when the
queue's usage exceeds HogSegmentLimit.
Two soft dropping mechanisms can be enabled by setting
the SoftDropOnPrivate or SoftDropOnRxmpFree
configuration bits defined in CM_PORT_TXMP_PRIVATE. If
SoftDropOnPrivate is set to 1b, frames are dropped with
50% probability once the CM_PORT_TXMP_USAGE level
exceeds PrivateSegmentLimit. If SoftDropOnRxmp is set to
1b, frames are dropped with either 50% or 100%
probability, depending on the proportion of free
RXMP_USAGE space the Tx queue's
CM_PORT_TXMP_USAGE level consumes. These
mechanisms are described in more detail in the sections
that follow.
If the frame's (Rx and RXMP) usage is below its Rx private
watermark, this drop mechanism is disabled entirely and
the frame is guaranteed to be queued. Indexed by (Tx and
ISL_PRI) for ports 0..75. Indexed by (76+MIR_NUM,
MIR_MAP_PRI[MIR_NUM]) for the mirror overlay ports
76..79.

Per-(TX,ISL_PRI)
480-byte segments.

CM_RXMP_SOFT_DROP_WM[0..15].
{SoftDropSegmentLimit,
SoftDropSegmentLimitJitterBits,
HogSegmentLimit}

Configures Tx soft dropping based on RXMP usage.
Each time the total RXMP usage exceeds
SoftDropSegmentLimit plus a random jitter term, Tx soft
dropping is enabled such that the Tx ports consuming the
most memory are penalized most. Frames are dropped with
100% probability if the RXMP usage exceeds
HogSegmentLimit. These watermarks are mapped by
ISL_PRI and compared against the corresponding
CM_RXMP_USAGE level (measured in 480-byte segments).

Per-ISL_PRI 480-byte
segments.

FM5000/FM6000 Datasheet—Frame Processing

176 331496-001

All memory management registers and watermarks can be changed by software at any time while there
is traffic being switched through the fabric, with the exception of the following watermark registers:

• CM_PORT_RXMP_PRIVATE_WM

• CM_RXMP_MAP

• CM_TXMP_MAP

• CM_TC_MAP

Changes to these registers, while frames are in flight through the switch, might result in unpredictable
frame dropping and/or persistent memory loss.

5.18.4 Rx Watermark Evaluation

Figure 5-40 through Figure 5-42 show the different receive watermarks and usage counters, per-port-
per-RXMP, per-RXMP, global.

CM_PORT_TXMP_IP_WM[0..79,0..11].{Max,
Min}

Defines per-(TX,TXMP) maximum and minimum watermarks
that control when bits are set in the
CM_PORT_TXMP_ABOVE_IP and
CM_PORT_TXMP_BELOW_IP interrupt registers.

Per-(Tx and TXMP)
480-byte segments.

CM_PORT_TXMP_SAMPLE_WM[0..79,0..11] Defines per-(Tx and TXMP) sampling period for frame
sampling.

Per-(Tx and TXMP)
480-byte segments.

CM_GLOBAL_TXMP_SAMPLE_CMD[0..11] Defines per-TXMP command when sampling is required. N/A

Figure 5-40 Receive Usage and Watermarks

Table 5-84 Memory Management Watermarks (Continued)

Register Description Limits

331496-001 177

Frame Processing—FM5000/FM6000 Datasheet

Figure 5-41 shows the watermarks and usage counters per RXMP.

Figure 5-42 shows the overall watermarks and usage for the entire memory.

For reception, a frame gets dropped if there is no private space available and the frame exceeds the
hog or SMP shared or global watermarks:

Figure 5-41 SMP Usage and Watermarks

Figure 5-42 SMP Usage and Watermarks

FM5000/FM6000 Datasheet—Frame Processing

178 331496-001

5.18.5 Tx Watermark Evaluation

Figure 5-43 figure shows the different transmit watermarks and usage counters per port per TXMP.

overRxPrivate = CM_PORT_RXMP_USAGE[RX,RXMP].SegmentCount
 CM_PORT_RXMP_PRIVATE_WM[RX,RXMP].SegmentLimit |
 CM_PORT_RXMP_USAGE[RX,RXMP].FrameCount
 CM_PORT_RXMP_PRIVATE_WM[RX,RXMP].FrameLimit

overRxPort = CM_PORT_RXMP_USAGE[RX,RXMP].SegmentCount
 CM_PORT_RXMP_HOG_WM[RX,ISL_PRI].SegmentLimit |
 CM_PORT_RXMP_USAGE[RX,RXMP].FrameCount
 CM_PORT_RXMP_HOG_WM[RX,ISL_PRI].FrameLimit

overRxShared = CM_SHARED_RXMP_USAGE[RXMP].SegmentCount
 CM_SHARED_RXMP_WM[ISL_PRI].SegmentLimit |
 CM_SHARED_RXMP_USAGE[RXMP].FrameCount
 CM_SHARED_RXMP_WM[ISL_PRI].FrameLimit

overGlobal = CM_GLOBAL_USAGE.FrameCount
 CM_GLOBAL_WM.FrameLimit |
 CM_GLOBAL_USAGE.SegmentCount
 CM_GLOBAL_WM.SegmentLimit

outOfMemory = [Set when the Scheduler runs out of segments. Never
 happens with proper CM_GLOBAL_WM configuration.]

if (overRxPort | (overRxPrivate & overRxShared) | overGlobal | outOfMemory)
 // Cancel sending the frame anywhere
 dmask = 0

Figure 5-43 Transmit Usage and Watermarks

331496-001 179

Frame Processing—FM5000/FM6000 Datasheet

For transmission, a frame cannot be forwarded to a particular port, even if it should be according to the
destination mask, if the transmit queue is consuming too much memory. A (private and hog)
watermark pair is defined per (Tx and ISL_PRI) queue, which controls this filtering. As long as the
queue's memory usage (CM_PORT_TXMP_USAGE[TX,TXMP]) is below the private watermark
(CM_PORT_TXMP_PRIVATE_WM[TX,ISL_PRI].PrivateSegmentLimit), the frame is queued to the
specified destination. If memory use is above the hog watermark, the frame is not queued. Between
the private and hog watermarks, two soft drop evaluations are performed to determine one of three
drop probabilities (0%, 50%, or 100%).

The drop probability is calculated as follows:

When both mechanisms are enabled, the larger of the two drop probabilities is applied.

The RXMP-based free parameter is a measure of the free switch-wide memory available to the (Tx and
TXMP) queue that it might be sharing among other ports and other TXMPs:

free = CM_RXMP_SOFT_DROP_WM[ISL_PRI] - CM_RXMP_USAGE[RXMP]

The RXMP-based soft drop probability is further guarded by a CM_RXMP_SOFT_DROP_WM watermark
comparison against the CM_RXMP_USAGE:

RxmpSoftDropEnabled = CM_RXMP_USAGE[RXMP] CM_RXMP_SOFT_DROP_WM[ISL_PRI] + RandomJitter

If RxmpSoftDropEnabled evaluates false, the RXMP-based soft drop probability remains at 0%.
RandomJitter is an additive random term between 0 and 7 bits wide, configured by
CM_RXMP_SOFT_DROP_WM[ISL_PRI].SoftDropSegmentLimitJitterBits.

When the RXMP-based soft drop mechanism is enabled, it is expected that the RXMP and TXMP maps
are defined such that the RXMPs are supersets of TXMPs. That is:

RXMP_MAP(isl_pri1) == RXMP_MAP(isl_pri2) ==> TXMP_MAP(isl_pri1) == TXMP_MAP(isl_pri2)

The Tx drop watermark evaluation is made more complex by its interaction with mirroring. If a frame is
flagged with one or more mirror commands, the CM has to account for the mirrors' overlay-forwarded
frames in special virtual ports (numbered 76..79), referred to as mirror overlay ports. If the mirror
overlay ports fail their Tx drop evaluations, a post-filtering stage must disable any Tx-mirroring that is
no longer applicable.

The process followed is:

• From the CM stage on, the DMASK is augmented with four extra bits corresponding to the overlay-
forwarded frames queued due to each mirror mechanism.

Table 5-85 TX Drop Probability Calculation

When SoftDropOnPrivate=1b: When SoftDropOnRxmpFree=1b:

Regime Drop
Probability Regime Drop

Probability

Private > usage 0% Private > usage 0%

Hog > usage Private 50% Hog free/2 > usage Private 50%

usage Hog 100% Hog free > usage free/2 100%

Hog > usage free 100%

usage Hog 100%

FM5000/FM6000 Datasheet—Frame Processing

180 331496-001

• The memory consumed by the 76..79 mirror overlay ports is then tracked in terms of two virtual
queues per mirror, one for frames overlay-mirrored with MIR_MAP_PRI=0b, the other for overlay-
mirrored frames with MIR_MAP_PRI=1b. This provides a mechanism to independently control the
memory consumption (by Tx watermarks) of these two classes of mirror frames.

• Tx drop watermark evaluations are then performed over the 80-bit augmented DMASK. The DMASK
is filtered based on the memory usage of each destination queue (or virtual queue).

• All DMASK destinations filtered in this manner due to the Tx drop watermarks are counted in the
per-queue 64-bit CM_PORT_TXMP_DROP_COUNT counters.

The exact pseudo-code is:

// Augment DMASK
dmask1[75:0] = dmask
foreach M in (0..3)
 if ((MIR_RX[M] | MIR_TX[M]) & CM_MIRROR_DEST[M].OverlayEnabled)
 dmask1[76+M] = 1

// Determine status of RXMP-based soft dropping
rxmpSoftDropEnabled =
 CM_RXMP_USAGE[RXMP].SegmentCount
 CM_RXMP_SOFT_DROP_WM[ISL_PRI].SoftDropSegmentLimit +
 random(CM_RXMP_SOFT_DROP_WM[ISL_PRI].SoftDropSegmentLimitJitterBits)

// Soft drop becomes more aggressive as remaining RXMP free space drops
rxmpFree = CM_RXMP_SOFT_DROP_WM[ISL_PRI].HogSegmentLimit -
 CM_RXMP_USAGE[RXMP].SegmentCount

// Evaluate TX Drop Watermarks
foreach TX in (0..79)
 txDrop[TX] = 0

 if (dmask1[TX] == 1 & overRxPrivate)
 // Per-(TX,ISL_PRI) drop watermarks
 overTxPrivate = CM_PORT_TXMP_USAGE[TX,TXMP]
 CM_PORT_TXMP_PRIVATE_WM[TX,ISL_PRI]
 overTxHog = CM_PORT_TXMP_USAGE[TX,TXMP]
 CM_PORT_TXMP_HOG_WM[TX,ISL_PRI]

 if (overTxHog)
 txDrop[TX] = 1

 else if (overTxPrivate)
 if (SoftDropOnRxmpFree==1 & rxmpSoftDropEnabled)
 // Soft drop based on total RXMP usage
 if (CM_PORT_TXMP_USAGE[TX,TXMP] rxmpFree)
 txDrop[TX] = 1
 else if (CM_PORT_TXMP_USAGE[TX,TXMP] rxmpFree/2)
 txDrop[TX] = random(1)

 else if (SoftDropOnPrivate==1)
 // Soft drop based only on TX Private Watermark
 txDrop[TX] = random(1)

 // Count frame if dropped
 if (txDrop[TX])
 CM_PORT_TXMP_DROP_COUNT[TX]++

// Apply TX drop decisions
dmask[79:0] = dmask1[79:0] & ~txDrop[79:0]

331496-001 181

Frame Processing—FM5000/FM6000 Datasheet

In the previous pseudo-code, TXMP is mapped from CM_TXMP_MAP[QOS.ISL_PRI] and RXMP is
mapped from CM_RXMP_MAP[QOS.ISL_PRI]. The random(N) function returns an N-bit random value
uniformly distributed over 0 and 2N-1. All TXMP or ISL_PRI indexing above for the mirror overlay ports
76..79 actually use the MIR_MAP_PRI[M] setting for the mirror; so the usage or watermark index is
either zero or one depending on MIR_MAP_PRI[M].

5.18.6 Update Mirror Commands

Once the 80-bit augmented DMASK has been appropriately filtered due to the Tx drop watermarks, the
DMASK and mirror commands are updated to cancel any mirroring that is no longer applicable:

• Disable mirroring if any Rx watermark (HOG/RXMP/GLOBAL) is exceeded or if the shared memory
runs out of free segments.

• Disable mirroring if the destination mirror ports failed their drop watermark evaluations. This
applies to either the mirror-overlay or explicit port destinations, depending on the mirror
forwarding mode.

• Disable Tx-mirroring if the final DMASK does not include Tx mirrored port(s). The pseudo-code is:

Under all circumstances, if the final 80-bit augmented DMASK is zero, the frame is dropped and ingress
is not consume any shared memory resources.

foreach M in {0..3}

overlayEnabled = CM_MIRROR_DEST[M].OverlayEnabled
explicitInitiallyEnabled = (MIR_TX[M] | MIR_RX[M])
explicitEnabled = explicitInitiallyEnabled

// Cancel overlay mirroring if the virtual queue watermark is exceeded
// or if the global watermark is exceeded
if (txDrop[76+M] == 1 | overGlobal | outOfMemory)
 overlayEnabled = 0
 dmask[76+M] = 0

// Cancel explicit mirroring if the explicit mirror ports were dropped
(if dmask[75:0] & CM_MIRROR_DEST[M].ExplicitDestMask == 0)
 explicitEnabled = 0

if (!overlayEnabled && !explicitEnabled)
 MIR_RX[M] = 0
 MIR_TX[M] = 0

// Cancel TX mirroring if final DMASK doesn't include the TX mirrored set
if (MIR_TX[M] == 1 && (dmask & CM_TX_MIRROR_SRC[M]) == 0)
 MIR_TX[M] = 0

// Make final selection between RX or TX mirroring; TX has precedence
if (MIR_TX[M] == 1)
 MIR_RX[M] = 0

// Cancel mirroring if neither RX nor TX mirroring remains enabled
if (MIR_RX[M] == 0 && MIR_TX[M] == 0)
 dmask[76+M] = 0
 if (explicitInitiallyEnabled)
 dmask[75:0] = dmask[75:0] & !CM_MIRROR_DEST[M].ExplicitDestMask

FM5000/FM6000 Datasheet—Frame Processing

182 331496-001

5.18.7 Pause Frame Reception

The FM5000/FM6000 can be configured to respond to a variety of pause frames received from its link
partners. The handling of these frames in the FPP proceeds as follows:

1. The parser identifies the frame as one of two pause types:

• Port-based: One pause time is applied to all of the port's TCs.

• Class-based: A unique pause time is applied to each TC.

2. Parser microcode is expected to extract the relevant pause time values by writing them to the
FIELD16{A..I} channels. The parser marks frames for pause handling by setting the PAUSE_Frame
and PAUSE_CBPFrame action flag bits appropriately (bits 34 and 35). The FIELD16{A..I} channels
are unconditionally sent to the CM stage and are interpreted as pause control values based on the
final state of the pause flags.

3. All other stages of the frame processing pipeline should be configured to ignore and not forward
these pause frames, as identified by the PAUSE_Frame flag. Downstream stages that have control
over the action flags (L3AR and L2AR) might optionally override these flags to refine the parser's
initial classification decision.

4. Upon receiving the frame tail, fixed-function logic verifies that the pause frame was received
without error.

5. The pause times are applied to the port's egress scheduling policy. Periodically, based on the port's
configured speed, pause quanta are subtracted from these times. As long as the times remain
positive, transmission on the (port and TC) remain halted.

The pause-related flags have the following fixed-function interpretation:

• PAUSE_Frame — Indicates a pause frame, either port- or class-based. By setting this flag, the
parser activates the pause reception logic and the pause times parsed from the frame are applied to
the port's egress scheduling policy.

• PAUSE_CBPFrame — Controls whether a single pause time is taken from the value parsed into
FIELD16B and applied to all TCs, or whether per-TC pause times are applied from FIELD16{B..I} (8
16b), based on the class vector enable bits in FIELD16A[7:0], as detailed in the sections that
follow.

When the PAUSE_Frame flag is set, the FIELD16{A..I} channels are interpreted by the pause reception
logic in the following fixed-function manner, depending on the value of the PAUSE_CBPFrame flag:

Table 5-86 Pause Reception Logic

Channel PAUSE_CBPFrame == 0 PAUSE_CBPFrame == 1

FIELD16A[7:0] — Bit i causes the corresponding pause time value to be applied to pause class
i. The pause class i is mapped to the appropriate internal TC by the
CM_TC_PC_MAP registers.

FIELD16B Pause time applied to all TCs. Pause time applied to class 0, if enabled by FIELD16A[0].

FIELD16C — Pause time applied to class 1, if enabled by FIELD16A[1].

FIELD16D — Pause time applied to class 2, if enabled by FIELD16A[2].

FIELD16E — Pause time applied to class 3, if enabled by FIELD16A[3].

FIELD16F — Pause time applied to class 4, if enabled by FIELD16A[4].

FIELD16G — Pause time applied to class 5, if enabled by FIELD16A[5].

FIELD16H — Pause time applied to class 6, if enabled by FIELD16A[6].

FIELD16I — Pause time applied to class 7, if enabled by FIELD16A[7].

331496-001 183

Frame Processing—FM5000/FM6000 Datasheet

The parser is responsible for mapping the relevant fields from the received pause frames into these
channel fields, which are overloaded in this case for pause signaling.

For each port, each pause class is associated with one or more scheduling TCs by configuring the
PauseClass[0..11] fields in CM_TC_PC_MAP[0..75]. Assigning CM_TC_PC_MAP[port].PauseClass[tc] to
pc enables pause class pc to pause TC (tc) on port (port).

Each port's pause state and time counters are maintained by a pause sweeper process. The pause
sweeper services each TC on each port at a uniform sweeper_period as configured by
SWEEPER_CFG.PausePeriod. The actual real time a particular TC pauses in response to some
pause_time value received is determined by the following relations:

real_pause_time = pause_time * pause_quanta
pause_quanta = MultiplierMantissa * 2MultiplierExponent / Divisor * sweeper_period

The MultiplierMantissa, MultiplierExponent, and divisor parameters are all specified in the per-port
CM_PAUSE_CFG[0..75] registers (all prefixed by PauseQuanta).

Since the sweeper services all ports at the same rate, the pause time values received from the ingress
pause frames must be scaled to adjust for each port's different speed (pause quanta). Table 5-87 lists
the multiplier and divisor settings for the common port speeds supported by the FM5000/FM6000,
assuming the default sweeper_period of 96 ns.

Relative to each port's unit of pause quanta, the resolution of the FM5000/FM6000's response to pause
time values diminishes with increasing port speed. The absolute unit of response is sweeper_period, or
96 ns. This represents ~8 pause quanta for a 40 Gb/s port, or ~2 for a 10 Gb/s port.

5.18.8 Pause Frame Generation

The FM5000/FM6000 can be configured to generate pause frames in response to changes in switch
memory use. One set of pause-on/off watermarks is defined per (Rx and RXMP) queue and generate
pause frames in based on the queue's memory use. Another set of pause-on/off watermarks is defined
per RXMP and generates pause frames in based on total shared RXMP memory use. The latter shared
RXMP watermarks can be enabled or disabled on a per (Rx and RXMP) queue basis. Together, these
pause watermarks provide support for three pause-based flow-control models that might be selected
per (Rx and RXMP) queue:

• Per-Queue Pause — In this model, the per-queue watermarks are used to rigidly partition the
RXMP memory among all ports. A queue is paused each time its usage exceeds its allowance.

• Shared RXMP Pause — Under this model, a port is paused once the shared RXMP level becomes
too large. However, each queue can be granted a private memory allowance and is protected from
pause as long as it does not exceed that allowance.

Table 5-87 Multiplier and Divisor Settings

Port Speed Pause Quanta MultiplierMantissa MultiplierExponent Divisor

40 Gb/s 12.8 ns 1 1 15

10 Gb/s 51.2 ns 1 3 15

1 Gb/s 512 ns 1 4 3

100 Mb/s 5.12 µs 5 5 3

10 Mb/s 51.2 µs 26 6 3

FM5000/FM6000 Datasheet—Frame Processing

184 331496-001

• No Pause — By disabling both the per-queue and the shared pause mechanisms, pause can be
completely disabled for a given queue. Instead, drop watermarks and/or congestion notification
mechanisms are used to manage congestion experienced by the queue.

Both sets of watermarks are defined over 160-byte segment and frame use levels. The register
definitions of these watermarks are listed in Table 5-88.

When both of these pause-ON watermarks are enabled and exceeded, the port (or queue) enters a
paused state and a notification is issued to the scheduler to generate a PAUSE-ON frame. The type of
pause frame to generate (port-based or class-based) is configured in a per-port manner by the
CM_PAUSE_CFG[port].PauseType parameter. At that time, a pause_resend_count value associated with
that port is initialized to CM_PAUSE_CFG[port].PauseResendInterval. Thereafter, as long as both pause-
OFF watermarks remain exceeded, the port (or queue) remains in the paused state and the
pause_resend_count is decremented. Each time the count drops to zero, another PAUSE-ON frame is
generated and pause_resend_count is reset to PauseResendInterval.

If at any time the relevant memory levels drop below any of a port's (or queue's) pause-OFF
watermarks, a notification is issued to the scheduler to generate a PAUSE-OFF frame. A PAUSE-OFF
frame (either port-based or class-based) has the same format as the PAUSE-ON frame, but has all
pause times set to zero.

For class-based pause, the pause classes marked on generated pause frames are mapped from RXMP
on a per-port basis. The mapping semantics, defined by the CM_PC_RXMP_MAP registers, enables each
pause class to represent the status of exactly zero or one RXMPs. If a pause class has no RXMP mapped
to it, it always remains in the pause-OFF state. Since the FM5000/FM6000 supports 12 RXMPs but only
8 pause classes, not all RXMPs can be used to control the pause status of a particular port.

Each port's CM_PAUSE_CFG[port].PauseType parameter controls not only the format of pause frames
generated, but the precise timing of when its PAUSE frames are generated. For port-based pause
(PauseType=0b), any port in a paused state continues resending PAUSE-ON frames as long as any of its
RXMP queues exceed their corresponding Pause-OFF watermarks. For class-based pause
(PauseType=1b), pause states are maintained individually per RXMP (such as per queue or class). Thus,
a PAUSE-OFF frame can be generated for one RXMP queue while another RXMP' queue belonging to the
same port still exceeds a pause-OFF watermark.

Table 5-88 Pause Watermarks

Register Description Units

CM_PORT_RXMP_PAUSE_ON_WM[0..75,0..11]
CM_PORT_RXMP_PAUSE_OFF_WM[0..75,0..11]

Defines per-(Rx and RXMP) pause ON and pause
OFF watermarks.
If either frame or segment ON-watermark is
exceeded, PAUSE-ON frame generation is enabled.
Only after both frame and segment OFF-watermarks
are satisfied the PAUSE-ON generation cease and a
PAUSE-OFF frame are generated. These watermarks
are indexed by (RX,RXMP) and compared against
CM_PORT_RXMP_USAGE.

Per-(Rx and RXMP)
frames and 160-byte
segments.

CM_PAUSE_CFG[0..75].SharedPauseEnable[0..11] Enables or disables the shared RXMP pause
mechanism for each queue.
By default, the shared pause watermarks are
disabled for all queues.

CM_SHARED_RXMP_PAUSE_ON_WM[0..11]
CM_SHARED_RXMP_PAUSE_OFF_WM[0..11]

Defines per-RXMP pause-ON and pause-OFF
watermarks compared against the corresponding
CM_SHARED_RXMP_USAGE level.
Determine a pause status for each RXMP, which
might result in a pause frame being generated on an
(Rx and RXMP) queue depending on the queue's
per-(Rx and RXMP) watermarks and
SharedPauseEnable configuration.

Per-RXMP frames and
10-byte segments.

331496-001 185

Frame Processing—FM5000/FM6000 Datasheet

The following pseudo-code specifies the pause-related watermark evaluations and how these
evaluations result in pause frame generation:

Upon receiving PAUSE-ON or PAUSE-OFF frame generation notices, the scheduler transmits the
requested pause frame at the next available opportunity. Fundamentally, this might introduce a delay of
up to one MTU due to pending frame transmission on the egress port.

The format of the pause frames generated based on the PAUSE-ON/OFF events is controlled by egress
modification microcode. The egress modification slices receive the following information from which
they generate the appropriate pause frame:

• PAUSE — (TCAM key) Indicates that a pause frame needs generated.

• PAUSE_Tag — (TCAM key) 2-bit format tag mapped by Tx port number from
MOD_TX_PORT_TAG[0..75]. One of these tag bits is expected to distinguish port- versus class-
based pause format, redundantly configured as in CM_PORT_CFG[0..75].PauseType.

• PAUSE_CBP_VEC — (TCAM key and data field source) 8-bit vector identifying the pause classes
with non-zero pause times (such as pause-ON state per pause class). For port-based pause frames
(PAUSE_CBP=0b), the vector is either be all ones (indicating pause-ON) or all zeros (indicating
pause-OFF). Corresponds to the new_pc_state variable in the previous pseudo-code.

// Evaluated periodically as memory levels change:
foreach RX in {0..75} {
 // Determine new pause state
 new_pause_state[0..7] = pause_state[RX,0..7]
 foreach RXMP in {0..11} {
 if (CM_PORT_RXMP_USAGE[RX,RXMP] ≥ CM_PORT_RXMP_PAUSE_ON_WM[RX,RXMP] &&
 (CM_SHARED_RXMP_USAGE[RXMP] ≥ CM_SHARED_RXMP_PAUSE_ON_WM[RXMP] ||
 !SharedPauseEnable[RX,RXMP])) {
 new_pause_state[RXMP] = 1
 }
 if (CM_PORT_RXMP_USAGE[RX,RXMP] < CM_PORT_RXMP_PAUSE_OFF_WM[RX,RXMP] ||
 (CM_SHARED_RXMP_USAGE[RXMP] < CM_SHARED_RXMP_PAUSE_OFF_WM[RX,RXMP]) &&
 SharedPauseEnable[RX,RXMP]) {
 new_pause_state[RXMP] = 0
 }
}
// Map RXMP to PC (pause class)
foreach PC in {0..7} {
 RXMP = CM_PAUSE_PC_RXMP_MAP[RX].RXMP[PC]
 if (RXMP < 12) new_pc_state[PC] = new_pause_state[RXMP]
 else new_pc_state[PC] = 0
}
// Determine whether PAUSE-ON or PAUSE-OFF frame is to be generated
if (// Port-based PAUSE:
 CM_PAUSE_CFG[RX].PauseType == 0 &&
 (pc_state[RX,0..7] == 0x00 && new_pc_state[0..7] != 0x00 ||
 pc_state[RX,0..7] != 0x00 && new_pc_state[0..7] == 0x00) ||
 // Class-based PAUSE:
 CM_PAUSE_CFG[RX].PauseType == 1 &&
 pc_state[RX,0..7] != new_pc_state[0..7]) {
 SendPauseFrame(RX, new_pc_state[0..7])
 }
 pause_state[RX,0..11] = new_pause_state[0..11]
 pc_state[RX,0..7] = new_pc_state[0..7]
}

FM5000/FM6000 Datasheet—Frame Processing

186 331496-001

• PAUSE_TIME{1,2} — (Data field source) 16-bit pause times available for use in the generated
pause frame. Mapped from the destination port number by MOD_TX_PAUSE_QUANTA[port].
Microcode selects which of the two pause times to map to which pause classes.

For each pause frame scheduled, egress modification receives a 16-byte frame fragment consisting of
all zeros. Microcode is responsible for using the previous information, as provided by CM, to format the
pause frame appropriately. In particular, this involves padding the frame length to 64 bytes.

The pause frames generated by this mechanism are not included in any CM memory usage counters,
nor do they factor into any bandwidth accounting for DRR or egress rate limiter scheduling.

5.18.9 Pause Pacing

In addition to watermark-driven pause frame generation, the FM5000/FM6000 supports periodic pause
frame generation based on a configured rate per (port, pause class) pair. This pause pacing support is
controlled by the following register fields:

• CM_PAUSE_CFG[PORT].PausePacingMask — 8-bit mask enabling pause pacing on each pause
class.

• CM_PAUSE_PACING_CFG[PORT,PC].PausePacingTime — Specifies the time that the pause
class remains un-paused (permitted to transmit) every PauseResendInterval.

When pause pacing is enabled on at least one pause class of a given port, a pair of PAUSE-ON/PAUSE-
OFF frames are generated periodically every PauseResendInterval. At the beginning of each resend
interval, a PAUSE-ON frame is generated pausing the classes whose bits are one in PausePacingMask.
Each class remains paused until the resend counter drops below its PausePacingTime, at which point a
PAUSE-OFF frame is generated (assuming the class does not need to remain paused due to exceeding
its pause memory watermarks). After the resend interval time has fully expired, another PAUSE-ON
frame is generated and the cycle repeats.

Pause pacing and watermark-driven pause can be enabled concurrently on the same port and pause
class. However, any time the port spends paused due to memory watermarks is not explicitly credited
against the port's pause pacing time. Thus, the configured PausePacingTime represents the maximum
amount of time that the link partner is permitted to send on the pause class.

From the perspective of egress modification, the pause frames generated for pause pacing are
indistinguishable from those generated due to memory watermark evaluations.

5.18.10 Congestion Notification Frame Sampling

The FM5000/FM6000 provides a mechanism for periodic sampling of frames based on the number of
segments enqueued to a particular (Tx and TXMP) queue. A segment counter is maintained per queue,
incremented on every ingress 480-byte segment belonging to a frame enqueued to the (Tx and TXMP)
destination. When the counter exceeds some SampleThreshold number of segments, the threshold
amount is subtracted from the segment count and the next frame enqueued are sampled.

331496-001 187

Frame Processing—FM5000/FM6000 Datasheet

In the absence of discrete frame length effects, an ideal sampler samples a frame each time
SampleCount exactly equals SampleThreshold. For such an ideal sampler, SampleCount is always be
reset to zero each time a frame is sampled. However, uncertainty due to discrete frame lengths as well
as evaluation timing uncertainties are present in the sampler implementation. These uncertainties
motivate the SampleCount - SampleThreshold subtraction to keep the long-term sample rate accurate.

The sampler implementation cannot sample frames faster than one per 2 µs (500 KHz). Under
conditions of absolute maximum congestion (sustained N:1 traffic), a sample's overshoot amount
(SampleCount - SampleThreshold) can be as large as ~168 KB. This number represents a fundamental
minimum bound on SampleThreshold to guarantee avoiding sample rate saturation. Smaller values of
SampleThreshold are supported but might result in a slower than expected sample rate and/or
undersampling under conditions of extremely heavy congestion. In the previous pseudo-code, this
occurs when SampleCount saturates at SampleThreshold due to the minimum evaluation.

The SampleThreshold amount is updated dynamically after each frame is sampled based on the per-
queue configuration of CM_PORT_TXMP_SAMPLE_PERIOD. The configuration comprises a deterministic
16-bit SegmentPeriod parameter and a random 4-bit SegmentJitter parameter:

SampleThresholdnext = SamplePeriod + Random % 2
SegmentJitter

SegmentJitter selects the number of random bits to add to the deterministic sample period. Any
number of bits between 0 to 12 bits are supported. The long-term average sample period is
SamplePeriod + 2 SegmentJitter-1.

Note: All quantities involved in the calculation of the sample threshold are in units of 480-byte
segments.

Frames sampled in this manner serve as a measure of congestion experienced on each queue, suitable
for use by congestion notification algorithms such as IEEE 802.1Qau Quantized Congestion Notification.
With a constant SegmentPeriod, frames are sampled at a rate proportional to the level of congestion.

Frames are sampled by using one of the FM5000/FM6000's four mirrors. The mirror number, command,
and map-priority properties are configured statically for each TXMP in the CM_SAMPLING_MIRROR_CFG
registers. If a frame is identified for sampling, the corresponding mirror command is applied to the
frame using the specified mirror number.

The use of FM5000/FM6000's mirroring mechanism enables sampled frames to be forwarded to a single
destination port, configured statically per TXMP. It is expected that this static sampling destination
corresponds to an off-chip companion device responsible for:

1. Reformatting the sampled frame in accordance with the relevant congestion notification protocol.

2. Returning the frame back to FM5000/FM6000 so it can be forwarded to the original sender.

A frame is be sampled if its CN_SampleEligible flag (ACTION_FLAGS bit 30) is set to 1b. The
CN_SampleEligible flag has no effect on the counting of frame segments. The (Tx and TXMP) segment
counters include all segments enqueued, regardless of the status of the frames’ CN_SampleEligible

On each frame head handled by the sampler:
 If (SampleCount ≥ SampleThreshold)
 Sample Frame
 SampleCount = min(SampleCount - SampleThreshold, SampleThreshold)
 Update SampleThreshold

At the end of each ingress 480-byte frame segment:
 SampleCount++

FM5000/FM6000 Datasheet—Frame Processing

188 331496-001

flags. Frames dropped due to any of the Rx watermarks (GLOBAL, RX_HOG, or RX_SHARED) or due to
the out-of-memory protection mechanism are not eligible for sampling. Frames dropped for any reason
do not count towards a queue's segment sample count.

For a given ingress frame, only one (Tx and TXMP) segment counter is evaluated. If a frame with
CN_SampleEligible set to 1b it has more than one bit of its DMASK set to 1b, the segment counter
belonging to the lowest-numbered Tx port with DMASK[TX]=1b is evaluated. Normally, it is expected
that all such multicast/broadcast/flooded frames have CN_SampleEligible set to 0b.

When a frame is sampled, MOD_DATA.W8C is set to the source Tx port number if L2AR selects this mux
case. This value is referenced as CN_SRC_TX in MOD_DATA outputs. If L2AR selects this mux case and
the frame is not sampled, MOD_DATA.W8C is set to 0xFF.

The sampling period is configured in the CM_PORT_TXMP_SAMPLING_PERIOD registers, indexed by
TX_QIDX.

5.18.11 Interrupt Notification

A pair of interrupt bits, with associated min/max watermarks, are defined per (Tx and TXMP) queue as
an accelerated mechanism for notifying off-chip devices of congestion. Each time a queue's memory
use exceeds its maximum watermark, the queue’s above the interrupt bit is set. Likewise, each time a
queue's memory use drops below its minimum watermark, the below interrupt bit is set. These
watermarks are configured per TX_QIDX in the CM_PORT_TXMP_IP_WM registers.

This interrupt mechanism is supported over all Tx queues, including the virtual mirror ports. The
interrupt bits are exposed in the CM_PORT_TXMP_{ABOVE,BELOW}_IP registers as 80-bit pending
vectors arrayed per-TXMP. A corresponding set of CM_PORT_TXMP_{ABOVE,BELOW}_IM mask
registers are also defined. Each time any of these interrupt pending bits is set 1b and is not masked,
the interrupt is propagated to the CM_INTERRUPT_DETECT and GLOBAL_INTERRUPT_DETECT
registers.

5.19 Packet Replication

Replicating a frame to many destinations is a fundamental requirement for any Ethernet switch. There
are three operations needed:

• Replicating the frame to multiple ports

• Replicating the frame for mirroring purpose

• Replicating the frame multiple times on the same port across different VLANs

Finally, a fourth operation is added to this unit.

• Delete frames that have exceeded their time-out values

These requirements are implemented in steps:

1. Frames first go through the FPP for a forwarding decision.

2. Frames are temporarily queued into a RXQ per TC waiting for FPP forwarding decision.

3. Frames are then queued into transmit queues waiting for transmission.

4. Frames are scheduled for transmission and are dropped if too old.

331496-001 189

Frame Processing—FM5000/FM6000 Datasheet

5. Frames are sent to the egress modifier unit.

6. Frames are removed from transmit queue when the last copy needed on this port was sent.

7. Segments are returned to the free pool when frames are no longer in any transmit queue.

Figure 5-44 shows the process.

The frame's payload is stored only once in the main memory, and only the pointer to the frame is
actually replicated to the different queues. Mirrored frames are queued as well, so a single given port
might have up to five copies of the same frame (original and four mirrors) in its transmit queue.

For VLAN replication, from a queue usage perspective, frames are replicated across different VLANs on
the same port (as required for some IP multicast routing scenarios). They are queued only once even if
replication is required multiple times. From a scheduling perspective, each replicated frame is treated
like an individual frame. For example, shaping and prioritization applies to each frame that is replicated
and the replicated frames might be interleaved with frames from other higher priority queues.

5.19.1 Frame Replication

Frames freshly received are temporarily placed into a receive queue with a time tag attached. The
frame remains in the receive queue until forwarding instructions are received from the FPP.

Next, the MCAST_MID unit uses the destination mask and the mirroring commands received as part of
the forwarding instructions to replicate the ingress frame pointer to the proper transmit queues. It
executes the following replication procedure:

1. Scan through all ports in the destination mask. For every bit set, scan through the four mirror
commands and, for each active mirror command with overlay disabled, check if the explicit
destination mask for this mirror is set for this port. If this is the case, enqueue a mirror frame for
this mirror. If no explicit mirror was found for this port, enqueue a normal copy.

2. Scan through the four mirror commands for this packet and, for each active mirror command with
overlay enabled, place a copy of the frame into the overlay transmit port allocated for this mirror.

Also, when the frame is queued into a transmit queue, a VLAN list pointer is attached to the frame to
inform the Frame VLAN replication unit (MCAST_POST) that a replication is possibly needed. This is true
for both un-mirrored and Tx mirror copies, ensuring that the mirrored frames contain all copies as with
the normal frames. For Rx mirror copies, the VLAN pointer list is null and no VLAN replication is done.

Figure 5-44 Packet Replication

FM5000/FM6000 Datasheet—Frame Processing

190 331496-001

Table 5-89 lists the registers used in this case.

5.19.2 Frame VLAN Replication

Some applications, like L3 multicast and RBridge, require packets to be replicated across multiple
VLANs for the same port. This is accomplished by this unit using the MCAST_VLAN_TABLE. The table is
indexed from information retrieved from the MCAST_DEST_TABLE.

There are two masks involved in the process:

• The actual destination mask supplied by the FPP

• The destination mask included in the MCAST_DEST_TABLE

The actual destination mask supplied by the FPP is used to determine on which port a packet is
transmitted. The destination mask included in the MCAST_DEST_TABLE is used to determine the
number of VLAN lists in the MCAST_VLAN_TABLE and, thus derive an actual index for the head of the
VLAN list for a given destination port.

If the actual destination mask is one for a given port and the MCAST_DEST_TABLE mask is zero for the
same port, it means that there isn't any VLAN replication required for this port and the native copy gets
sent (see Figure 5-45).

Table 5-89 Packet Replication Register Usage

Register Field Width Function

MCAST_MIRROR_CFG[0..3] ExplicitDestMask 76 Defines the explicit destination mask for non-overlay mirrors.

OverlayEnabled 1 Defines if this is an overlay mirror or not.

OverlayDestPort 7 Defines the output port for an overlay mirror.

OverlayTC 4 Defines the new TCs if requested for the overlay mirror.

CanonicalSrcPort 7 Defines the port that is used as a reference for TXmirrors.

MCAST_DEST_TABLE DestMask 76 Defines if there is a VLAN replication list for each port.
The index for this table is supplied as part of the forwarding
information received from the FPP.

MulticastIndex 16 Defines the base index in the VLAN multicast table.

331496-001 191

Frame Processing—FM5000/FM6000 Datasheet

The entries in the MCAST_VLAN_TABLE can be of two types:

• Pointer — Points to a new location for the rest of the VLAN list.

• VLAN — VLAN entries which include the following fields:

— VID — A 12-bit VLAN ID.

— LAST — Indicates if this is the last item of the list.

— L2_TAG — A 1-bit tag involved in the loopback suppression evaluation.

— MCAST_TAG — A 1-bit tag available for microcode interpretation in the modify slice TCAM key

The actual format of each entry is:

The MCAST_POST also includes a generic multicast loopback suppress. This avoids transmitting a frame
back to the port it came from if the VLAN is unchanged.

The loopback suppress requires the following information:

• A 1-bit L2_Tag attached to the frame supplied by FPP

• A 16-bit source GloRT attached to the frame

Figure 5-45 VLAN Packet Replication Indexing

t=0 L T M VID

15 1413 1211 10

t=1 0 Pointer

MCAST_TAG
L2_TAG
last (1=yes, 0=no)

FM5000/FM6000 Datasheet—Frame Processing

192 331496-001

• A 1-bit L2_Tag supplied with the VLAN entry

• A register to define the canonical GloRT of the egress port

• A single bit attached to the frame identifying the egress VID to use (VID1 or VID2).

The goal of loopback suppression is to compare the VID/TAG of the entry to the VID/TAG supplied with
the frame, and if they match, suppress sending the frame to the canonical port on which the frame was
received. The expressions are:

If the frame is forwarded, the frame VID (L2_VID1 or L2_VID2 depending on L2_VID_SELECT) gets
updated with the VID recovered from the MCAST_VLAN_TABLE. If the VID ended up the same, either
because the new VID is the same or because the entire MCAST_VLAN_TABLE was skipped, the flag
L2_VID_EQUAL is set.

5.20 Scheduler

The scheduler is responsible for the following tasks:

• Manage the free lists.

• Allocate segments from the free pool to ports as needed.

• Receive data segments from ports and placing them in a receive queue.

• Forward frame header data to frame handler.

• Receive the forwarding decision from the frame processing pipeline.

• Dequeue frames from the received queue and enqueue them into as many transmit queues as
defined by the FPP.

• Apply the egress scheduling algorithm to schedule frames.

• Free frames as they are transmitted.

• Return segments to the free pool once all copies of the frame have been transmitted or deleted.

Each FM5000/FM6000 egress port supports up to 12 Class of Service (CoS) queues, or TCs, that
provide a variety of programmable scheduling and shaping options. As described earlier, the TC is
mapped from the final ISL_PRI priority field at the output of the L2AR stage. The TCs are further
partitioned into collections of various scheduling groups, on which the egress scheduling algorithm
operates. The egress scheduling algorithm supports the following features:

glort-mask = MCAST_LOOPBACK_SUPPRESS[egress_port].mask;
csglortX = MCAST_LOOPBACK_SUPPRESS[egress_port].glort;
csglortF = frame.sglort & glort-mask;
vidX = MCAST_VLAN_TABLE[ptr].VID;
vidF = (frame.l2_vid_select) ? frame.L2_VID2 : frame.L2_VID1
tagX = MCAST_VLAN_TABLE[ptr].L2_TAG;
tagF = frame.L2_TAG
drop = (csglortX == csglortF) & (vidX == vidF) & (tagX == tagF)

331496-001 193

Frame Processing—FM5000/FM6000 Datasheet

Strict Priority Scheduling

• Strict-high classes are scheduled before all frames of lower priority.

• Strict-low classes are scheduled only if all higher classes have no frames to send.

• Consecutive queues can be assigned to the same strict priority group.

Deficit Round-Robin (DRR) Scheduling

• Groups of sequential traffic classes share a guaranteed minimum bandwidth allocation.

• Lower priority groups are scheduled only if all higher priority groups either have no frames to
send or have exceeded their minimum bandwidth guarantees.

• Equal priority groups are scheduled in round-robin order until a group has no frames to send or
has exceeded its minimum bandwidth guarantee.

• Within a DRR scheduling group, higher-priority classes are strictly preferred over lower-priority
classes.

Traffic Shaping

• Groups of TCs can be assigned a maximum egress bandwidth limit.

• Queuing delay, not discard, is used to enforce the bandwidth limits.

• Consecutive TCs can be assigned to the same shaping group.

Figure 5-46 shows an example implementation of egress queuing and shaping. This is intended as a
guide for understanding the scheduling algorithm, which is described later in this section.

Figure 5-46 Example Egress Scheduler Configuration

FM5000/FM6000 Datasheet—Frame Processing

194 331496-001

5.20.1 Group Eligibility

The scheduler determines which scheduling groups are eligible for transmission by considering the
pause status of each class and the current bandwidth consumption of each group. More precisely, a
group is eligible if both of the following conditions hold:

1. It contains at least one class that is not paused, and that class has at least one frame queued for
transmission.

2. The group's bandwidth use is under its shaping limit. For example, the shaping group g that
contains the scheduling group i has Bg < UBg.

The pause state of a class is controlled by receiving pause frames from the port's link partner. The
FM5000/FM6000 supports two types of pause frames: standard IEEE 802.3 pause and IEEE class-based
pause frames. Receiving a standard pause frame causes all of the port's TCs to become ineligible for a
period of time specified by the frame's pause value. If the pause time is zero, all paused TCs
immediately become un-paused. Class-based pause frames have similar semantics, except a pause
frame can apply to a specific set of TCs, and each class is assigned its own pause time.

The second eligibility condition represents an internally generated source of egress queue pausing.
Each shaping group's cumulative bandwidth use is tracked over a configured time window. If the group
consumes too much of the port's bandwidth, it exhausts its bandwidth credit and the constituent
scheduling groups become ineligible. The shaping function is implemented using a leaky bucket
algorithm, which is described later in this section.

5.20.2 Class Selection

Given a non-empty set of eligible groups as defined in the previous section, the scheduler selects a
single group from which the next frame is scheduled. A Deficit Counter (DC) is used within each DRR
group. A value Q is used, which is also known as DRR weight. it is a measure of the proportion of a
port's bandwidth allocated to a given DRR group. A strict priority group can be considered similar to a
DRR group, but with an infinite DC value. Such high-numbered (high priority) classes are said to have
strict-high priority and low-numbered classes have strict-low priority. Following, the subscript i
represents a specific DRR group.

1. Any DRR groups in the eligibility set with DCi ≤ 0 are pruned from the eligibility set as long as there
is at least one group in the eligibility set with DCi > 0.

2. If all DRR groups in the eligibility set have DCi ≤ 0, then Q i is added to each DCi, marking the
beginning of a new DRR scheduling round. The LastDRRGroup state is reset to -1.

3. Among all eligible groups, the scheduler selects the group that matches the earliest of the following
rules. When multiple groups match, the group that is numerically larger is chosen.

a. The group has a strict-high prioritization.
b. LastDRRGroup, unless the value is -1.
c. A group belonging to a different and numerically higher priority set than LastDRRGroup, or

anyDRR group if LastDRRGroup is -1.
d. A DRR group i belonging to the same priority set as LastDRRGroup, with i < LastDRRGroup.
e. A DRR group i belonging to the same priority set as LastDRRGroup, with i > LastDRRGroup.
f. Any group in the eligibility set.

4. If the selected group is a DRR group, LastDRRGroup is set to that group number. If is not,
LastDRRGroup is set to -1.

331496-001 195

Frame Processing—FM5000/FM6000 Datasheet

The next scheduled frame is then chosen from the class with the highest inner priority that satisfies all
of the following conditions:

• Belongs to the selected scheduling group.

• Has at least one frame to be scheduled.

• Is not paused.

Each TC has one bit of explicitly configured inner priority, plus lower-order priority implied from its TC
number. If InnerPriority(c1) > InnerPriority(c2), then c1 is always chosen over c2 if it satisfies the
previous conditions. If InnerPriority(c1) = InnerPriority(c2), the higher-numbered class is chosen.

5.20.3 Algorithm Notes

The FM5000/FM6000 scheduling algorithm, as previously described, has the following characteristics:

• Once a particular DRR group is chosen for scheduling, the group continues to be serviced until one
of the following conditions arises:

— Its deficit count becomes zero or negative.

— It becomes ineligible (due to emptying its queue or due to pause).

— A strict-high priority group becomes eligible.

— A strict-low priority group is only scheduled if none of the other groups, including DRR groups,
are eligible. A frame being scheduled from such a group implies that all DRR groups have
maximum deficit counts and are waiting for eligible frames to send.

• When the DRR scheduling switches to a different priority set, the round-robin pointer state within
the prior priority set is lost. Thus, the (non-strict) group prioritization only influences the iteration
order through the DRR groups within a given scheduling round and it does not provide independent
DRR schedulers. This feature is intended to reduce the scheduling latency of particular DRR groups
relative to others. The latency preference only applies when the lower-priority groups are not
perennially backlogged.

• The inner priority and class number represent a nested strict prioritization of classes belonging to
the same DRR group. Two classes mapped to the same scheduling group is guaranteed a minimum
egress bandwidth, represented by the group's Qi (in the absence of strict-high priority frames).
However, the class with the higher inner priority starves the lower-priority class as long as it
remains eligible. In most applications, this nested strict priority behavior is not needed, and the
scheduling groups can be left at their default one-class-per-group configuration.

• Configuring two classes to have strict priority gives the same scheduling behavior in all of the
following scenarios:

— Both classes belong to the same scheduling group.

— Each class belongs to its own unique scheduling group and priority set.

— Each class belongs to its own scheduling group, but share the same priority set.

FM5000/FM6000 Datasheet—Frame Processing

196 331496-001

5.20.4 Deficit Round-Robin

The terms Deficit Weighted Round-Robin and Deficit Round-Robin are both widely used and reference
the same scheduling algorithm. Intel uses the latter term to be consistent with the original publication
of this algorithm (by M. Shreedhar and G. Varghese in 1995.)

The original specification of the DRR algorithm assumed store-and-forward switching: the length of the
current frame determines whether the next frame in the same queue can be transmitted or not.
However, in the FM5000/FM6000 as in any other high-performance cut-through switch, the next
scheduling decision must be made in a speculative manner, before the length of the previously
scheduled frame is known. The DRR implementation therefore must delay its decrement of the
scheduled frame's deficit count relative to the standard algorithm. Intel refers to this variant of the DRR
algorithm as Delayed Deficit Round-Robin (DDRR).

Given a set of per-queue DRR quanta Q i (all greater than or equal to 2*MTU), the guaranteed
minimum bandwidth of a particular group, as a proportion of the port's total egress bandwidth, can be
expressed:

If any Qi is less than 2*MTU, the minimum bandwidth allotted to each group becomes dependent on the
actual frames queued.

Note: The presence of strict-high classes in the scheduler configuration also disturb the DRR
groups' lower bound bandwidth guarantees.

5.20.5 Bandwidth Shaping

In this section, the shaping function has been described as a simple comparison between a measured
bandwidth per shaping group, Bg, and some configured upper-bound rate limit, UBg. Groups remain
eligible for scheduling as long as their bandwidth remains lower than the bound: Bg < UBg. This is a
simplification of the actual bandwidth shaping algorithm. The actual shaping function is implemented
using a token bucket algorithm, which has the following characteristics:

• Every unit of time, 1/UBg bytes of credit (tokens) are added to the bucket.

• Credit is subtracted from the bucket's token count as bytes belonging to the shaping group egress
the device.

• When the token count goes to less than or equal to zero, all associated scheduling groups become
ineligible.

• The capacity of the bucket determines the maximum amount of burst that is permitted in the
shaping group's egress bandwidth profile. Credit stops accumulating in the token bucket once this
capacity is reached.

In the FM5000/FM6000, the token bucket parameters have the definitions listed in Table 5-90.

331496-001 197

Frame Processing—FM5000/FM6000 Datasheet

The UBg parameter previously used as a proportion of a port's egress bandwidth, is r/(T*R), where R is
the total bandwidth of the egress port (nominally 1.25 bytes/ns for a 10 Gb/s port). With these
parameters, the Maximum Burst (MB) a shaping group can transmit (starting from an idle, fully
credited, state) is:

This burst occurs over MB/R ns. The additional MTU term is seen in the worst case because scheduling
decisions are made without regard for the lengths of frames. A maximum length frame can be
scheduled when a group's token count is at its minimum positive value (one), causing the count to go
negative by up to MTU equals one. This is a requirement of any cut-through switch. The non-ideal
condition only occurs on short time scales; the scheduler guarantees that the UBg bound is satisfied on
time scales larger than 2 times MB/R.

As in the DRR implementation, an inter-frame gap plus preamble byte count penalty (of 20 bytes) is
subtracted from the credit count at the end of each transmitted frame. This correction properly models
the higher bandwidth cost of scheduling small frames versus large frames. These penalty bytes should
be considered when interpreting the maximum burst byte count calculation described previously in this
section.

The bandwidth shaping mechanism supports egress rate limits over a range of 635 KB/s to 5+ GB/s
with capacity values of 64 bytes to 4 MB.

5.20.6 Frame Timeout

The scheduler implements a mechanism for discarding frames that have resided in frame memory for
too long a time. Upon ingress, each frame is assigned a global timestamp value that increases at a rate
configured by the FRAME_TIME_OUT register. The egress scheduling policy takes the timestamp at the
head of each Tx queue into consideration when scheduling frames. For each queue, if the difference
between the head frame's timestamp and the current global timestamp exceeds the frame timeout
period, the frame is discarded.

Frame timeouts are serviced with strict-high priority relative to all normal frame scheduling policies. In
particular, a port's pause and bandwidth shaping status has no effect on the servicing of frame
timeouts. If multiple traffic classes on a given port contain out-of-time frames, the higher-numbered
TCs are serviced with strictly higher priority than the lower-numbered TCs.

Each frame segment discarded in this manner costs a minimum-size frame scheduling time slot on the
affected port, resulting in a ~67 ns * cell (frame_length/160) loss of egress bandwidth on that port. In
the corner case that the entire frame memory is filled to its maximum segment capacity with frames
enqueued to a single paused port, the scheduler requires 3.3 ms to drain the memory. Therefore, to
guarantee reliable timeout, the timeout period should not be configured less than this value.

Table 5-90 Scheduler Token Bucket Parameters

Symbol Mnemonic Definition

T Time Unit The period of the pause sweeper process that maintains the bandwidth shaping state. Nominally
96 ns.

C Capacity Token bucket capacity, specified in units of 64 bytes.

r Rate Number of bytes credited every sweeper period T, in units of 1/16 bytes.

FM5000/FM6000 Datasheet—Frame Processing

198 331496-001

At the high end, the timeout period is limited only by the bit width of the FRAME_TIME_OUT register.
Thus, any value up to the maximum of 72 minutes is supported.

The frame timeout mechanism does not guarantee a high degree of precision in the timeout period. In
the worst case, the actual timeout period experienced by a given frame could be ±50% the configured
value.

Stalling on the EBI frame reception interface might, under some circumstances, inhibit the timing out of
frames enqueued for the EBI port. To avoid lost frame timeouts, the EBI interface must dequeue frames
from the switch no slower than one frame every half of the configured frame timeout period
(specifically, one frame per FRAME_TIME_OUT.timeOutMult * 1024 * PCIE_REFCLK_PERIOD).

5.20.7 Configuration Registers

Table 5-91 lists the configuration registers relevant for egress scheduling.

Table 5-91 Scheduler Configuration Registers

Register Name Description

CM_TC_MAP Maps switch priority to TC (an arbitrary 16-to-12 mapping table).
Note: This is global for all ports.

ESCHED_DRR_CFG
ESCHED_CFG_1
ESCHED_CFG_2

Defines the scheduling group and priority set boundaries as bit vectors over TCs.
Also specifies the per-class strict priority attribute. These mappings can be configured uniquely per-port.
Note: These two registers are intentionally redundant and must be configured identically for the

scheduling to operate correctly.

ESCHED_CFG_3 Specifies one bit of inner priority per TC.

CM_BSG_MAP Specifies per-port mappings from TC to shaping group.

ESCHED_DRR_Q Defines the DRR quantum per group per port.
Additionally, in ESCHED_DRR_CFG, each TC can be configured to interpret all frames as having zero length,
providing the behavior of an infinite quantum value.

ERL_CFG Defines the egress rate limiter (bandwidth shaping) parameters per shaping group, per port.

ERL_USAGE Stores the current token bucket credit count per shaping group.

FRAME_TIME_OUT Specifies the global frame timeout period.

331496-001 199

Frame Processing—FM5000/FM6000 Datasheet

5.20.8 Definition of Terms

The following is a list of terms used in this section.

Table 5-92 Scheduler Definition of Terms

Quantity Notation Definition

Traffic Class c Identifies one of 12 egress queues from which the frame is scheduled.
Also known as fabric priority and scheduler priority. Mapped from the frame's switch TCs c
priority (via the CM_TC_MAP table.) The TC numeric value is significant when multiple classes
are allocated to the same DRR group. In that context, higher numbered classes are strictly
preferred over lower numbered classes.

Scheduling Group i A set of TCs that share a DRR minimum bandwidth allocation.
Groups are defined as contiguous sets of TCs. (That is, for i = {c1, c2, ... cn }, c2 = c1+1, c3
= c2+1, etc.). In the absence of strict-high prioritized frames, the total egress bandwidth over
these classes is guaranteed to never fall below the minimum limit (Q i), assuming the group
stays collectively backlogged. Like bandwidth shaping groups, DRR groups are defined as a
series of contiguous TCs.

Bandwidth Shaping
Group

g A set of egress TCs for a given port that share a common maximum bandwidth allocation.
The total egress bandwidth over these classes is guaranteed bandwidth shaping g group to
never exceed the group's upper-bound limit (UBg). Shaping groups are defined by a
class-to-group (many-to-one) mapping. Although hardware supports a fully general mapping,
shaping groups should be configured to be super sets of scheduling groups.

Priority Set s Contiguous TCs of equal priority form a priority set.
A priority set is preferred in scheduling if its TC members have higher numeric values than
another priority set s priority set's. Classes belonging to the same scheduling group must be
configured to have the same priority.

Strict Priority SPc An attribute configured per TC.
When set, the TC has effectively infinite DCg, it preempts lower-priority classes, and it is
preempted by strict priority SP c higher-priority classes. The strict priority attribute must be
uniformly set within each priority set. Additionally, it should only be assigned to contiguous
sets starting from the outermost ones (numbers 0 and 7). Such high-numbered (high priority)
classes are said to have strict-high priority; low-numbered classes have strict-low priority.

Inner Priority — One bit of priority assigned per TC.
If c1 and c2 belong to the same scheduling group and InnerPriority(c1) > InnerPriority(c2),
then c1 is serviced with strict inner priority - high priority relative to c2. Among all TCs of equal
inner priority in a given scheduling group, higher-numbered classes are preferred over lower-
numbered classes.

DRR Group i A scheduling group that is set to be non-strictly scheduled.
That is, SPc =0b for all classes c in the group. DRR groups are scheduled according to a deficit
weighted DRR group i round-robin algorithm each time all strict-high classes have no eligible
queued frames.

DRR Quantum Qi A measure of the proportion of a port's bandwidth allocated to a given DRR group.
Also known as DRR weight. The scheduler attempts to provide no less than this proportion of
bandwidth to the associated DRR group. Qi is measured in bytes and must be no smaller than
twice the maximum frame size of the network (MTU).

Deficit Count DCi Dynamic state indicating the portion of DRR quantum remaining in a scheduling round.
The deficit count is decremented as frame segments egress the device. The counter deficit
count DCi is incremented by Qi at the end of a scheduling round. DCi is signed and never
greater than Qi.

Scheduling Round — A scheduling iteration over all TCs.
The end of a scheduling round occurs when no DRR group can be scheduled without
replenishing its deficit count.

Average Bandwidth
Use

Bg The average egress bandwidth use of a particular shaping group, as measured over some
period of time.

Upper-bound
Bandwidth Limit

UBg For each shaping group, the egress scheduler guarantees that Bg ≤ UBg.

FM5000/FM6000 Datasheet—Frame Processing

200 331496-001

5.21 Egress Modification

The final frame processing stage of the FM5000/FM6000 pipeline is egress modification. This stage
performs the complementary function of the parsing and association stage at the beginning of the
pipeline, as it reformats the frame header from a combination of fixed-function and generic data fields
and processing flags. As with the parser, very little of this unit's functionality is specific to Ethernet or
the higher-layer protocols supported by the FM5000/FM6000. All behavior of use to the application
layer must be configured with microcode.

5.21.1 Basic Properties

The FM5000/FM6000's modify architecture provides the following egress modification capabilities:

• Ability to apply up to 20 modification commands to each frame (see Section 5.21.5). Up to 56 bytes
of frame data can be inserted or replaced.

— For ports operating at 10 GbE or below, only the first 160 bytes can be modified. The rest of the
payload has to be passed unmodified.

— For ports operating at 20 GbE or above, only the first 80 bytes can be modified. The rest of the
payload has to be passed unmodified.

— When replacing or inserting frame data, the new frame data might come from the generic
forwarding data fields generated by L2AR at the conclusion of ingress processing, from local
tables in the unit, or from constants specified in modification rules. The data from local tables
available in egress modifications are:

— 12 bits of CAM key bits per destination port (76 x 12-bit table).

— One bit of tagging state per (VID1, DST_PORT) pair (4 Kb x 76-bit table).

— One bit of tagging state per (VID2, DST_PORT) pair (4 Kb x 76-bit table).

• This table can be re-purposed to provide extra 64-bit mapped data

— 12-bit data mapped from either DST_PORT or TX_PORT. (76 x 12-bit table).

— 2 x 8-bit configured to be mapped from DST_PORT, TX_PORT (2 x 76 x 8-bit tables).

— 4 x 16-bit configured to be mapped from VID1, VID2 or generic 12-bit index from L2AR
(4x4Kx16b tables).

— 4 bits of egress VPRI1 mapping by (VID1, DST_PORT) pair (76 x 16 x 4-bit table).

— 4 bits of egress VPRI2 mapping by (VID2, DST_PORT) pair (76 x 16 x 4-bit table).

• Ability to overwrite frame data with 2-bit assignment granularity and 4-bit rotation alignment per
byte of new data.

• Limited support for calculating or updating a two-byte ones-complement checksum header field. In
some applications, this enables IP, TCP, or UDP checksums to be set to properly reflect changes
made to those protocols' packet headers.

• Support for numerically decrementing bytes of the frame. Provided primarily to support
decrementing the IP or MPLS TTL when routing.

• Global drop and pre-rule drop options.

331496-001 201

Frame Processing—FM5000/FM6000 Datasheet

5.21.2 Top Level Organization

Although both the parser and the modify units share a slice-based architecture, the modify stage is
considerably more complicated than the parser. Its processing relies on a fixed-function input mapping
stage, two different flavors of slices, and a high-performance serial modification engine at its output.

There are three major stages in the modify architecture:

• Modify Mapper — Receives the modify channel from the scheduler, which includes MOD_DATA,
MOD_FLAGS, QoS, and other fields that have been generated or transformed by the scheduler.
Some of these fields are transformed by Tx port number to map the values to the appropriate
egress destination, and produce key and data operands for the modify slices.

• Modify Slices — Uses a TCAM/RAM slice structure to generate a set of modification commands.
Thirty-two CAM slices are available to store rules; the first 17 store rules for commands, the next
14 store rules for data to egress modifier and the final one is for data to stats.

• Serial Modify — Performs the final transformation of the egress frame data and applies the
serialized commands to the byte-serial frame data dequeued from the Array. Each command can
modify one or more bytes of the frame, and each command might require a variable number of
command operand values (zero, one, or more). Once the modification commands have been
exhausted, any remaining bytes of frame data are passed unmodified to the port, which is
responsible for link-layer transmission and recalculating the frame's CRC.

Figure 5-47 Top-Level Egress Modification Architecture

FM5000/FM6000 Datasheet—Frame Processing

202 331496-001

5.21.2.1 Data from Scheduler

The data from the scheduler is listed in Table 5-93. Fields with a gray background are produced by the
scheduler. Fields with a yellow background are transformed by the scheduler prior to the egress modify
unit.

5.21.2.2 PAUSE Generation

When the CM PAUSE generation logic determines that a PAUSE frame must be sent on a particular port,
the scheduler synthesizes an all-zero 64-byte frame to be formatted appropriately by egress
modification. For PAUSE frames, the previous data fields sent from the scheduler are all zero, with the
exception of TX_PORT, PAUSE, and PAUSE_CBP_VEC. Various fields of the modify slices' TCAM key and
data fields are overloaded for PAUSE generation, as described in the sections that follow.

Table 5-93 Egress Modification Data from Scheduler

Field Width Description

TX_PORT 7 Physical Tx port number; actual egress port number of the frame.

MIR_RX 1 If set, indicates the frame is an Rx-mirror frame.

MIR_TX 1 If set, indicates the frame is a Tx-mirror frame. MIR_RX and MIR_TX are never both set.

MR_NUM 2 Set to indicate the mirror number.

TRUNC 1 Specifies whether frames are to be truncated.
For mirrored frames, depends on Forward.MIR_TRUNC; for normal frames, depends on
Forward.TX_TRUNC and TX_TRUNC_MASK, configured statically in post.

MAP_PRI 1 Specifies whether a mirror frame should be mapped to a new ISL priority.
Depends on Forward.MIR_MAP_PRI.

L2_VID1 12 Egress VLAN1 ID. Potentially updated by frame replicator if L2_VID_SELECT is zero.

L2_VID2 12 Egress VLAN1 ID. Potentially updated by frame replicator if L2_VID_SELECT is one.

L2_VID_EQUAL 1 Indicates if the frame after MCAST replication has the same VID{1,2} as the one supplied by the FPP.
This is used by modifier to cancel routing modifications for frames that are multicasted on the same
VLAN they come from. (Equals zero if no IP multicast VLAN table lookup was performed.)

MCAST_TAG 1 1-bit tag from IP multicast VLAN table entry. (Equals zero if no IP multicast VLAN table lookup was
performed.)

L2_TAG 1 1-bit tag supplied by L2AR for comparison purpose in multicast VLAN table.

QOS 24 QoS-related fields.
Some of these have fixed definitions, others are configured to be defined. Grouped together since
they are opaque to the scheduler and transformed as a group.

MOD_FLAGS 24 Configured to be generated modification flags opaque to the scheduler. The meaning is microcode
defined.

MOD_DATA 140 Configured to be generated modification data fields opaque to the scheduler. The meaning is
microcode defined.

PAUSE 1 Set if a PAUSE frame should be generated.

PAUSE_CBP_VEC 8 Specifies the mask of TCs to pause for a class-based-pause frame.
If bit i is 0b, the class is un-paused (sending a quanta of zero). If class-based-pause is not enabled in
CM_PAUSE_CFG.PauseType, this vector is either all zeros (0x00) or all ones (0xFF).

331496-001 203

Frame Processing—FM5000/FM6000 Datasheet

5.21.3 Modify Mapper

The modify mapper is split into a series of tables and transforms that uses data received from the
scheduler to construct data for consumption by the modify slices. More specifically, the mapper
prepares the following data:

• Key to modify command and value slices

• Data channels to modify value slices

The tables in Modify Mapper are:

• MOD_TX_PORT_TAG[0..75]

• MOD_DST_PORT_TAG[0..75]

— These tables are indexed by the actual Tx port or the original intended destination port
(DST_PORT). In a non-mirror case, the TX_PORT and the DST_PORT are the same. In a mirror
case, the TX_PORT is the actual output port while the DST_PORT was the intended port. The
width of the TX_PORT_Tag is 2 bits while the width of the DST_PORT_Tag is 10 bits. For PAUSE
frames, an additional 2-bit PAUSE_Tag (indexed by TX_PORT) is provided. The tags can be used
as a key and represent per-port configuration options such as inter-switch tagging type and
class-based pause.

• MOD_L2_VPRI1_TX_MAP[0..75]

• MOD_L2_VPRI2_TX_MAP[0..75]

— Used to transcode QOS.L2_VPRI1 or QOS.L2_VPRI2 per port.

• MOD_TX_PAUSE_QUANTA[0..75]

— For PAUSE frame generation, two PAUSE_TIME values are mapped from DST_PORT. For normal
port-based PAUSE frames, only one value is used. For class-based PAUSE frames, microcode
determines which of the two pause times to apply to each pause class.

• MOD_MIN_LENGTH[0..75]

— Used to configure the minimum packet size. Shorter frames get padded. The length configured
must exclude the CRC (4 bytes).

• MOD_MAP_DATA_W8A[0..75]

• MOD_MAP_DATA_W8B[0..75]

— General purpose tables returning one byte. Indexing is configurable between TX_PORT or
DST_PORT.

• MOD_MAP_DATA_W12A[0..75]

— General purpose table returning 12 bits. Intended use is to define a default VID per port; it is
combined with the remapped L2_VPRI1 to create a 16-bit VLAN tag.

• MOD_MAP_DATA_W16A[0..4095]

• MOD_MAP_DATA_W16B[0..4095]

• MOD_MAP_DATA_W16C[0..4095]

FM5000/FM6000 Datasheet—Frame Processing

204 331496-001

• MOD_MAP_DATA_W16D[0..4095]

— General purpose tables returning 16 bits of data. Indexing is configurable between TX_PORT,
DST_PORT, MOD_T1_IDX, MOD_T2_IDX, MOD_DATA.W16C, L2_VID1 or L2_VID2.

• MOD_T1_IDX is {QOS.W4[3:0],MOD_DATA.W8A[7:0]}

• MOD_T2_IDX is {MOD_DATA.W4[3:0],MOD_DATA.W8B[7:0]}

• For PAUSE frames, any selected index other than TX_PORT or DST_PORT is treated as zero.

• MOD_L2_VLAN2_TX_TAGGED (alias MOD_MAP_DATA_V2T)

— Dual purpose table; VLAN2 tagging or general data.

The table MOD_L2_VLAN2_TX_TAGGED (alias MOD_MAP_DATA_V2T) as dual purpose; operation mode
is configured globally. It can be used as a 1-bit per-port VLAN2 tagging table (76 bits entry,
MOD_L2_VLAN2_TX_TAGGED) to control VLAN2 tagging per port, or as an extra 64-bit new frame data
(72-bit entries, MOD_MAP_DATA_V2T) to provide more frame data (typically large tunnel). If used as
an extra 64-bit frame data, the entry can be used to update any of the following fields:

• MOD_DATA_W16A[7:0]

• MOD_DATA_W16A[15:8]

• MOD_DATA_W16B[7:0]

• MOD_DATA_W16A[15:8]

• MOD_DATA_W8B

• MOD_DATA_W8C

• MOD_DATA_W8D

• MOD_DATA_W8E

The upper 8 bits of the entry indicates if the entry received from L2AR is kept as is (zero) or if the entry
is updated with the value from this table (one).

The modify mapper also includes the following registers:

• MOD_MAP_DATA_CTRL

— Defines the method to index the different tables.

• MOD_TX_MIRROR_SRC

— For Tx-mirror frames, defines the original intended destination port (called DST_PORT) being
mirrored.

• MOD_MAP_DATA_V2T_CTRL

— Control usage of MOD_L2_VLAN2_TX_TAGGED/MOD_MAP_DATA_V2T as either a 1-bit per-port
VLAN2 tagging table or as extra 64-bits of frame data and defines the method to index this
table.

331496-001 205

Frame Processing—FM5000/FM6000 Datasheet

5.21.4 Modify Slices

The modify slices are constructed using 32 CAM slices for rules, 20 RAM banks for defining commands
and 15 RAM banks for data. The CAM slices are used as follows:

• CAM slice 0..15 — For commands 0..15, a single CAM rule in each CAM slice enables one
command, defined in MOD_COMMAND_RAM[0..15].

• CAM slice 16 — For commands 16..20, a single CAM rule in this CAM slice enables up to four
commands, defined in MOD_COMMAND_RAM[16..19].

• CAM slice 17..30 — For egress data 0..56, a singe CAM rule in each CAM slice enables up to 4
bytes of data, defined in MOD_VALUE_RAM[0..13].

• CAM slice 31 — For stats data 0..3, a singe CAM rule in each CAM slice enables up to 4 bytes of
data, defined in MOD_VALUE_RAM[14].

5.21.4.1 TCAM Key

The TCAM Key used in all modify slices is defined in the following table:

Table 5-94 Egress Modification Modify Slices Key

Field Bit(s) Description

PAUSE 0 Indicates egress PAUSE frames.

MIR_RX 1 Indicates if this is an Rx-mirror copy or not. Exclusive with MIR_TX.

MIR_TX 2 Indicates if this is a Tx-mirror copy or not. Exclusive with MIR_RX.

MIR_NUM 4:3 Mirror number, only applicable if MIR_RX or MIR_TX is set.

MAP_PRI 5 Indicates mirror frames are to be mapped to a new priority.

TRUNC 6 Indicates frame is to be truncated.

L2_TAG 7 The L2_TAG bit in FORWARD_FLAGS as set by L2AR.

L2_VID_EQUAL 8 Flag set by MCAST_VLAN to indicate if the MCAST_VLAN entry was equal to the egress VID for
this frame.

MCAST_TAG 9 Tag bits from the MTable.

TX_PORT_Tag 11:10 Lookup in MOD_TX_PORT_TAG table by TX_PORT.

DST_PORT_Tag 21:12 Lookup in MOD_DST_PORT_TAG table by DST_PORT (the original Tx port of TX-mirrored
frames).

L2_VLAN1_TX_Tagged 22 Lookup in MOD_L2_VLAN1_TX_TAGGED table by (DST_PORT, L2_VID1).

L2_VLAN2_TX_Tagged 23 Lookup in MOD_L2_VLAN2_TX_TAGGED table by (DST_PORT, L2_VID2).

MOD_FLAGS 47:23 MOD_FLAGS from L3AR.

FM5000/FM6000 Datasheet—Frame Processing

206 331496-001

When PAUSE=1b, the MOD_FLAGS portion of the key is overloaded with the PAUSE-related fields listed
in Table 5-95 (all other MOD_FLAGS bits are zero for these frames).

5.21.4.2 Modify Command Slices

The command slices are shown in Figure 5-48.

There are 16 command slices. Each command slice contains a 32x48-bit CAM (MOD_COMMAND_CAM)
followed by a 32x16-bit RAM (MOD_COMMAND_RAM) and can produce at most one command. The key
is searched for in all CAMs. If there is a match in a particular CAM block, the highest matching entry is
selected and the corresponding RAM entry is read. The RAM entry contains the following fields:

• Command is valid

• Command

• Jitter

• Drop

The command is sent to the egress modifier only if it is valid.

The drop flag indicates to drop the frame. Any slice can force the frame to be dropped and the frame is
forwarded if and only if all drop flags of all matching entries are set to zero.

The jitter value is accumulated across all 16 slices and used to control the jitter buffer in the egress
serial modify.

Note: Not all commands are necessarily executed, the egress modifier skips the last commands
and data if the frame terminates before the command is executed. An example would be a
series of skip to byte 72 and then insert 4 bytes data. In this example, if the frame received
as only 64 bytes, the insert instruction is not executed.

Table 5-95 MOD_FLAGS definition for PAUSE Frames

Field Bit(s) Description

PAUSE_Tag 25:24 Lookup in MOD_TX_PORT_TAG table by TX_PORT. Can be used to configure class-based PAUSE
format.

PAUSE_CBP_VEC 33:26 8-bit pause class vector for class-based PAUSE frames.

Figure 5-48 Egress Modification Command Slices

331496-001 207

Frame Processing—FM5000/FM6000 Datasheet

5.21.4.3 Modify Value Slices

The value slices are similar to the command slices with the addition of a data selection and data
modification circuit as shown in Figure 5-49.

There are 15 value slices in total that can produce up to 60 bytes of frame data (4 bytes per slice, 56
bytes go to egress modifier, 4 bytes go to stats). Each value slice contains a 48-bit x 32-entry CAM
(MOD_VALUE_CAM) followed by a 32 x 64-bit RAM (MOD_VALUE_RAM).The key is searched in all
CAMs.

If there is a match in a particular CAM block, the highest matching entry is selected and the
corresponding RAM entry is read. The RAM entry contains the following fields for each data byte:

• DataSelect (5 bits) — Identifies one of 24 source data channels.

• Type (3 bits) — Controls the validity and transformation of each value byte prior to being sent to
serial modify.

• Constant (8 bits) — Constant data involved in the output transformation.

Data bytes are identified A through D where A is sent to modifier first and D is sent last. Bytes whose
type is zero (invalid) are omitted from the serial value byte stream.

The DataSelect field selects one of 24 source fields for the corresponding value byte, as listed in
Table 5-96.

Figure 5-49 Egress Modification Value Slices

Table 5-96 Egress Modification Data Select Fields

Field Width Data
Select Not PAUSE Frame PAUSE Frame Comment

W8[0] 8 0 {QOS.W4, QOS.ISL_PRI} PAUSE_CBP_VEC

W8[1] 8 1 {QOS.L3_DSCP, QOS.L3_CU} Unused (0x0) Packed as in TOS
byte

W8[2] 8 2 MOD_MAP_DATA.W8A MOD_MAP_DATA.W8A

W8[3] 8 3 MOD_MAP_DATA.W8B MOD_MAP_DATA.W8B

W8[4] 8 4 {MOD_DATA.W4, 0x0}

Unused (0x0)
W8[5] 8 5 MOD_DATA.W8A

W8[6] 8 6 MOD_DATA.W8B

W8[7] 8 7 MOD_DATA.W8C

FM5000/FM6000 Datasheet—Frame Processing

208 331496-001

For the 8-bit source values, each value is assigned directly:

Val{A..D} = W8[Val{A..D}_DataSelect]

For the 16-bit source values, the particular eight bits assigned depends on the field:

Thus, the most significant byte of the 16-bit fields are serialized first (and therefore transmitted first in
the frame), before the least significant byte.

The selected byte is then transformed on a per-nibble basis using their respective constant and type
fields.

W16[0] 16 16 {L2_VPRI1_TX, L2_VID1} PAUSE_TME1 VPRI1/VID1 packed
as in VLAN tag

W16[1] 16 17 {L2_VPRI2_TX, L2_VID2} PAUSE_TME2 VPRI1/VID2 packed
as in VLAN tag

W16[2] 16 18 {L2_VPRI1_TX, MOD_MAP_DATA.W12A} {0x0, MOD_MAP_DATA.W12A} Packet as in VLAN
tag.

W16[3] 16 19 MOD_MAP_DATA.W16A MOD_MAP_DATA.W16A

For PAUSE, indices
other than
TX_PORT are taken
to be zero.

W16[4] 16 20 MOD_MAP_DATA.W16B MOD_MAP_DATA.W16B

W16[5] 16 21 MOD_MAP_DATA.W16C MOD_MAP_DATA.W16C

W16[6] 16 22 MOD_MAP_DATA.W16D MOD_MAP_DATA.W16D

W16[7] 16 23 MOD_MAP_DATA.W16E MOD_MAP_DATA.W16E

W16[8] 16 24 MOD_MAP_DATA.W16F MOD_MAP_DATA.W16F

W16[9] 16 25 MOD_DATA.W16A

Unused (0x0)

W16[10] 16 26 MOD_DATA.W16B

W16[11] 16 27 MOD_DATA.W16C

W16[12] 16 28 MOD_DATA.W16D

W16[13] 16 29 MOD_DATA.W16E

W16[14] 16 30 MOD_DATA.W16F

W16[15] 16 31 {MOD_DATA.W8D,MOD_DATA.W8E}

ValA = W16[ValA_DataSelect][15:8]
ValB = W16[ValB_DataSelect][7:0]
ValC = W16[ValC_DataSelect][15:8]
ValD = W16[ValD_DataSelect][7:0]

Table 5-96 Egress Modification Data Select Fields (Continued)

Field Width Data
Select Not PAUSE Frame PAUSE Frame Comment

331496-001 209

Frame Processing—FM5000/FM6000 Datasheet

The selected data byte is represented as 0xPQ and the constant byte from MOD_VALUE_RAM is
represented as 0xXY.

5.21.4.4 Transmit Disposition Flags

MODIFY produces a set of disposition flags that are used by the scheduler, frame processing pipeline
and statistics. The disposition flags informs those units that the frame has been sent and what happens
to the frame enabling those units to update their state accordingly.

The following disposition flags (TX.DISP_FLAGS) bits are defined:

0 = (RX_ERR) Indicates the frame, on ingress, experienced an RX error (corresponding to
RX.DISP != 0). For cut-through frames, this flag is set on any frame that
also experiences an internal uncorrectable ECC error, as reported by
ECC_ERR. However, RX.DISP is always reliably reported.

1 = (OOM) The frame was truncated due to an out-of-memory error during frame
reception.

2 = (LBS) The frame was not transmitted due to the MCAST_LOOPBACK_SUPPRESS
test.

3 = (TIMEOUT) The frame was not transmitted due to the frame timeout mechanism.

4 = (ECC_ERR) The frame experienced an uncorrectable ECC error in the array or scheduler
or modify data memories. For cut-through frames, this error flag masks the
reporting of a concurrent RX_ERR condition, if one applies. If the frame has
not yet been started, it is dropped, with the exception of
MOD_MAP_IDX12A. for this table, the frame is simply not dropped.

5 = (DROPPED) The frame was not transmitted due to one or more of the previous
conditions.

6 = (TX_FREE) Identifies the frame as the last copy to be replicated on TX.PORT due to the
MCAST_VLAN_TABLE and/or mirroring mechanisms.

7 = (RX_FREE) Identifies the last copy of the source Rx frame to be replicated over all
egress ports. Segments belonging to the source Rx frame are returned to
the free pool.

Type
0: byte is invalid (not serialized)
1: 0xXY (constant)
2: 0xPQ (data)
3: 0xQP (data rotated)
4: 0xXQ (bottom nybble of data on bottom)
5: 0xXP (top nybble of data on bottom)
6: 0xPY (top nybble of data on top)
7: 0xQY (bottom nybble of data on top)

FM5000/FM6000 Datasheet—Frame Processing

210 331496-001

5.21.4.5 Statistics Interface

The MODIFY unit provides two sets of information to statistics: an updated frame length, and a set of
indexes.

The updated length is also sent to the scheduler shapers, to enable them to compute bandwidth
accurately. The updated frame length is computed by accumulating the differences implied by each
command to the original frame length assuming all commands are executed, and then sent to the
statistics unit. The updated frame length reported is accurate for most normal modifications but not all
of them. The condition under which the frame length is accurate are:

• The ingress frame is long enough that all the specified modification gets applied.

• Only the first 80 bytes of the ingress frame is modified, and not all of the first 80 bytes is deleted.

• MOD_MIN_LENGTH is set to <= 80 bytes.

The Tx indexes are derived from the last value slice in the modify stage and are sent to the statistics
action resolution stage. These statistics value slices are identical to the other value slices in every
respect, except their four value bytes are not serialized. Instead, they are mapped into two sets of 4-bit
and 12-bit indices as follows (the IDX12A support a remap function):

Note: These statistics index slices are referenced as MOD_VALUE_{CAM,RAM}[15] in the register
definitions. All source channels and output transformations are supported by these slices.

5.21.5 Serial Modify

Each port has a dedicated serial modify unit that processes egress frame data in a byte-serial manner
(1.25 GHz for 10 Gb/s ports). The unit's operation is controlled by the serialized command stream
produced by the modify slices. Commands are consumed and interpreted until they are exhausted or
until reaching maximum modifiable size. Nine commands are supported:

• SKIP — Used to leave bytes of the frame unchanged. Takes a repeat count spanning 1..32 to
enable skipping over many bytes of the frame with a single command. [zero value bytes required].

• INSERT — Inserts 1 to 16 bytes into the frame. [1..16 value bytes required].

• DELETE — Deletes 1 to 16 bytes of the frame. [zero value bytes required].

• REPLACE — Replaces 1 to 16 bytes of the frame. [1..16 value bytes required].

• REPLACE_MASKED — Replaces specific bits of a byte with bits from the value byte v, as specified
by the dybble mask dybmask in the command byte. Each bit i of the output byte R is transformed
from the input L as follows: R[i] = (dybmask[i/2] ? v[i] : L[i]). [1 value byte required].

• DECREMENT — Decrements a byte of the frame. 0x00 becomes 0xFF. [zero value bytes required].

From slice 15:
TX.IDX4A = ValA[7:4]
TX.IDX12A = MOD_MAP_IDX12A[{ValA[3:0], ValB[7:0]}]
TX.IDX4B = ValC[7:4]
TX.IDX12B = {ValC[3:0], ValD}

331496-001 211

Frame Processing—FM5000/FM6000 Datasheet

• DECREMENT_INSERT — Inserts a new byte into the frame after first decrementing the new value
by one. [one value byte required].

• DECREMENT_REPLACE — Replaces a byte of the frame after first decrementing the new value by
one. [one value byte required].

• CHECKSUM — Updates a 2-byte ones-complement checksum such as used in IPv4 or TCP. This
depends on accumulated changes to the frame resulting from other commands (each of the other
command types carries a flag to indicate that the checksum should be accumulated), as well as an
additional 2-byte delta provided on the value stream:

egress_checksum = (ingress_checksum + ingress_bytes_accumulated - egress_bytes_accumulated - delta)

The checksum accumulator state is cleared after this command or at end-of-frame. The accumulated
bytes must form 16b byte-pairs that are 16b-aligned to the checksum.The checksum cannot be
modified if it is the last 2 bytes of the frame or last 2 bytes of the maximum number of bytes
modifiable. [2 value bytes required]

5.22 Statistics

The FM5000/FM6000 maintains 32-Kb frame counters that provide management software with
statistical information about the state of the switch and of the network in general. In contrast to the
FM2000 series and the FM4000 series, these frame counter resources are highly configurable, enabling
software to track any frame properties that are of interest to the larger application context. The
counters are flexible enough to support many of the network monitoring-related IETF RFCs, such as
RFC 2819 (RMON), RFC 3273 (High-Capacity RMON), RMON 2613 (SMON), RFC 4502 (RMON2), RFC
2863 (Interfaces MIB), and RFC 4293 (MIB for IP).

5.22.1 Overview

The FM5000/FM6000's frame statistics counters are distributed over 16 identical 2-Kb-entry counter
banks and 64 discrete counters. Each 2-Kb bank contains 2048 64-bit counter state elements
supporting three individually-configurable modes:

• 64-bit frame count

• 64-bit byte count

• 64 x 1-bit saturating counters

Each discrete counter maintains both a 64-bit frame count and a 64-bit byte count.The byte count
accumulates Rx frame lengths only, while the frame count counts either Rx or Tx frames however it is
configured.

With these counter resources, any particular Rx frame can be counted by a maximum of 144 counters
(16 bank counters, 64 discrete frame counters, and 64 discrete byte counters); any Tx frame can be
counted by a maximum of 80 counters (16 bank counters and 64 discrete frame counters).

The frame properties tracked by the statistics counters are defined by the programming of a series of
CAMs and RAMs in the statistics action resolution stage. These properties are mapped dynamically per
frame based on information generated and selected by L2AR, egress modification, CM, and other fixed-
function sources in the switch.

FM5000/FM6000 Datasheet—Frame Processing

212 331496-001

The determination of which counters to update on each frame takes place in a statistics action
resolution (STATS_AR) classification stage. The STATS_AR stage applies a number of CAM and RAM
mappings similar to those applied in the L2 and L3AR stages. It receives input key and index values
from the frame processing pipeline and uses a CAM/RAM/MUX structure to map these inputs to 16
counter commands, one per counter bank, and a 64-bit discrete counter enable vector
(DISCRETE_MASK[63:0]).

The statistics action resolution stage processes up to one ingress (Rx) and one egress (Tx) frame per
cycle in parallel. An ingress frame is processed once it has been fully received by the switch. The
frame's length and error status are combined with head information generated by L2AR and CM, and
this bundle of data is presented to the statistics action resolution stage for processing.

On egress, the modify stage is responsible for generating key, index, disposition, and length
information associated with each Tx frame it processes. Once the frame fully egresses, modify passes
this information to the statistics unit for processing.

The statistics action resolution stage receives the following set of Rx and Tx frame properties:

• Rx Port (7 bits)

• Rx Frame Length (14 bits)

• Rx Disposition (2 bits)

• Rx Stats Key (43 bits)

• Rx Stats Flags (32 bits)

• Rx Egress ACL count actions (32 bits)

• Rx Stats Index data (71 bits)

— 3 x 5-bit index channels (RX.IDX5{A,B,C})

— 2 x 12-bit index channels (RX.IDX12{A,B})

— 2 x 16-bit index channels (RX.IDX16{A,B})

Figure 5-50 Statistics Counter Architecture

331496-001 213

Frame Processing—FM5000/FM6000 Datasheet

• Tx Port (7 bits)

• Tx Frame Length (14 bits)

• Tx Replication Status (2 bits)

• Tx Disposition flags (6 bits)

• Tx Stats Key (40 bits)

• Tx Stats Index data (32 bits)

• 2 x 4-bit index channels (TX.IDX4{A,B})

• 2 x 12-bit index channels (TX.IDX12{A,B})

These fields are detailed further later in this section.

Software configuration of the statistics action resolution structure determines how this information is
mapped to individual counters in the 16 2-Kb counter banks. This mapping operation results in
generating 16 counter commands, one per bank, in the following form:

• Mode (2 bits) — Specifies one of three counter modes:

0 = Do not count (bank remain idles, saving power).

1 = Add the specified amount to the 64-bit counter state element.

2 = Set bit number Amount[5:0] (one-bit saturating count mode).

• Index (11 bits) — Identifies the counter within the bank to update. The bottom bit of this index is
referred to as the counter color for reasons that are explained later in this section.

• Amount (16 bits) — Specifies the amount to add to the specified counter (when Mode=1) or the bit
index to set (when Mode=2). Generally, for Mode=1, this is either 1 (for frame counting) or else the
Rx or Tx frame length (for byte counting). However, other amounts can be selected, such as pause
times.

FM5000/FM6000 Datasheet—Frame Processing

214 331496-001

5.22.2 Action Resolution Structure

The architecture of the statistics action resolution stage is shown in Figure 5-51.

It includes five functional structures:

• Flags Mapping Stage — Transforms a 64-bit STATS_FLAGS input to a 90-bit output
STATS_FLAGS. The output flags enable the discrete and bank counters and specify Rx/Tx frame
length correction terms.

• Index Mapping Stage — Generates six 5-bit AR.IDX5 indices from a set of CAM/RAM slices. These
indices are available for muxing in each counter bank's index computation.

• Length Correction and Binning — Due to the inclusion or omission of ISL tags, preambles, CRCs,
IEEE 1588 timestamps, etc., the frame length as seen by the switch data path might not be the
appropriate length to count for statistics purposes. This stage applies two 5-bit signed delta
amounts to each frame length to correct for these factors. The stage also bins the Rx and Tx frame
lengths by comparing them to 16 configurable thresholds. The 4-bit bin values are available to the
bank counter index calculation.

• Counter Bank Control — Each counter bank's index, counter mode, and amount to increment is
computed based on static action resolution configuration.

• Port Mapping (not previously shown) — The RX_PORT and TX_PORT inputs are each mapped
through 76-entry tables to provide 8-bit RX_PORT_TAG and TX_PORT_TAG CAM keys as well as
RX_PORT_DELTA and TX_PORT_DELTA frame length adjustment terms.

These functions are specified in more detail in the Statistics Action Resolution section.

Figure 5-51 Statistics Action Resolution

331496-001 215

Frame Processing—FM5000/FM6000 Datasheet

5.22.3 Per-Port Counters

It is expected that many applications calls for a large number of 64-bit per-port counters, as required
by RMON, SMON, and other network statistics standards. The STATS_AR's bank index calculation
function provides general support for such a port-based indexing mode. Effectively, the index of each
per-port 64-bit counter is calculated as:

CounterIdx64 = 76 * CounterNum + Port

where port is either the Rx or Tx port number and CounterNum is a value spanning 0 to 25 taken from
a selected 5-bit index channel. A bank configured in this manner provides up to 26 counters per Rx port
or 25 per Tx port. The CounterNum source channels can come from L2AR (for Rx counters), from
egress modify (for Tx counters), or from one of six AR.IDX5 channels assigned locally by the STATS_AR
Index mapping function.

If all counter banks are allocated to per-port counters, this gives an absolute maximum of 416 counters
per port, organized as independent groups of 16×26 counters. For each ingress or egress frame, one
counter in each group can be incremented. For FM4000 compatibility, 10 of these groups are dedicated
to per-port counting and the remaining six would be available for other purposes, such as per-VLAN
counting.

5.22.4 Discrete Counters

In addition to its 16 banks of 2-Kb counters, the statistics stage also includes 64 discrete counters.
Whereas the banked counters only provide a maximum per-frame counter parallelism of 16 (one
counter per bank), all 64 discrete counters can increment in parallel per frame. Half of these counters
have a fixed-function definition, and are controlled by the EACL count action.

The discrete counters are controlled by a 64-bit DISCRETE_MASK channel produced by the STATS_AR
flags mapping function. Each bit of the DISCRETE_MASK controls a pair of counters: one counts frames
and the other counts Rx frame length. If any bit DISCRETE_MASK[i] is set to 1b, the corresponding
counter pair number i increments. If a discrete counter pair is configured to count Tx frames, the frame
length counter value is meaningless.

The bottom 32 bits of DISCRETE_MASK are initialized by the 32-bit STATS_FLAGS channel produced by
L2AR.The top 32 bits of DISCRETE_MASK are initialized by the EACL_COUNT[31:0] action result
produced by the EACL stage. The DISCRETE_MASK is then transformed by the flags mapping stage,
specified in the sections that follow.

The discrete counters are defined in the registers STATS_DISCRETE_COUNTER_FRAME and
STATS_DISCRETE_COUNTER_BYTE. Each counter value is 64 bits wide with atomic access.

5.22.5 Counter Performance

Each 2-Kb bank counter can be incremented at a maximum rate of 550 MHz. Thus, per-port properties
can be tracked by each bank counter with no performance corner-cases since the maximum frame rate
of even a 40 GbE port (60 MHz) is well below this level. Throughout the FM5000/FM6000, bit two of the
port number (RX.PORT[2] or TX.PORT[2]) is guaranteed to strictly alternate under maximum frame
rate conditions, so in each 2-Kb statistics bank this bit is used to stripe counter updates across two
1-Kb sub-banks, with each sub-bank capable of sustaining a 550 MHz maximum update rate.

FM5000/FM6000 Datasheet—Frame Processing

216 331496-001

Switch-aggregate properties (such as activity on a particular VLAN) might see event rates exceeding
550 MHz, so pairs of counters must be allocated to count such properties in a fully-provisioned manner.
Each counter is said to be colored in this case, where one counter tracks the aggregate property as
seen on red ports while the other tracks the aggregate property as seen on blue ports. Including either
RX.PORT[2] or TX.PORT[2] in the counter index calculation provides this color-alternation. To determine
the total aggregate count, software must read and add the counts of the two colored counters.

Alternatively, aggregate counters can be left uncolored as long as the aggregate counter rate does not
exceed 550 MHz. If these counters are mis-configured such that they are exposed to rates greater than
550 MHz, the entire frame processing pipeline is limited to 550 MHz and frame dropping can result.

Each discrete counter is fully-provisioned to count both frames and bytes at the maximum switch
aggregate frame rate.

5.22.6 Port Mapping

As a preprocessing step before the other STATS_AR functions, the RX_PORT and TX_PORT values are
mapped through 76-entry classification tables to provide 8-bit RX_PORT_TAG and TX_PORT_TAG fields
for use as keys in the flags and index mapping CAMs. The bits in these tag fields are expected to
encode properties such as:

• Per-port enables of particular counter groups (FM4000 STATS_CFG compatibility).

• Per-port selection between different input index fields (such counting by TC versus VPRI).

The tags are provided as a compression facility to reduce the number of CAM rules that would otherwise
be needed.

The RX_PORT_MAP and TX_PORT_MAP tables also provide two 5-bit frame length correction terms,
RxPortDelta and TxPortDelta, used by the length correction and binning function described later in this
section.

5.22.7 Input Keys

The TCAMs in the index and flags mapping functions are provided the following 127-bit key:

Table 5-97 Statistics Input Keys

Field Width Description

RX_VALID 1 Indicates valid ingress frame information.

RX.PORT_TAG 8 Mapped ingress port tag.

RX.DISP 2 Ingress frame error status, encoded as follows:
00b = No error
01b = Framing error
10b = Unused
11b = CRC error

RX.KEY 59 Ingress stats key as asserted by L2AR.

RX.KEY.MOD_FLAGS 18 MOD_FLAGS as sent on the forward channel.

RX.KEY.STAT_FLAGS[15:0] 16 Statistics flag bits set by L2AR's SetFlags action.
The upper 16 STATS_FLAGS[31:16] bits are not available in the TCAM key. These bits
RX.KEY.STATS_FLAGS[15:0] 16 are only used for DISCRETE_MASK generation in the flags
mapping stage.

331496-001 217

Frame Processing—FM5000/FM6000 Datasheet

Note: Total key width = 127 bits.

5.22.8 Flags Mapping

The flags mapping function takes the 127-bit RX/TX STATS_AR frame key and a 64-bit STATS_FLAGS
input produced by the head pipeline (associated with the Rx frame) and produces the 64-bit
DISCRETE_MASK, a 16-bit BANK_MASK, plus two 5-bit length correction fields. This function is
implemented as a two-stage CAM transformation, similar to each of the L2AR's two flags CAM stages,
as shown in Figure 5-52.

RX.KEY.DROP_CODE 8 Final drop code produced by L2AR’s SetDropCode action.

RX.KEY.CPU_CODE 8 Final CPU code produced by L2AR’s SetCpuCode action.

RX.KEY.RXMP 4 Rx shared memory partition number assigned to the frame.

RX.KEY.CM_FLAGS 5 Each bit encodes a CM drop condition that applies to the frame:
0 = Dropped by the global privileged watermark.
1 = Dropped by global SMP watermarks.
2 = Dropped by the Rx hog watermark.
3 = Dropped (to all destinations) by Tx hog watermarks.
4 = Dropped due to the shared memory running out of segment pointers.

TX.VALID 1 Indicates valid egress frame information.

TX.PORT_TAG 8 Mapped egress port tag.

TX.DISP_FLAGS 8 Egress frame transmit disposition.
For details, see Section 5.21.4.4, “Transmit Disposition Flags”.

TX.MOD_KEY 40 TCAM key from the modify slices.
For details, see Section 5.21.4, “Modify Slices”.

Table 5-97 Statistics Input Keys (Continued)

Field Width Description

FM5000/FM6000 Datasheet—Frame Processing

218 331496-001

The two-stage CAM transformation enables sets of STATS_AR_FLAGS_CAM1 rules to be defined such
that when any rule in the set matches, a particular set of STATS_FLAGS bits are set to a specified
constant value. For example, one application would be to set DISCRETE_MASK[i1] when either
STATS_AR_FLAGS_CAM1[r1] or STATS_AR_FLAGS_CAM1[r1+1] matches the input key.

5.22.9 Index Mapping

The index mapping function comprises six TCAM slices, each of which performs the following CAM/RAM
transformation:

1. Matches the 127-bit STATS_AR frame key in its STATS_AR_IDX_CAM[slice] TCAM, producing the hit
index (hit_idx) of the highest matching rule.

2. 2. Maps STATS_AR_IDX_RAM[slice,hit_idx] to provide the 5-bit value of AR.IDX5[slice].

If no rule in the slice matches, the corresponding AR.IDX5[slice] is invalid (power-gated) and prevents
any bank that depends on the index from counting.

Figure 5-52 Statistics Action Resolution Flags Mapping

331496-001 219

Frame Processing—FM5000/FM6000 Datasheet

5.22.10 Length Correction and Binning

All statistics frame length counters operate on RX and TX frame lengths that are corrected by two delta
values: {RX,TX}.STATS_LENGTH = {RX,TX}.LENGTH + {RX,TX}_PORT_DELTA + {RX,TX}_DELTA,
where

• {RX,TX}.LENGTH — Frame length as seen by the switch datapath.This might or might not include
preamble bytes, CRC bytes, or IEEE 1588 timestamp bytes.

• {RX,TX}_PORT_DELTA — 5-bit signed correction values produced by the {RX,TX}_PORT_MAP
tables.

• {RX,TX}_DELTA — 5-bit signed correction values produced by the flags mapping stage.

The resulting {RX,TX}.STATS_LENGTH values are then passed through a configurable range compare
stage, similar to the MAPPER_LENGTH_COMPARE structure in the mapper, to recover the final bin to be
used for size binning in Rx and Tx.

Figure 5-53 Statistics Action Resolution Index Mapping

RX.LENGTH_BIN = 0
rxlength = RX.LENGTH + RX_DELTA;
for i=0..15
 if (STATS_AR_RX_LENGTH_COMPARE[i].LowerBound ≤ rxLength)
 RX.LENGTH_BIN = STATS_AR_RX_LENGTH_COMPARE[i].Bin

TX.LENGTH_BIN = 0
txLength = TX.LENGTH + TX_DELTA;
for i=0..15
 if (STATS_AR_TX_LENGTH_COMPARE[i].LowerBound ≤ txLength)
 TX.LENGTH_BIN = STATS_AR_TX_LENGTH_COMPARE[i].Bin

FM5000/FM6000 Datasheet—Frame Processing

220 331496-001

This enables these length values to be binned among 16 arbitrary ranges. In the bank index muxing
stage, the binned length values are referred to as RX.LENGTH_BIN and TX.LENGTH_BIN, each 4 bits
wide

5.22.11 Counter Bank Control

Each bank is configured by a static 34-bit BANK_CFG register. The fields in this register determine how
the bank's counter index, counter mode, and increment amount is calculated.

Each bank i (for i=0..15) is enabled for counting by the BANK_MASK[i] bit generated by the flags
mapping stage. If BANK_MASK[i]=0b, the configuration in BANK_CFG[i] has no effect and the bank
remains inactive (power-gated).

The calculation of the counter index is complex due to the many different modes and counter types that
are supported. The section that follows details the index generation function.

5.22.12 Counter Index Generation

Depending on configuration, selected input indices might identify individual bits in a 2-Kb bank
(saturating 1-bit counter mode) or they might span ranges as large as multiple 2-Kb banks (such as to
implement per-VLAN counters). Further complicating the definition are coloring considerations and
optimizations to keep the per-bank index computation logic to a minimum.

All indices listed in Table 5-99 are phrased in relation to a generalized 22-bit Counter ID. The following
quantities are involved in the counter ID computation.

Table 5-98 Statistics Bank Profile

Field Width Description

CounterType 1 Identifies the counter entry type:
0b = 64-bit rollover counter.
1b = 64 x 1-bit saturating counter.

Amount 2 Determines the amount to add to the indexed counter:
00b = Add 0 (do not count case).
01b = Add 1 (64-bit frame counter or 1-bit saturating counter).
10b = Add RX.LENGTH + RX_DELTA (64-bit byte counter).
11b = Add TX.LENGTH + TX_DELTA (64-bit byte counter).

Select_CounterNum 4 Mux select for up to 16 CounterNum channels described in the sections that follow.

Select_PerChannel 3 Mux select for up to eight PerChannels described in the sections that follow.

PerLowBit 4

Parameters relating to the counter index calculations as described in Section 5.22.12.

PerHighBit 4

PerSpanMantissa 5

PerSpanExponent 4

ColorCase 2

BankID 6

331496-001 221

Frame Processing—FM5000/FM6000 Datasheet

In a simplified sense, the counter ID is derived by a simple calculation:

CounterID = CounterNum * PerSpan + PerIdx

Unfortunately, the actual hardware calculation is not so simple. Coloring, field encodings, and counter
type considerations make the computation considerably more complicated. First, a PerID is calculated
as follows:

PerID = Decolor(PerChannel)[PerHighBit:PerLowBit]

The Decolor() transformation extracts the coloring port bit (bit 2) from RX.PORT or TX.PORT if
applicable:

Once decolored, an RX.PORT PerChannel is handled as ColorCase=1 (color by RX.PORT) and a TX.PORT
PerChannel is handled as ColorCase=2 (color by TX.PORT) in the same manner as any other PerChannel
selection. The ColorCase=3 handling should only be selected when PerChannel is either RX.PORT or
TX.PORT.

Table 5-99 Statistics Counter ID Quantities

Parameter Width Description

CounterNum 5 A counter number corresponding to the property being counted.
For example, octets belonging to a particular ISL_PRI.

PerChannel 16 The channel representing the quantity by which CounterNum is counted per.
For example, PerChannel might be RX.PORT, in which case the assigned counter numbers are counted
per rx port.

PerLowBit
PerHighBit

4 + 4 Generally, the numeric per index field to be used for the counter ID calculation might be embedded in
the PerChannel. These bit indices identify the appropriate slice as PerChannel[PerHighBit:PerLowBit]. A
constant zero per index might be encoded by setting PerHighBit < PerLowBit.

PerSpan 5 + 4 The meaningful numeric span of the per index, represented in floating point form as a 5-bit mantissa
and a 4-bit exponent.
For example, when PerChannel is RX.PORT or TX.PORT, PerSpan is 76 (PerSpanMantissa=19,
PerSpanExponent=2).

ColorCase 2 Identifies the coloring directive associated with the counter.
Determines how the PerChannel is transformed for coloring (as detailed by the Decolor() function) and
what PerColor value, if any, to associate with the channel. Four cases are defined as follows:

00b = Do not color
01b = Explicit by RX.PORT
10b = Explicit by TX.PORT
11b = Implicit (only meaningful when PerChannel is RX.PORT or TX.PORT)

Implicit is normally used for per-port counters while explicit is used for aggregate counters (such as
VLAN counters where ingress counters would use explicit RX.PORT and egress uses explicit TX.PORT).

PerColor 1 Either RX.PORT[2] or TX.PORT[2], depending on ColorCase.
Not relevant if ColorCase is zero. This is an implied parameter derived by ColorCase. For example, it is
not explicitly set in the bank's configuration.

CounterType 1 Identifies the counter type (64b rollover versus 1b saturating), as previously defined.

if ColorCase == 3 // For PerChannel == RX.PORT or TX.PORT
 Decolor(PerChannel) = {PerChannel[15:3],PerChannel[1:0]}
else
 Decolor(PerChannel) = PerChannel

FM5000/FM6000 Datasheet—Frame Processing

222 331496-001

Next, PerIdx64 (16b) and BitIdx (6b) quantities are calculated in a manner dependent on ColorCase
and CounterType.

Finally, BankID (5b) and CounterIdx64 (11b) quantities are calculated as:

The conceptual counter ID can be considered to be the 3-tuple (BankID, CounterIdx64, BitIdx), where
BitIdx is only relevant for CounterType =1b. The identified counter is incremented so long as BankID
matches BANK_CFG[bank].BankID.

As an example, to implement per-port counters, a bank's configuration parameters are configured as
follows:

• Select_PerChannel — Set to RX.PORT or TX.PORT as appropriate.

• Select_CounterNum — Chosen as desired from one of the 5-bit {RX,TX,AR}.IDX5 channels.

• PerSpanMantissa — Set to 19.

• PerSpanExponent — Set to 2.

• ColorCase — Set to 3.

• CounterType — Set to 0.

• BankID — Set to 0.

Note: If any input channel selected by the bank configuration is invalid (power-gated), the bank
counter index is also invalid and no counter in the bank counts the frame.

ColorCase>0? CounterType Perldx64 Bitldx

0 0 PerID[15:0] No

0 1 PerID[15:6] PerID[5:0]

1 0 {PerID[14:0], PerColor} No

1 1 {PerID[15:6], PerColor} PerID[5:0]

CounterID64 = (PerSpan * CounterNum) + PerIdx64
BankID = CounterID64[15:11]
CounterIdx64 = CounterID64[10:0]

331496-001 223

Frame Processing—FM5000/FM6000 Datasheet

5.22.13 Bank Index Muxing

All counter banks are identical and select their input CounterNum and PerChannel input indices based
on static bank configuration from a pool of all indices available. However, due to implementation cost
considerations, only specific subsets of indices are available to each bank as detailed in the sections
that follow.

5.22.13.1 CounterNum Channel Sources

The CounterNum channel mux pathways are listed in Table 5-100. The select encodings are uniform
over all banks, but certain select cases are invalid for specific banks. Selecting an invalid choice for a
particular bank result in a zero CounterNum value.

Table 5-100 Counter Channel MUX Pathways

Select# Source Banks 0-to-15

0 AX.IDX[0] Yes

1 AX.IDX[1] Yes

2 AX.IDX[2] Yes

3 AX.IDX[3] Yes

4 AX.IDX[4] Yes

5 AX.IDX[5] Yes

6 RX_LENGTH_BIN Yes

7 RX.IDX5A Yes

8 RX.IDX5B Yes

9 RX.IDX5C Yes

10 RX.IDX12A Yes

11 TX_LENGTH_BIN Yes

12 TX.IDX4A Yes

13 TX.IDX4B Yes

14 TX.IDX12A Yes

15 TX.IDX12B Yes

FM5000/FM6000 Datasheet—Frame Processing

224 331496-001

5.22.13.2 Per-Index Channel Sources

Mux pathways for the PerChannel source channels used in each bank's Counter ID calculation are listed
Table 5-101.

Note: This matrix becomes sparser as the design cost is better understood.

5.22.14 Atomicity

Unlike FM4000, all management accesses to the FM5000/FM6000's counters are atomic with respect to
the 64 bits of each counter. All 16 banks share a single 64-bit cached read register with the same read
semantics as other multi-word register caches elsewhere in the FM5000/FM6000. Specifically, each
time management reads from an address that does not match the cached counter's address or else
from the address of the cache entry's least significant word, the cache is refilled and the requested
word is returned. Otherwise, the cached word is returned directly without reading the counter state.

5.22.15 Clearing Counters

To support selective clearing of 1-bit saturating counter state, the statistics bank counters have Clear-
on-Write-1 (CW1) access semantics. A write with a non-zero value clears the counter bits
corresponding to the 1b's in the value written. A write of 0b has no effect.

Table 5-101 Counter Source Channels

Select# Source Banks 0-to-19

0 RX.PORT Yes

1 TX.PORT Yes

2 RX.IDX12A Yes

3 RX.IDX12B Yes

4 RX.IDX16A Yes

5 RX.IDX16B Yes

6 TX.IDX12A Yes

7 TX.IDX12B Yes

331496-001 225

Ethernet Port Logic (EPL)—FM5000/FM6000 Datasheet

6.0 Ethernet Port Logic (EPL)

There are 24 EPL blocks in the FM5000/FM6000, each containing four SerDes lanes and four Media
Access Controllers (MACs). One MAC is 40 GbE capable; the other three MACs are 10 GbE capable. For
more details, see Section 11.5, “EPL Blocks”.

6.1 Overview

Each EPL includes four MACs and four SerDes lanes for external connections (see Figure 6-1). SerDes
lanes are numbered A through D; MACs and their corresponding channels are numbered 0 through 3.
Each MAC is connected to the internal ports of the switch fabric through a 1.25 GHz x8-bit channel.

The switch supports 24 EPLs or 96 SerDes lanes that can support up to 72 Ethernet ports by using port
mapping (see Section 6.2.2)

Figure 6-1 EPL Block Diagram

FM5000/FM6000 Datasheet—Ethernet Port Logic (EPL)

226 331496-001

The EPL includes the following elements:

SerDes

• Physical interface including the following functions:

— Serial transmit and receive

— Symbol locking

— Built-in Self Test (BIST)

— 8b/10b encoding and decoding

— Lane polarity reversal

PCS

• Reconciliation layer which includes the following functions:

— Lane alignment

— Lane ordering reversal

— Frame boundary decoding

— 64/66 encoding and decoding

• Clause 73, 37 and SGMII auto-negotiation

MAC

• Packet receive and transmit.

• CRC validation and CRC computation

• Programmable handling of preamble

Management interface

• SBUS interface-to-SPICO micro-controller

• Management interface to processor

Clocking

• One reference clock to SerDes (156.25 MHz)

• Two recovered receive clocks

EPLs are daisy-chained together for management purposes (see Figure 6-2).

331496-001 227

Ethernet Port Logic (EPL)—FM5000/FM6000 Datasheet

There are two management accesses:

• Memory mapped for common Ethernet port registers.

• Serial bus for less frequently used registers.

— The serial bus is accessible via the SBUS controller (see LSM).

— A micro-controller is also present in the chain to perform SerDes management.

6.2 Port Mapping

6.2.1 Port Numbering

At the chip level, the internal ports are numbered 0 through 75 and attached to the various interfaces;
EPLs, MSB and PCIe. The 24 EPLs are geometrically split odd/even with odd on right and even on left.

Twelve of the EPLs (EPL[13..24], independent EPL known as EPL4) are fully connected to the crossbars
and operate independently of each other, whereas the remaining twelve EPLs (EPL[1..12], paired EPL
known as EPL8) are arranged in pairs, in which an odd EPL is paired with an even EPL (see Figure 6-3).

EPL4 is often named for the 12 independent EPLs and EPL8 often named for the remaining 12 paired
EPLs.

Figure 6-2 EPL Management

FM5000/FM6000 Datasheet—Ethernet Port Logic (EPL)

228 331496-001

The exact mapping of physical interfaces at the chip level to internal ports is listed in Section 6.2.2.

6.2.2 Port Mapping Using the Channel

To connect with the internal switch fabric, an independent EPL or a paired EPL has four channels [0..3]
to connect via a crossbar to the internal switch fabric. (See Table 6-1 and Figure 6-4).

Figure 6-3 EPL Floor Plan (Bottom View; Pin Facing)

Table 6-1 FM5000/FM6000 Port Mapping

Interface Internal Port Interface Internal Port

PCIe host port 0 EBI host port (MSB) 1

Reserved 2 Loopback 3

EPL[1..2], Channel #0 4 EPL[1..2], Channel #1 5

EPL[1..2], Channel #2 6 EPL[1..2], Channel #3 7

EPL[3..4], Channel #0 8 EPL[3..4], Channel #1 9

EPL[3..4], Channel #2 10 EPL[3..4], Channel #3 11

EPL[5..6], Channel #0 12 EPL[5..6], Channel #1 13

EPL[5..6], Channel #2 14 EPL[5..6], Channel #3 15

EPL[7..8], Channel #0 16 EPL[7..8], Channel #1 17

EPL[7..8], Channel #2 18 EPL[7..8], Channel #3 19

331496-001 229

Ethernet Port Logic (EPL)—FM5000/FM6000 Datasheet

Each channel interface consists of Tx/Rx lanes as a path to the crossbar and supports a maximum data
rate of 10 Gb/s. Each lane contains two differential pairs in two directions: Tx pair and Rx pair. Each
pair is an AC-coupled differential pair in an opposite polarity of wires: positive wire and negative wire.

Each channel is mapped to an internal port number of the switch fabric, but can be flipped within an
EPL as described in Section 6.2.3.

Vice versa, each EPL offers four outbound SerDes lanes [A..D] to an external Physical Media Access
(PMA) or Physical Media Device (PMD) called PHY or SFP+ modules. The EPL implements many features
of multiple network standard interfaces, and the EPL lanes can perform and comply with transmitting or
receiving an electrical interface of the defined standard. See Section 6.3 for a detailed description of
supported operating modes.

EPL[9..10], Channel #0 44 EPL[9..10], Channel #1 45

EPL[9..10], Channel #2 46 EPL[9..10], Channel #3 47

EPL[11..12], Channel #0 48 EPL[11..12], Channel #1 49

EPL[11..12], Channel #2 50 EPL[11..12], Channel #3 51

EPL[13], Channel #0 52 EPL[13], Channel #1 53

EPL[13], Channel #2 54 EPL[13], Channel #3 55

EPL[14], Channel #0 40 EPL[14], Channel #1 41

EPL[14], Channel #2 42 EPL[14], Channel #3 43

EPL[15], Channel #0 56 EPL[15], Channel #1 57

EPL[15], Channel #2 58 EPL[15], Channel #3 59

EPL[16], Channel #0 20 EPL[16], Channel #1 21

EPL[16], Channel #2 22 EPL[17], Channel #3 23

EPL[17], Channel #0 24 EPL[18], Channel #1 25

EPL[17], Channel #2 26 EPL[17], Channel #3 27

EPL[18], Channel #0 28 EPL[18], Channel #1 29

EPL[18], Channel #2 30 EPL[18], Channel #3 31

EPL[19], Channel #0 32 EPL[19], Channel #1 33

EPL[19], Channel #2 34 EPL[19], Channel #3 35

EPL[20], Channel #0 36 EPL[20], Channel #1 37

EPL[20], Channel #2 38 EPL[20], Channel #3 39

EPL[21], Channel #0 60 EPL[21], Channel #1 61

EPL[21], Channel #2 62 EPL[21], Channel #3 63

EPL[22], Channel #0 64 EPL[22], Channel #1 65

EPL[22], Channel #2 66 EPL[22], Channel #3 67

EPL[23], Channel #0 68 EPL[23], Channel #1 69

EPL[23], Channel #2 70 EPL[23], Channel #3 71

EPL[24], Channel #0 72 EPL[24], Channel #1 73

EPL[24], Channel #2 74 EPL[24], Channel #3 75

Table 6-1 FM5000/FM6000 Port Mapping (Continued)

Interface Internal Port Interface Internal Port

FM5000/FM6000 Datasheet—Ethernet Port Logic (EPL)

230 331496-001

6.2.3 Default Lane Reversal and Polarity
Inversion Inside the Package

For some of the EPLs, the inter-connection from the EPL channels on the internal crossbar to the
external output SerDes lane of the EPL on package are reversed by default, resulting in the following
external SerDes lane to EPL internal channel mapping table (see Table 6-2). For example, EPL[1]'s
physical connection to the package pins is reversed resulting in lanes A, B, C, D matching channels 3, 2,
1, 0 instead of 0, 1, 2, 3. This default configuration can be changed in FM5000/FM6000 platform driver
code to take effect of the default setting the EPL register.

Note: The lane crossover (lane swapping) is not supported among these four lanes such as A-C
and B-D as well as lane A-B and lane C-D.

Randomly swapping those four lanes within an EPL is not possible. For example, A:C:B:D or D:A:B:C, or
C:A:D:B.

However, the polarity of the positive and negative of each lane can be inverted through a register
setting change. The FM5000/FM6000 platform API driver code change in Platform_port.c is required to
make the corresponding register effective.

Platform_port.c in FM5000/FM6000 platform API driver code:

#define RV_NONE FM_LANE_REVERSE_NONE

#define RV_TXLN FM_LANE_REVERSE_TX

#define RV_RXTX FM_LANE_REVERSE_RX_TX

#define INVERT_RX FM_POLARITY_INVERT_RX

#define INVERT_NO FM_POLARITY_INVERT_NONE

331496-001 231

Ethernet Port Logic (EPL)—FM5000/FM6000 Datasheet

Table 6-2 EPL Channel Mapping

Interface Flipped? Lane-to-Channel Mapping

EPL[1] Yes Lanes {A,B,C,D} = Channels {3,2,1,0}

EPL[2] Yes Lanes {A,B,C,D} = Channels {3,2,1,0}

EPL[3] No Lanes {A,B,C,D} = Channels {0,1,2,3}

EPL[4] Yes Lanes {A,B,C,D} = Channels {3,2,1,0}

EPL[5] No Lanes {A,B,C,D} = Channels {0,1,2,3}

EPL[6] No Lanes {A,B,C,D} = Channels {0,1,2,3}

EPL[7] No Lanes {A,B,C,D} = Channels {0,1,2,3}

EPL[8] Yes Lanes {A,B,C,D} = Channels {3,2,1,0}

EPL[9] No Lanes {A,B,C,D} = Channels {0,1,2,3}

EPL[10] No Lanes {A,B,C,D} = Channels {0,1,2,3}

EPL[11] No Lanes {A,B,C,D} = Channels {0,1,2,3}

EPL[12] Yes Lanes {A,B,C,D} = Channels {3,2,1,0}

EPL[13] Yes Lanes {A,B,C,D} = Channels {3,2,1,0}

EPL[14] No Lanes {A,B,C,D} = Channels {0,1,2,3}

EPL[15] No Lanes {A,B,C,D} = Channels {0,1,2,3}

EPL[16] No Lanes {A,B,C,D} = Channels {0,1,2,3}

EPL[17] Yes Lanes {A,B,C,D} = Channels {3,2,1,0}

EPL[18] No Lanes {A,B,C,D} = Channels {0,1,2,3}

EPL[19] No Lanes {A,B,C,D} = Channels {0,1,2,3}

EPL[20] Yes Lanes {A,B,C,D} = Channels {3,2,1,0}

EPL[21] No Lanes {A,B,C,D} = Channels {0,1,2,3}

EPL[22] Yes Lanes {A,B,C,D} = Channels {3,2,1,0}

EPL[23] No Lanes {A,B,C,D} = Channels {0,1,2,3}

EPL[24] Yes Lanes {A,B,C,D} = Channels {3,2,1,0}

FM5000/FM6000 Datasheet—Ethernet Port Logic (EPL)

232 331496-001

6.2.4 EPL Port Pairing

As shown in Figure 6-3, the EPLs 1 through 12 are arranged in pairs where each pair shares the same
four internal ports to the crossbar. Figure 6-4 shows how the internal port sharing is done.

This arrangement supports the following configurations:

• Active/standby of 40 GbE, 4 x 10 GbE or 4 x 1 GbE

— An EPL in active mode can forward packets to the switch fabric or receive packets from the
switch fabric. An EPL in standby mode can establish and maintain an active link with its link
partner but cannot receive nor transmit any packet. The change from active to standby is under
software control using a selector in the EPL to control the multiplexers installed between the
EPLs and the crossbars.

— The active/standby selection can be set independently for the 4 x 10 GbE or 4 x 1 GbE.

• Support of two independent XAUI ports

Note: XAUI is only available on channel 0 of EPL4. Software must appropriately set the
mapping.

Figure 6-4 EPL Pairing

331496-001 233

Ethernet Port Logic (EPL)—FM5000/FM6000 Datasheet

The mapping of each pair of channels is done through a special channel mapper controlled by a 6-bit
code coming from an EPL. The internal channels of a paired EPL can be swapped dynamically without a
system soft reset. For example, EPL[1] channel #0 connects to a 10GBASE-T PHY and EPL[2] channel
#0 connects to a 10 GbE SFP+ module. Enabling the channel swapping between EPL[1] and EPL[2] at
run-time by a register setting is possible and takes immediate affect without a performing a system soft
reset.

6.3 Mode of Operation

Each EPL supports up to four MACs, four SerDes lanes output and four channels to the internal fabric.
The switch supports 24 EPLs for a total of 96 SerDes lanes output. However, the number of channels to
the internal fabric 72 Ethernet ports are limited to 72 channels.

Mapping of MAC channels to the internal fabric Ethernet ports follow these rules:

• 48 MACs of 12 independent EPLs (EPL4) have full connectivity to the fabric for a total of 48
channels.

• 48 MACs shared among 12 paired EPLs (EPL8) connect to the internal fabric for a total of 24
channels.

• Optional SGMII ports can operate in 1 GbE or 2.5 GbE mode. In 2.5 GbE mode, the bit rate is 3.125
Gb/s.

Table 6-3 EPL8 Channel Mapping

Active
Channel 0 Channel 1 Channel2 Channel 3 Note

3 2 1 0

0 x x x Bypass x x x

1 x x x Active x x x

x 0 x x x Bypass x x

x 1 x x x Active x x See note that follows

x x 0 x x x Bypass x

x x 1 x x x Active x

x x x 0 x x x Bypass

x x x 1 x x x Active

Note:
• MapXauiToCh1 = 0b:

 — Map EPL ch1 to fabric ch1
 — Map fabric ch0 to EPL ch0

• MapXauiToCh1 = 1b:
 — Map EPL ch0 to fabric ch1
 — Map fabric ch1 to EPL ch0
 — Behavior is undefined if set to 1b for other mode than XAUI

FM5000/FM6000 Datasheet—Ethernet Port Logic (EPL)

234 331496-001

If the port uses more than one lane, the lane ordering (normal A-B-C-D or reverse D-C-B-A) is
programmable on a per-port direction (see Section 6.2.3). The lane polarity (+/- or -/+) is always
programmable on a per-port, per-lane direction (see Section 6.2.3). The maximum speed on a specific
MAC is always 10 GbE after decoding (or before encoding) except for MAC 0 which is 40 GbE capable.
Also, if a single MAC handles more than one lane, each lane must be running at the same speed and
come from the same link partner (the MACs themselves might run at different speed in respect to each
other). Table 6-5 lists the lane speed for each lane.

The EPL is compliant to the standards listed in Table 6-6.

Table 6-4 EPL Modes

Modes
MAC#0 MAC #1 MAC #2 MAC #3

Normal SerDes Bit Rate Encoding
A B C D

SGMII1

1. Optional.

Yes Yes Yes Yes 1.25 Gb/s or 3.125 Gb/s 8b/10b

1000BASE-nn
2500BASE-nn

Yes Yes Yes Yes 1.25 Gb/s or 3.125 Gb/s 8b/10b

XAUI1
Yes

A:B:C:D or D:C:B:A
No No No 4 x 3.125 Gb/s 8b/10b

10GBASE-nn,
SFP+ Yes Yes Yes Yes 10.3125 Gb/s 64b/66b

40GBASE-R
Yes

A:B:C:D or D:C:B:A
No No No 4 x 10.3125 Gb/s 64b/66b

24GBASE-R
Rate is 24.242

Gb/s

Yes
A:B:C:D or D:C:B:A

No No No 4 x 6.25 Gb/s 64b/66b

20GBASE-R
Yes

A:B or B:A
No No No 2 x 10.3125 Gb/s 64b/66b

Table 6-5 EPL Lane Speed

Mode MAC #0 MAC #1 MAC #2 MAC #3

Four independent MACs 1.25-10.3125 Gb/s 1.25-10.3125 Gb/s 1.25-10.3125 Gb/s 1.25-10.3125 Gb/s

One MAC 1.25-3.125-10.3125 Gb/s

Table 6-6 EPL Standard Modes

Mode #SerDes Standard Encoding

SGMII1 1 Cisco* 8b/10b

1000BASE-X 1 IEEE Clause 36,37 8b/10b

1000BASE-KX/2500BASE-KX 1 IEEE 802.3ap 8b/10b

XAUI1 4 IEEE 802.3ap 8b/10b

10GBASE-KX4 4 IEEE 802.3ap 8b/10b

10GBASE-CX4 4 IEEE 802.3ak 8b/10b

10GBASE-R (KR) 1 IEEE 802.3ap 64b/66b

331496-001 235

Ethernet Port Logic (EPL)—FM5000/FM6000 Datasheet

6.4 Reference Clock

The EPL requires one 156.25 MHz reference clock per group of 6 EPLs. This reference clock is suitable
for 1.25 GbE, 3.125 GbE, 6.25 GbE and 10.3125 GbE. The arrangement is shown in Table 6-7.

Figure 6-5 shows the reference clock internal termination scheme. These resistors can be disabled by
strapping LED_DATA[0]. The LED_DATA[0] pin is latched when CHIP_RESET_N is de-asserted, and has
an internal pull down that defaults to internal termination. If this pin is externally pulled up (such as
with a 5 KΩ resistor to VDD25), the REFCLK input has its internal termination disabled.

SFP+ Direct Attach Copper2 1 SFF 8431 64b/66b

SFP+ SFI Interface (10GBASE-SR)3 1 SFF 8431 64b/66b

20GBASE-R 2 IEEE 802.3ba (only first two lanes used) 64b/66b

40GBASE-KR4 4 IEEE 802.3ba 64b/66b

QSFP 5M Direct Attach (40GBASE-CR4) 4 IEEE 802.3ba 64b/66b

QSFP PMD Service Interface (40GBASE-SR4) 4 IEEE 802.3ba 64b/66b

1. Optional.
2. For SFP+ Direct Attach applications, Intel recommends using 24 gauge direct attach cables that are 5 meters or less.
3. Deterministic jitter generation is 150 mUI maximum verses SFI specification of 100 mUI maximum.

Table 6-7 EPL Clock Mode

EPL Clock Source EPLs

ETH_REFCLK1 1 3 5 7 9 11

ETH_REFCLK2 2 4 6 8 10 12

ETH_REFCLK3 13 15 17 19 21 23

ETH_REFCLK4 14 16 18 20 22 24

Figure 6-5 Ethernet Reference Clock Internal Termination

Table 6-6 EPL Standard Modes (Continued)

Mode #SerDes Standard Encoding

FM5000/FM6000 Datasheet—Ethernet Port Logic (EPL)

236 331496-001

6.5 SerDes Characteristics

The SerDes operates at any of the following speeds:

• 10.3125 GbE, 64b/66b encoding

• 6.25 GbE, 64b/66b encoding

• 3.125 GbE, 8b/10b encoding

• 1.25 GbE, 8b/10b encoding

6.25 GbE is a non-standard mode of operation that can be used. For example, to create a 24.24 GbE
4-lane MLD link between FM5000/FM6000 devices.

The following is a list of SerDes characteristics:

• Programmable pre and post emphasis

• Decision Feedback Equalization (DFE)

• Symbol lock

• Eye measurement

• Auto adjustment via dedicated micro-controller

• KR DFE training

• Loopbacks

6.5.1 DFE Tuning and Emphasis

The receiver DFE tuning and transmit emphasis is done automatically for KR and done as part of the KR
training sequence.

The DFE tuning and transmit emphasis is static for 1.25 Gb/s.

The DFE tuning is either static or dynamic for 3.125 GbE and 5.15625 GbE and 10.3125 GbE XFI.The
dynamic tuning is done by the SPICO* micro-controller while static is done by software. The emphasis
is always static for 3.125 GbE and 5.15625 GbE and it always done by software.

6.5.2 Pattern Generator/Comparator

Each SerDes lane has one pattern generator and comparator. The patterns supported are:

• Polynomial

— PRBS: x 7+x 6+1 (ITU V.29)

— PRBS: x 15+x 14+1 (ITU-T O.151)

— PRBS: x 23+x 18+1 (ITU-T O.151)

— PRBS: x 31+x 28+1

— PRBS: x 11+x 9+1 (IEEE Std 802.3ap-2007)

331496-001 237

Ethernet Port Logic (EPL)—FM5000/FM6000 Datasheet

— PRBS: x 9+x 5+1 (fiber channel)

• Fix pattern

— 10/20/40 bits

Both link partners must be configured with the same pattern for comparator to work properly. Once
configured, the comparator is capable to self synchronize to the incoming data and also include a
counter to count the number of errors detected. The software should first check synchronization has
been detected and then reset the counter before monitor a bit error rate.

6.5.3 Loopbacks

The SerDes supports two loopbacks:

• Near loopback where the Tx serialized output is looped back into the Rx serial input.

• Far loopback where the received parallel data is looped back into the transmit parallel data.

— The data is placed in a small FIFO for clock boundary crossing but the Tx must be traceable to
the same clock source as the link partner for this feature to operate properly.

6.5.4 Eye Measurement

The SerDes support eye measurement.

6.6 Recovered Clocks

The FM5000/FM600 offers support for up to two recovered clocks. The two recovered received clocks
are daisy-chained from one EPL to the next, passed to two clock dividers at the end of the chain, and
presented to two dedicated pins.

Within each EPL, two identical circuits enable clock selection. Each circuit consists of a 5:1 multiplexer
to select one of the four local sources (one from each SerDes) or the clock of the adjacent EPL and a
divide-by-2 or divide-by-4 to divide the local clock selected. The divider does not apply for pass-
through clocks. If all EPLs are in pass-through, no recovered clock is available. The recovered clock
from EPL is rippled through to the manageability module where the final dividers are located.

ClkOut = BitRate/20 x (M/N) / DIV (3.125G or 1.25GG, use divide-by-2)
ClkOut = BitRate/80 x (M/N) / DIV (5.15625G or 10.3125G, use divide-by-4)

Where M must be smaller than N.

For example, for 10.3125 GbE, if M=32, N=33 and DIV=15625, then:

10.3125 GbE/80 x (32/33) / 15625 => 8 KHz

FM5000/FM6000 Datasheet—Ethernet Port Logic (EPL)

238 331496-001

6.7 Auto-Negotiation

The FM5000/FM6000 supports auto-negotiation as defined in clause 37 and clause 73 and the industry
de-facto SGMII auto-negotiation mode. The clause 73 is a standalone layer while the clause 37/SGMII
are attached to the PCS layer and controlled through the normal memory-mapped management
interface.

6.7.1 Clause 73

Clause 73 uses a relatively low-frequency to encode auto-negotiation messages. Each message is 48
bits long and is encoded in a 106-bit frames using a Manchester encoding scheme (see Figure 6-6).
These frames are exchanged between link partners before the link comes up because the speed and
mode of operation is not determined yet. The clause 73 requires a 125 MHz reference clock.

The auto-negotiation process is detailed in clause 73 and summarized here:

1. The AN state machine sends the mandatory control word frame repetitively setting the ACK bit to
0b. The control word includes an ID, which is a pseudo random number set by the hardware that is
static for the duration of this negotiation. The control word includes an NP bit to indicate if the
sender has more pages to send.

2. The AN expects to receive the mandatory control word and waits for three consecutive identical
copies of the control word to be received.

3. The AN sends an acknowledge (ACK set to 1b) and echoed the ID from the link partner.

4. The AN waits for an ACK with an echoed ID equal to the one sent. The receiver checks for NP and if
set enters the next page negotiation.

5. If neither the local end nor the link partner has more page to send, the AN completes.

Figure 6-6 EPL Auto-Negotiation Clause 73

331496-001 239

Ethernet Port Logic (EPL)—FM5000/FM6000 Datasheet

6. If one or both has next pages to send, they do so at that point starting first by sending the ACK bit
to 0b and then waiting for a valid next page before sending the next page. If one side as no next
page to send, it sends the NULL page.

The control word format is listed in Table 6-8.

The next page format is listed in Table 6-9.

Table 6-8 EPL Clause 73 Control Word Format

Bits Name Transmitter Receiver

4:0 Selector Fixed (00001).
Cannot be set by software.

Checked by hardware.

9:5 Echoed Nonce Transmitter echoes received transmitted Nonce in
this field once three valid identical CW are
received.

Checked by hardware to be equal to the
transmitted “transmitted Nonce” (if ACK is 1).

12:10 Pause Abilities Set by software. Pause abilities.
Read and interpreted by software once
negotiation exchange completes.

13 Fault Set by software. Fault at link partner.
Read and interpreted by software once
negotiation exchange is completes.

14 ACK Software presets if needed and hardware sets at
appropriate time.

Checked by hardware.

15 NP Software presets if needed and hardware sets at
appropriate time.
Set by hardware once three valid identical CW are
received.

Checked by hardware.

20:16 Tx Nonce ID for this negotiation session.
Set by hardware after each restart.

Link partner ID for this negotiation session.

45:21 Mode Abilities Abilities of this transmitter.
Set by software.

Abilities of link partner.
Read and interpreted by software.

47:46 FEC Abilities FEC abilities of this transmitter.
Set by software.

FEC abilities of link partner.
Read and interpreted by software.

Table 6-9 EPL Clause 73 Next Page Format

Bits Name Transmitter Receiver

10:0 Message Set by software. Read and interpreted by software once
negotiation exchange completes.

11 Toggle Set by software. Checked by hardware to be toggling.

12 ACK2 Set by software. Read and interpreted by software once
negotiation exchange completes.

13 MP Set by software. Read and interpreted by software once
negotiation exchange completes.

14 ACK Software presets if needed and hardware follows
once three valid identical CW are received.

Checked by hardware.

15 NP Software presets if needed and hardware follows
once three valid identical CW are received.

Checked by hardware.

47:16 Message Set by software. Read and interpreted by software.

FM5000/FM6000 Datasheet—Ethernet Port Logic (EPL)

240 331496-001

The details of the algorithm are as follows:

1. Software sets the MAC in AN73 mode.

• Software announces its local abilities by loading the control word into the
AN_73_BASE_PAGE_TX register. The NextPage bit in the CW must be set if there are other
pages to transmit.

• Software enables AN, starts a timer and waits.

2. The switch exchanges the CW with its partner.

• The switch transmits the AN_73_BASE_PAGE_TX as the control word repetitively with ACK bit
to 0b.

• The switch waits for three identical valid control words and stores them into
AN_73_BASE_PAGE_RX.

• When three identical valid control words are received, the switch echoes the NONCE received
into its own CW message and sets the ACK bit to 1b. If the switch detects the NONCE received
is equal to the NONCE transmitted, the switch posts a An73TransmitDisable interrupt and stops
and waits for software intervention, which changes the NONCE to a new random value. If the
NONCE is different, the switch waits for an ACK to be received.

• When an ACK is received, the switch posts an An73CompleteAcknowledge interrupt.

3. The software detects the An73CompleteAcknowledge interrupt that indicates that a page has been
received and can now read the AN_73_BASE_PAGE_RX register (or the AN_73_NEXT_PAGE_RX
register. If there are next pages, the software must load the AN_73_NEXT_PAGE_TX register with
the next page to send and set the TxNextPageLoaded bit. If there is no next page, go to step 6.

4. The switch exchanges the NP with its partner:

• The switch detects the write to the TxNextPageLoaded bit, clears it, and starts to transmit the
next page. It first transmits with the ACK bit set to 0b until the hardware receives three
identical NextPage messages.

• The switch detects three identical NextPage messages, then sets its ACK bit to 1b and stores
the receive page into the AN_73_NEXT_PAGE_RX register.

• The switch waits for three consecutive ACKs. Afterwards, the message in
AN_73_NEXT_PAGE_RX is updated.

• When an ACK is received, the switch posts an An73CompleteAcknowledge interrupt.

5. Steps 3 and 4 are repeated until all pages have been exchanged.

6. The switch posts an An73AnGoodCheck interrupt to indicate that the exchange of pages completed
and then waits for the link to come up.

7. Software detects the interrupt and then applies the highest common denominator.

• Software is responsible for programming SerDes at the proper speed, load the PCS mode
negotiated into the AN73 PCS mode register and set the appropriate timer for this mode to
sync.

8. The switch posts an An73AnGood when the link comes up in time or posts an An73TransmitDisable
interrupt if the link didn't come up before the timer run out.

9. Software detects An73AnGood and now declares the AN completed. If it was an
An73TransmitDisable, the state machine automatically returns to step 2.

331496-001 241

Ethernet Port Logic (EPL)—FM5000/FM6000 Datasheet

6.7.2 Clause 37

Clause 37 is a sub-mode of the 1000BASE-X operating mode. It enables exchanging abilities with the
remote device such as duplex mode, flow control or fault signaling.

The auto-negotiation process is detailed in clause 37 and summarized here:

1. The AN state-machine sends the mandatory control word frame repetitively setting the ACK bit to
0b. The control word includes an NP bit to indicate if the sender has more pages to send.

2. AN expects to receive the mandatory control word and waits for three consecutive, identical copies
of the control word to be received.

3. AN sends an acknowledge (ACK set to 1b) and echoed the ID from the link partner. The message is
sent for at least 10 ms.

4. AN waits for an ACK for at least 10 ms. The receiver then checks for NP and if set enters the next
page negotiation.

5. If neither the local end nor the link partner has more pages to send, AN completes.

6. If one or both has next pages to send, they do so at that point starting first by setting the ACK bit
to 0b and then waiting for a valid next page before sending the next page. If one side as no next
page to send, it sends the NULL page.

The 1000BASE-X has the ability to enter into clause 37 either manually via software intervention or
automatically upon link down detection or by detecting AN messages from remote devices. If
programmed to start clause 37 upon link down, clause 37 announces a remote fault and maintains the
announcement until the link is up. The remote fault is cleared when the link comes up and the
handshake completes.

The control word format for clause 37 is listed in Table 6-10.

Table 6-10 EPL Clause 37 Control Word Format

Bits Name Transmitter Receiver

4:0 Selector Set by software. Checked by software.

6:5 Duplex
(set by software)

Duplex abilities.
Read and interpreted by software once
negotiation exchange completes.

8:7 Pause Set by software. Pause abilities.
Read and interpreted by software once
negotiation exchange completes.

11:9 Reserved Set by software. Checked by software

13:12 Fault Set by software or hardware. For transmit, either set by software or hardware.
For receive, always interpreted by software.

14 ACK Software presets if needed and hardware sets at
the appropriate time.
Set by hardware once three valid identical CW
are received.

Checked by hardware.

15 NP Software presets if needed and hardware sets at
the appropriate time.
Set by hardware once three valid identical CW
are received.

Checked by hardware.

FM5000/FM6000 Datasheet—Ethernet Port Logic (EPL)

242 331496-001

The next page format is listed in Table 6-11.

The control word format for SGMII is listed in Table 6-12.

The details of the algorithm are as follows:

1. Software sets the MAC in 1000BASE-X mode.

• Software announces its local abilities by loading the control word into the
AN_73_BASE_PAGE_TX register. The NextPage bit in the CW must be set if there are other
pages to transmit.

• Software enables AN37, starts a timer and waits.

2. The switch exchanges the CW with its partner.

• The switch transmits the AN_37_BASE_PAGE_TX as the control word, repetitively with ACK bit
to 0b.

Table 6-11 EPL Clause 37 Next Page Format

Bits Name Transmitter Receiver

10:0 Message Set by software. Read and interpreted by software once
negotiation exchange completes.

11 Toggle Set by software. Checked by hardware for toggling

12 ACK2 Set by software. Read and interpreted by software once
negotiation exchange completes.

13 MP Set by software. Read and interpreted by software once
negotiation exchange completes.

14 ACK Software presets if needed and hardware follows
once three valid identical CW are received.

Checked by hardware.

15 NP Software presets if needed and hardware follows
once three valid identical CW are received.

Checked by hardware.

Table 6-12 EPL Clause 37 SGMII Control Word Format

Bits Name Transmitter Receiver

0 1 Set by software to 1b. Report 1. Validated by software.

9:1 Reserved Set by software to 0b. Report 0. Validated by software.

11:10 Speed Set by software to 0b. Report speed:
00b = 10 Mb/s
01b = 100 Mb/s
10b = 1000 Mb/s
11b = Reserved

Applied by hardware.

12 Duplex Set by software to 0b. Duplex mode.
Validated by software. Hardware ignores this
value and always assumes full duplex.

13 Reserved Set by software to 0b. Checked by hardware.

14 ACK Software presets if needed and hardware sets at
the appropriate time.
Set by hardware once three valid identical CW are
received.

Checked by hardware.

15 LinkUp Set by software. Checked by software

331496-001 243

Ethernet Port Logic (EPL)—FM5000/FM6000 Datasheet

• The switch waits for three identical valid control words and stores them into
AN_37_BASE_PAGE_RX.

• When an ACK is received, the switch posts an An37CompleteAcknowledge interrupt.

3. The software detects the An73CompleteAcknowledge interrupt indicating that a page has been
received and can now read the AN_37_BASE_PAGE_RX register (or AN_37_NEXT_PAGE_RX
register). If there are next pages, software must load the AN_37_NEXT_PAGE_TX register with the
next page to send and flips the ToggleNpLoaded bit. If there are no next pages, go to step 6.

4. The switch exchanges the NP with its partner

• The switch detects the change into the ToggleNpLoaded bit and starts to transmit the next
page. It first transmits with the ACK bit to 0b until hardware receives three identical NextPage
messages.

• The switch detects three identical NextPage messages, sets its ACK bit to 1b and stores the
receive page into the AN_37_NEXT_PAGE_RX register.

• The switch waits for three consecutive ACKs. The message in AN_37_NEXT_PAGE_RX is
updated.

• When an ACK is received, the switch posts an An73CompleteAcknowledge interrupt.

5. Steps 3 and 4 are repeated until all pages are exchanged.

6. The switch posts an An73IdleDetect interrupt to indicate that the exchange of pages completed.

7. Software detects the interrupt and then applies the highest common denominator.

The exchange can potentially be initiated by a link down event. The algorithm in this case is:

• Software has pre-configured the AN for this event.

• The switch detects a link down, starts to transmit the CW indefinitely with remote fault set.

• The switch detects a link up, clears the remote fault and starts the process previously described.

The exchange could potentially be initiated by the link partner. The algorithm in this case is:

• Software has pre-configured the AN for this event.

• The switch detects arrival of three consecutive AN37 messages.

• The switch starts the process previously described.

6.7.3 SGMII

SGMII is a de-generated mode of the 1000BASE-X clause 37. It enables a 10/1000/1000BASE-T PHY to
announce to the switch the negotiated values with its link partner. In this mode, the switch is passive
and only replies, it never initiates.

The auto-negotiation process is detailed in the Cisco SGMII specification and summarized here:

1. AN waits for a message from the PHY and operates normally until such message is received.

2. The AN state-machine receives three consecutive identical messages from the PHY.

3. The AN starts a Tx timer and sends an ACK for the length of this timer.

4. The AN restarts the Tx timer if the message receives changes but otherwise continue operation.

FM5000/FM6000 Datasheet—Ethernet Port Logic (EPL)

244 331496-001

5. After the TX timer completes, the AN checks if there is a change in the announcement versus the
current mode. If yes, it posts an interrupt to announce the change. If this is a speed change, the AN
can be programmed to automatically apply the speed change without software intervention.

The control word format for SGMII is listed in Table 6-13.

The algorithm is:

1. Software has pre-configured the AN for this mode.

• Software sets a transmit timer value (TX repeat time).

• Software enables AN and waits.

2. The switch operates normally until three identical messages are received.

• The switch starts a timer and transmits the CW for the duration of that timer. The ACK bit is
also set.

• The switch waits for the ACK bit to be set to 1b while running the Tx timer; the updated word is
stored in AN_37_NEXT_PAGE_RX.

• After the Tx timer terminates and if ACK was received, hardware posts an AN_DONE interrupt
and either applies the speed (if programmed to do so) and then posts a link up/down event (if
it changes).

3. Software detects the interrupt and applies the values detected if needed.

Table 6-13 EPL SGMII Control Word Format

Bits Name Receiver

0 1 Set by software and the PHY to 1b.
Should be validated by software but otherwise ignored by the switch.

9:1 Reserved Set by software and the PHY to 0b.
Should be validated by software but otherwise ignored by the switch.

11:10 Speed Set by software to 0b for the switch.
The PHY reports the speed through this field:

00b = 10 Mb/s
01b = 100 Mb/s
10b = 1000 Mb/s
11b = Reserved

The switch can be programmed to apply the speed change automatically. If the speed is not 1000 Mb/
s, 100 Mb/s or 10 Mb/s, AN restarts.

12 Duplex When set by software to 0b, the PHY reports the value negotiated with remote.
Should be validated by software but otherwise ignored by the switch. The switch only supports full
duplex and does not do anything different regardless of the value of this bit.

13 Reserved Set by software and the PHY to 0b.
Should be validated by software but otherwise ignored by the switch.

14 ACK Software set to 0b and hardware sets at the appropriate time.
Checked by hardware.

15 LinkUp Set by the PHY.
Checked by switch.
This bit is included in the overall link up / link down status reported by the MAC to the software.

331496-001 245

Ethernet Port Logic (EPL)—FM5000/FM6000 Datasheet

6.8 Physical Coding Sub-layer (PCS)

This section provides details about the FM5000/FM6000 (PCS).

6.8.1 40GBASE-R4

The PCS layer for 40GBASE-R4 (KR4/SR4/CR4) is designed to meet the IEEE 802.3ba, clause 80, 81,
82, 83 and 84.

The frame format in 40 GbE mode follows. The value of Dp (Data preamble) is 0x55 (symbol D21.2),
the value of Ds (Data start) is 0xD5 (symbol D21.6). The only mode of operation is to accept frames
that start with S, 6xDp and Ds as follows.

These frames are chopped into 64-bit chunks and the number of /I/ bytes added must be such that the
S byte always start a new 64-bit chunk.

The 64-bit chunks are then encoded into a 66-bit block that are distributed to four lanes using a
round-robin distribution as follows. An alignment marker is inserted after 16383 columns.

The addition of the alignment marker can cause a decrease of throughput, but is compensated by
removing one column of IFG within the next 16383 columns.

The alignment marker includes Block Parity Checking (BIP) that verifies the parity of one lane over
every 16383 blocks. The transmitter always generates the correct BIP and the receiver verifies it and
reports any error in the BIP error counter. BIP checking does not start until the lane alignment has been
achieved.

The lane ordering is automatically discovered using the alignment marker, and the mapping of lanes
from an external device to the switch might follow an arbitrary lane mapping.The EPL has the capability
to override the automatic lane ordering with a manual method.

The receiver lane deskew logic is designed to handle lane skew up to 1856 bits (180 ns).

The normal bit rate is 10.3125 Gb/s. An alternative rate of 5.15625 Gb/s is also supported in this mode.

S 6 x Dp Ds D D T I I S.

N x 64-bits

66b block n 66b block n+4 Align Marker 66b block n+8 LANE 0

66b block n+1 66b block n+5 Align Marker 66b block n+9 LANE 1

66b block n+3 66b block n+7 Align Marker 66b block n+11 LANE 3

66b block n+2 66b block n+6 Align Marker 66b block n+10 LANE 2

. . .

. . .

. . .

. . .

FM5000/FM6000 Datasheet—Ethernet Port Logic (EPL)

246 331496-001

6.8.2 20GBASE-R2

The 40GBASE-R can also be used in a special non-standard two-lane mode (20GBASE-R). This mode
follows the same standard except lanes 2 and 3 are not used. All other attributes of 40GBASE-R
remains the same. For example, markers for lane 0 and lane 1 are as described in the 40GBASE-R
specification.

6.8.3 10GBASE-R

The frame format in 10GBASE-R (KR/SR/CR) serial mode is as follows. The value of Data preamble (Dp)
is 0x55 (symbol D21.2); the value of Data start (Ds) is 0xD5 (symbol D21.6). The default mode of
operation is to accept only frames that starts with S, 6xDp and Ds.

Configurable options in the MAC enables various preamble size (4, 8, 16, 12) and enables preamble to
be treated as data.

The normal rate for this interface is 10.3125 Gb/s. An alternative rate of 5.15625 Gb/s is also
supported for this mode.

6.8.4 10GBASE-X

The frame format in 10GBASE-X (XAUI/KX4/CX4) mode is as follows. The value of Dp is 0x55 (symbol
D21.2); the value of Ds is 0xD5 (symbol D21.6). The default mode of operation is to accept only frames
that starts with S, 6xDp and Ds.

Configurable options in the MAC enables various preamble size (4, 8, 12, 16) and enables preamble to
be treated as data.

Disparity is applied per lane. Sequences of K/A/R columns follow IEEE specifications.

S 6 x Dp Ds D D T I I S.

N x 64-bits

SLANE 0

DpLANE 1

DpLANE 3

DpLANE 2

. . .

. . .

. . .

. . .Dp

Dp

Dp

Dp

D

D

D

D

D

D

D

D

D

T

K

K

A

A

A

A

R

R

R

R

K

K

K

K

331496-001 247

Ethernet Port Logic (EPL)—FM5000/FM6000 Datasheet

6.8.5 1000BASE-X Frame Format

The frame format in 1000BASE-X mode (or SGMII) is listed in Table 6-13.

The 1000BASE-X doesn't allow preamble to be use as data. The preamble can be of any size on ingress
but must at least have a /S/ symbol, one or more /Dp/ and a /Ds/ symbol. The receiver first checks for
/S/, then skips all data bytes until /Ds/ is detected and then starts to capture the frame. For egress, the
PCS transmitter terminates the current idle sequence before starting a new frame, so the preamble is
reduced by 1 byte (removing one /Dp/) if the MAC had presented the frame to the PCS layer in the
middle of an idle sequence. The minimum IFG configurable is four bytes that can get reduced to 3 byes
(/S/, /Dp/, /Ds/) due to alignment of idle sequence.

In the 100 Mb/s mode, PCS searches for /S/ and then samples incoming data every 10 cycles. In the 10
Mb/s mode, PCS samples incoming data every 100 cycles.

6.8.6 Link Status

The PCS layer reports if a link is up or down. The link status are fully de-bounced with a different
internal timer for link going down and link going up. An interrupt is posted each time the link status
changes. A link is declared up when:

• Symbol locks has been achieved

• Lane alignment has been achieved

• Valid idle sequences are received

• No local faults are reported

• No remote faults are reported

Any of these conditions can be enabled or disabled by software. The default is for all conditions to be
enabled.

6.8.7 FSIG

The 10 GbE and 40 GbE PCS function is capable of enabling a software configurable FSIG sequence
transmission. The same PCS has the ability to receive an FSIG sequence at any time regardless of
whether the FSIG transmission sequence is enabled or not. No interrupts are offered for receiving FSIG,
the last value received is simply saved in a register.

Ds D D T I1 or I2. . . I2S [1..N] Dp . . .

Preamble

FM5000/FM6000 Datasheet—Ethernet Port Logic (EPL)

248 331496-001

6.8.8 IFGs

On transmit, it is necessary for the transmitter to modify the length of the Inter-frame Gap (IFG) to
align the Start control character to the next boundary of 32 bits for 10 GbE (first octet of the frame
must be on lane 0) and 64 bits for 40 GbE.

This is accomplished using one of the following two ways for both 1 GbE and 10 GbE:

• Guarantee minimum IFG — The MAC inserts additional idle characters to align the start of
preamble on a four byte boundary (0, 1, 2 or 3 bytes added) and then proceeds in adding IFGs in
group of 4. If the unit is configured for minimum of x12, the number of IFGs could actually be 12,
13, 14, 15 depending of frame size.

• Meet average minimum IFG — Alternatively, the transmitter might maintain the effective data
rate by sometimes inserting and sometimes deleting idle characters to align the Start control
character. When using this method, the RS must maintain a Deficit Idle Count (DIC) that represents
the cumulative count of idle characters deleted or inserted. The DIC is incremented for each idle
character deleted, decremented for each idle character inserted, and the decision of whether to
insert or delete idle characters is constrained by bounding the DIC to a minimum value of zero and
maximum value of three. This might result in inter-frame spacing observed on the transmit XGMII
that is up to three octets shorter than the minimum transmitted inter-frame spacing specified in
Clause 4; however, the frequency of shortened inter-frame spacing is constrained by the DIC rules.
The DIC is only reset at initialization and is applied regardless of the size of the IPG transmitted by
the MAC sub-layer. An equivalent technique might be employed to control RS alignment of the Start
control character provided that the result is the same as if the RS implemented DIC as previously
described.

The FM5000/FM6000 devices support both methods.

For the guarantee minimum IFG, the minimum value supported by the transmitter is eight for
10GBASE-R/20GBASE-R/40GBASE-R and four for SGMII/1000BASE-X/10GBASE-X. However, this value
might not guarantee reliable operation as there might not be enough idles for the link partner to
maintain integrity of the communication depending how the link partner implemented clock
compensation. For the meet average minimum IFG, the minimum value supported by the transmitter is
9 for 10GBASE-R/20GBASE-R/40GBASE-R and 5 for SGMII/1000BASE-X/10GBASE-X. The
recommended mode of operation is 12 with DIC enabled.

The 20 GbE/40 GbE interface includes the following extra functions:

• The Start control character must be aligned to the next 64-bit boundary, so the IFGs can only be
added in increment of eight, the DIC is designed to handle this case.

• An additional alignment marker column is periodically compensated for by deleting columns of /I/
between the markers. This is supported on receive and on transmit. For transmit, the compensation
is done by configuring the clock compensation circuit to include idle deletions at a rate
corresponding to inserted markers.

An extra circuit for clock compensation is also available that cuts IFGs periodically. The period is
programmable between [1..65536].

331496-001 249

Ethernet Port Logic (EPL)—FM5000/FM6000 Datasheet

6.8.9 Changing PCS Mode

PCS can be changed from any mode to any mode on a port-by-port basis and is configured in
EPL_CFG_B register. The correct method is to first set to PCS_DISABLE and then change to the desired
mode. The correct method to switch to 40 GbE and out of 40 GbE is to first set the PCS mode to
DISABLE on all four ports, then update EPL_CFG_B.QplMode to the desired configuration and then
update the EPL_CFG_B again with the desired PCS mode.

6.9 MAC

The MAC layer is responsible for the following actions:

In the receive direction:

• Detect start of frame and strip out pre-amble.

• Write the entire frame payload into memory except CRC.

• Compute CRC on frame payload:

— The scheduler has pushed segment pointers ahead of time.

— Writes the packet to memory as it is received.

• Validate the CRC and frame length at the end of frame and indicate to the frame control if the
frame received is good or bad. A frame is bad if any of the following condition are met:

— Frame has a bad CRC.

— Frame is too long. In this case the frame is terminated within a few bytes after the
maximum length configured has been reached. The MAC then checks the CRC of oversized
packets and records the statistics of how many long packets were received with correct CRC
and how many were received with bad CRC.

— Frame is too short or has a symbol errors. In this case, the frame is terminated immediately
and marked as bad, the MAC also enters a mode where it ignores the data received from
the PCS until the minimum frame size has been reached. This prevents the MAC from
overloading the switch with tiny frames.

— There was an overrun to the main data memory while the frame was written.

— The link went down while a frame was received.

In the transmit direction:

• The MAC receives the new frame (modified if needed) from the egress modifier.

• The transmitter first transmits the preamble, unless the preamble is part of packet payload,
then transmits the packet payload and computes a new CRC as the frame is being transmitted.
If the frame is shorter than the minimum allowed and CRC is to be added to the frame, the
frame gets padded with zeros after the last byte of the payload has been transmitted, up to
minimum number of bytes minus 4, then the CRC is added to the packet. If the packet is
shorter than the minimum by less than 4 bytes, the packets gets truncated to minimum packet
size minus 4 such that adding a valid CRC makes the frame exactly match the minimum frame
size.

FM5000/FM6000 Datasheet—Ethernet Port Logic (EPL)

250 331496-001

• The computed CRC replaces the original CRC in the frame. The CRC is inverted if the frame is
flagged as bad by the egress modifier. This can happen if the frame was originally received bad
but was already cut-through or if an irrecoverable ECC error occurred while the frame was
retrieved from memory. Padding to minimum frame size is done regardless if the frame is being
transmitted with a good or a bad CRC.

The MAC includes the following general transmit/receiver options:

Transmitter

• Force the port to drain all packets regardless of link status. The drain is applied immediately
and might cut short an in-flight frame.

• Force the port to hold any packets regardless of link status. The hold is applied cleanly at the
beginning of a frame.

• Port drains all packets automatically when link is down.

• Port holds transmission when link is down.

Receiver

• Drain all packets.

• Force all packets to be bad (debug mode).

• Force all packets to be good (debug mode).

6.9.1 Preamble and CRC Optional Processing

The FM5000/FM6000 MAC has optional features for the processing the preamble and CRC computations
enabling the switch to support custom hardware. The options are configurable per MAC and only
available for 10 GbE and 40 GbE interfaces. These options are not available for SGMII or 1000BASE-X.

Preamble Options

• Enable the receiver to either strip the preamble (default) or pass it to fabric.

• Enable the transmitter to either generate preamble locally or pass through what comes from
the fabric. If the selection is to pass through the preamble, the transmitter forces the first byte
of the pre-amble to an SDF symbol.

CRC Options

• The CRC computation has two options: the CRC computation might be started at preamble or
right after preamble. The default is after preamble as defined by IEEE. If the CRC is started at
preamble, the first byte of the frame is replaced with a configurable fixed value before the CRC
is computed. The option of starting CRC at preamble is only allowed if the preamble is captured
and passed to the fabric.

331496-001 251

Ethernet Port Logic (EPL)—FM5000/FM6000 Datasheet

6.9.2 Packet Generation

The MAC includes a CJAPT packet generation capabilities for testing XAUI and 1000BASE-X, the CJPAT
isn't available for KR and KR4. The CJPAT pattern is:

• START/PREAMBLE/SFD:

— <FB> 55 55 55 55 55 55 D5

• Payload:

— 0B for 1 Octet (lane 0);

— 7E for 3 Octets (lanes 1, 2, 3);

— 7E for 524 Octets—Low Density Transition Pattern;

— F4 for 4 Octets—Phase Jump;

— EB for 4 Octets—Phase Jump;

— F4 for 4 Octets—Phase Jump;

— EB for 4 Octets—Phase Jump;

— F4 for 4 Octets—Phase Jump;

— EB for 4 Octets—Phase Jump;

— F4 for 4 Octets—Phase Jump;

— AB for 4 Octets—Phase Jump;

— B5 for 160 Octets—High Density Transition Pattern;

— EB for 4 Octets—Phase Jump;

— F4 for 4 Octets—Phase Jump;

— EB for 4 Octets—Phase Jump;

— F4 for 4 Octets—Phase Jump;

— EB for 4 Octets—Phase Jump;

— F4 for 4 Octets—Phase Jump;

— EB for 4 Octets—Phase Jump;

— F4 for 4 Octets—Phase Jump;

— 7E for 528 Octets—Low-Density Transition Pattern;

— F4 for 4 Octets—Phase Jump;

— EB for 4 Octets—Phase Jump;

— F4 for 4 Octets—Phase Jump;

— EB for 4 Octets—Phase Jump;

— F4 for 4 Octets—Phase Jump;

— EB for 4 Octets—Phase Jump;

— F4 for 4 Octets—Phase Jump;

— AB for 4 Octets—Phase Jump;

FM5000/FM6000 Datasheet—Ethernet Port Logic (EPL)

252 331496-001

— B5 for 160 Octets—High-Density Transition Pattern;

— EB for 4 Octets—Phase Jump;

— F4 for 4 Octets—Phase Jump;

— EB for 4 Octets—Phase Jump;

— F4 for 4 Octets—Phase Jump;

— EB for 4 Octets—Phase Jump;

— F4 for 4 Octets—Phase Jump;

— EB for 4 Octets—Phase Jump;

— F4 for 4 Octets—Phase Jump.

• RC

— BD 9F 1E AB

• IFG

— <FD> followed by 11 idles

6.9.3 Reception Errors

The receiver checks various conditions while it is receiving a frame and posts an end-of-frame status to
the switch fabric at the end of the frame. The end-of-frame status could be one of the following:

• The frame was received with a good CRC and no other errors were encountered.

• The frame was received with a bad CRC.

• The frame reception was aborted for one of the following reasons:

— Frame is smaller than minimum size

— Oversized

— Disparity decoding error

— Invalid symbol

— Unexpected control symbol

— Malformed preamble

— Link fault detected

— Link went down

— MAC mode change

— Overflow

Some of the conditions previously enumerated can be individually enabled or disabled by software and
might also be available as interrupts. Table 6-14 lists all conditions and what type of control is available
for each one of them and if an interrupt is available to detect this particular condition.

331496-001 253

Ethernet Port Logic (EPL)—FM5000/FM6000 Datasheet

The switch includes a centralized statistics module that uses the end-of-frame condition and the frame
length to maintain per-port counters such as runt, undersized, frame size binning, etc. However, due to
the limited end-of-frame status posted to the fabric, some error conditions are accounted for in the
MAC itself.

6.9.4 Counters

The MAC includes the following counters:

• Overflows (8-bit, saturates)

— When the data couldn't be pushed to the fabric

• Under-flows (8-bit, saturates)

— When the data didn't arrive fast enough from the fabric

• Jabber packets (32-bit, rollover)

— Oversized packets that end up having a bad CRC or a framing error at the end.

• Oversized packets (32-bit, rollover)

— Oversized packets that end up having a good CRC at the end.

• Runt packets (32-bit, rollover)

— Runt packets that end up having a bad CRC or a framing error at the end.

• Undersized packets (32-bit, rollover)

— Undersized packets that end up having a good CRC at the end.

Table 6-14 EPL Conditions (1)

Error Type Interrupt Control

Bad CRC Yes Software can disable CRC checking.

Undersized No Software can configure minimum size.

Oversized No Software can configure maximum size.

Disparity error1

1. The disparity errors and symbol errors interrupts can also be raised during idle periods.

Yes Software can disable disparity error checking.

Invalid symbol1 Yes Always enabled. Software can select between two dispositions:
1. Terminate frame immediately.
2. Replace data with 0xFE and continue to receive frame until end of frame detected.

Note: If disposition 2, the CRC is most likely invalid.

Unexpected control
symbol

Yes Always enabled.

Link fault Yes Always enabled.

Preamble error No Always enabled.

Link fault detected No Always enabled.

MAC mode change Always enabled.

Overflow No Always enabled.

FM5000/FM6000 Datasheet—Ethernet Port Logic (EPL)

254 331496-001

• Number of LOCAL FAULT events: (16-bit, rollover)

— Incremented every time fault state machine switches to a LOCAL FAULT condition.

• Number of REMOTE FAULT events: (16-bit, rollover)

— Incremented every time fault state machine switches to a LOCAL FAULT condition.

• Decoding error counter (32-bit rollover)

— For 20 GbE/40 GbE only, counts the number of times the BIP checking failed

— For 10GBASE-R, counts the number of BER errors

— For 10GBASE-X and 1000BASE-X or SGMII, counts the number of disparity/code errors

Note: The error counter does count individual errors as long as they are separated in time by at
least 4 valid symbol.

6.9.5 Time Stamping for IEEE1588

Each EPL has a 31- bit clock counter register that is incremented at each EPL clock (coming from
Management PLL1, nominal 337.5 MHz). This register is used for time stamping. All EPLs use the same
clock source and are all phase locked to each other but might be offset relative to each other by ±3
clocks cycles. The time register is readable by software at any time.

On ingress, each MAC can be configured to replace the CRC with the time stamp for all packets received
(bit 7 of the last byte is set to 0b). The exact encoding is:

This time stamp becomes part of payload and is included in the packet transmitted to the local CPU
enabling the CPU to recover the exact arrival time of this packet. The time stamp is captured at the
time the CRC is replaced. Software has to subtract the time to receive the packet to determine the
arrival time at the beginning of the packet. This feature is optionally enabled in the MAC_CFG register.

On egress, if this feature is enabled, the MAC must be configured to replace the last four bytes of the
payload with a valid CRC (or a bad CRC if the frame was received with a bad CRC or an uncorrectable
memory error was detected for this packet). But before doing so, the MAC examines bit 7 of the last
byte and, if it is set to 1b, captures the ingress time from the packet and the current time into two

PACKET

TIME[6:0]

TIME[14:7]

TIME[22:15]

TIME[30:23]

PREAMBLE

07

0

331496-001 255

Ethernet Port Logic (EPL)—FM5000/FM6000 Datasheet

32-bit registers and raises an interrupt. This interrupt enables the CPU to recover the precise time at
which a packet exited the switch and also associates this event with a packet sent by the CPU. There is
only one egress capture time register per MAC, so the CPU should either issue only one frame requiring
time capture at a time, and read the captured time after an interrupt before emitting a new packet
requiring time stamping, or have an associated circuit (FPGA on EBI bus by example) to quickly capture
the time event before another one occurs.

Note: The ingress and egress time stamps have to be cleared before a new event is captured
(writing any value to the MAC_1588_STATUS clears the register), this ensures that both
time stamps are coherent and coming from the same packet.

6.10 Status and Interrupts

The MAC might produce the following interrupts/status:

• Signal present/absent on each lane

• Symbol lock gain or lost on each lane

• AN completion on each MAC

• Link up/down on each MAC

• Fault gain/lost on each MAC

6.11 Link State and Fault Conditions

The EPL link state processing is as follows:

RxLinkUp represents the status of the link as perceived by the PMA and PCS layer. The exact conditions
included in this state are listed in Table 6-15, where some of these conditions are required while others
can optionally be included or excluded by software.

Fault
State

Machine

Fault
Debounce

Circuit
RxLinkUp FaultState DebounceFaultState

— Interrupt
— LED Link State

— Interrupt
— RxMac

— Interrupt
— RxMac

— TxMac — TxMac
— LED Fault State

FM5000/FM6000 Datasheet—Ethernet Port Logic (EPL)

256 331496-001

The RxLinkUp state is then forwarded to the fault state machine, which reacts in the following way:

• If RxLinkUp is set to 0b (down), the fault state machine sets the FaultState to LOCAL FAULT

• If the RxLinkUp is set to 1b (up), the fault state machine follows the IEEE defined fault state
machine and sets the FaultState to:

— LOCAL FAULT - if receiving persistent local faults status from remote

— REMOTE FAULT - if receiving persistent remote faults status from remote

— NO FAULT - if it didn't received faults from remote

The FaultState condition then goes through a debouncing circuit to clean up any temporary fault
conditions and produces a DebouncedFaultState. The debouncing circuit defines two timeouts
(UpTimeout and DownTimeout), which are configured individually. The timer used depends on the
transitions listed in Table 6-16:

Note: The usage of two timers enables the system to react at different times under fault or no-
fault conditions.

The RxLinkUp, FaultState and DebouncedFaultState are all available in the port status and can each be
used as an interrupt source, though only the DebouncedFaultState should really be required from a
software perspective.

Table 6-15 EPL Conditions (2)

Condition Mode Inclusion Notes

SerDes Ready All Optional

SerDes Signal Detect All Optional Signal detection includes a filter to smooth out possible
glitches.

Symbol/Block Size All Required

Lanes Alignment 20G/40GBASE-R
10GBASE-X

Required

Idle Detection All Optional Detection of at least one idle per time period.
This also includes LF and RF for 10 GbE/20 GbE/40GBASE-R.

PHY Reports Link Up SGMII Required

HiBer Detection 10G/20G/40GBASE-R Optional

Table 6-16 Debouncing Fault Timer

From To Timeout

Local Fault Remote Fault UpTimeout

Local Fault No Fault UpTimeout

Remote Fault No Fault Zero (instantaneous)

Remote Fault Local Fault DownTimeout

No Fault Remote Fault DownTimeout

No Fault Local Fault DownTimeout

331496-001 257

Ethernet Port Logic (EPL)—FM5000/FM6000 Datasheet

The FaultState and DebouncedFaultState are also sent to the TxMAC and RxMAC that can be
programmed to react automatically to the different fault conditions listed in Table 6-17. For TxMAC in
drain mode, packets from the fabric are drained and not transmitted to the line, for TxMAC hold mode,
packets from fabric are on hold while the fault condition persist. The drain/hold mode can also be forced
manually overriding the state conditions listed in Table 6-17.

Table 6-17 TxMAC Fault

FaultState DebouncedFaultState TxMAC RxMAC

Local Fault No Send Remote Fault, hold/drain packets Drain any incoming frames.

No Local Fault Send Remote Fault, hold/drain packets Drain any incoming frames.

Remote Fault Remote Fault Send idles, hold/drain packets. Drain any incoming frames.

Remote Fault No Fault Send idles, hold/drain packets. Drain any incoming frames.

No Fault Remote Fault Not possible. Not possible.

No Fault No Fault Send frames normally. Accept incoming frames.

FM5000/FM6000 Datasheet—Ethernet Port Logic (EPL)

258 331496-001

NOTE: This page intentionally left blank.

331496-001 259

PCIe Interface—FM5000/FM6000 Datasheet

7.0 PCIe Interface

The FM5000/FM6000 supports 4-lane PCIe Gen 1 v2.0(2.5GT/s) / Gen 2 v2.0(5.0GT/s) interface that
connects to the core switch fabric through an internal port.

7.1 Overview

The PCIe interface is a PCIe Gen 1 v2.0(2.5GT/s) / Gen 2 v2.0(5.0GT/s) compatible end-point that
supports the following features:

• Only one function (Function 0) is supported.

• Only one virtual channel (VC0) is supported.

— PCIe only supports one packet queue.

• Only one traffic class (TC0, best effort).

• One, two or four lanes each operating at 2.5 Gb/s or 5.0 Gb/s mode.

— Speed and number of lanes must be auto-negotiated.

— Lane reversal and lane polarity are statically configured.

— Lane bifurcation not supported.

• Support the following transactions:

— TARGET

• Configuration read/write.

• Non-posted reads and non-posted read-lock.

• The device makes no distinction between a read and a read-lock, both are executed exactly
the same way.

• Non-posted writes and posted writes.

• The device supports up to 256 bytes of posted writes.

• Non-posted writes are queued the same way as posted writes.

• The device always preserves ordering for all read/write transactions.

— INITIATOR

• Interrupt messages.

• Non-posted reads (DMA packet transfer).

• Posted writes (DMA packet transfer).

FM5000/FM6000 Datasheet—PCIe Interface

260 331496-001

• Scattered-gathered DMA packet transfer.

— Packets can be fragmented over multiple buffers.

• In-band reset and out-of-band reset.

— In-band reset is commanded via local registers in the PCIe module.

— Out-of-band reset is commanded via the HSM module.

• No advanced sleep mode.

• Byte swaps for big endian processors.

• 32-bit/64-bit address decoding supported.

• Response to switch PAUSE frame.

The block diagram of the module is shown in Figure 7-1.

Figure 7-1 PCIe Block Diagram

331496-001 261

PCIe Interface—FM5000/FM6000 Datasheet

The block contains two register files: one for the PCIe configuration space and one for the control of the
internal functions of the module itself. The configuration register file follows the standard PCIe
configuration space and is accessible via configuration read/write cycles from a PCIe host or via any
master agent on the internal bus (such as EBI or I2C). The block register file contains registers to
control the extended functions of this block such as the DMA packet agent. This register file is
accessible via normal read/write cycles from a PCIe host or via any master agent on the internal bus.

The packet DMA engine is responsible for transferring incoming packets or outgoing packets from the
internal port to the host memory. The packet DMA engine initiates read/write accesses to host memory
on its own to either retrieve/update buffer descriptors or to transfer packets. The packet DMA engine
contains small FIFOs that are used to buffer packet payloads between internal port and PCIe to ensure
pipelines are kept busy.

The generic switch interrupt pin is also made available to this block to command emission of interrupt
messages when an interrupt condition exists in the switch. This block is also a source of interrupts on
its own, which are routed internally.

7.2 Power Up

At power up, the PCIe differential pairs are in a reset state and the PCIe interface is inactive until the
PCIe differential pairs are initialized. This requires the PCIe block of the switch to be initialized via an
external ROM, both SPI Flash and I2C EEPROM are supported and can be selected by boot mode set via
the FM5000/FM6000 GPIO[9..7] settings.

7.3 Access to SerDes

SerDes is accessed through the LSM module.

7.4 Reference Clock

The PCIe interface requires one 125 MHz reference clock. Figure 7-2 shows the reference clock internal
termination scheme. These resistors can be disabled by strapping the LED_DATA[1]. The LED_DATA[1]
pin is latched when CHIP_RESET_N is de-asserted, and has an internal pull-down that defaults to
internal termination. If this pin is externally pulled up (such as with a 5 KΩ resistor to VDD25), the
REFCLK input has its internal termination disabled.

FM5000/FM6000 Datasheet—PCIe Interface

262 331496-001

7.5 In-Band Reset and Link Down Events

The PCIe module supports in-band reset. The in-band reset is asserted when a 2 ms continuous TS1
reset ordered-set is detected. The module can be configured to support one of the following three
options:

• Reset the PCIe core only (warm reset)

— The core fabric continues to operate normally while the PCIe core is reset.

• Reset the PCIe core and disable DMA (default value)

— Disabling DMA caused any in-flight packets to the fabric to be terminated with an immediate tail
error and causes any packets from fabric to be drained. The core fabric continues to operate
normally while the PCIe core is reset.

• Send a fatal code to the watchdog circuit.

— The HSM watchdog stores this code in the FATAL_CODE register and commands an internal
general reset of the chip, which causes the entire chip to reboot as if the RESET_N pin was
asserted (except the watchdog circuit itself). Resetting the switch also resets the PCIe SerDes
and PCIe core and those need to be reprogrammed via serial boot or via EBI as detailed in
previous section. This causes all traffic to stop while the switch is reset.

Also, the PCIe link can be restarted (link up/down) without affecting the switch fabric. The module can
be configured to support one of the two operating modes when a PCIe link down event is detected:

• Reset the PCIe core only (warm reset)

• Reset the PCIe core and disable DMA (default value)

The link down operating mode and in-band reset operating mode are configurable independently.

Figure 7-2 PCIe Reference Clock Internal Termination

331496-001 263

PCIe Interface—FM5000/FM6000 Datasheet

7.6 Interrupts

Both out-of-band and in-band interrupts are supported. The out-of-band uses the INT_N pin while the
in-band interrupt uses MSI capability.

The interrupt requests from different sources within each module of the switch are stored into local
registers inside each module and can be masked. If a particular interrupt is not masked, a single
interrupt pending bit is sent to the LSM and stored in the GLOBAL_INTERRUPT_DETECT register.

The LSM provides two INTERRUPT_MASK registers that enable designers to select which interrupt
sources are posted on the out of band interrupt and which are posted on the in-band interrupts. For
in-band interrupts, the MSI must have been enabled for the interrupt to be posted.

The PCIe module can be a source of interrupts as any other module in the switch. The interrupt sources
are detailed in PCI_IP and can be masked using PCI_IM. If a PCIe internal interrupt is generated and
not masked, a PCI interrupt pending is sent to LSM as for any other module.

The different internal interrupt sources are:

• Buffers sent or received

• Link up/down

• Pause on

7.7 Power Management

The device only supports the two mandatory power states:

• D0: ON

• D3: OFF

The device does not support low power modes. In the D3 state, the PCIe block enters a quiet period but
the rest of the switch isn't affected. Software must shut down circuits manually before entering into D3
if power reduction is desired.

7.8 Byte Swapping

Byte swapping is available to speed up PCIe accesses for big endian processors. The PCIe is naturally
little endian and designed for little endian processors such as Intel® x86 family. When a big-endian
processor is used, there are two choices, preserve byte addresses or preserve byte ordering in a scalar.
If preservation of byte addresses is the only option offered on the processor, all 32-bit accesses are
byte swapped and software must swap back the bytes to restore the integrity of the scalar before using
these values.

To address this problem, the PCIe interface includes two byte swapping mechanisms at separate
locations to reduce software load on the processor. There is a byte swap mechanism for target
transactions and a byte swap mechanism for the locally initiated transactions issued by the DMA
controller. Both are enabled by software by writing to the PCI_ENDIANISM register. Any non-zero value
in this register enables the byte swap mechanisms.

FM5000/FM6000 Datasheet—PCIe Interface

264 331496-001

The byte swap mechanisms for target transactions simply swap the bytes (byte 3 swapped with byte 0
and byte 2 swapped with byte 1) for all transactions. For this to work properly, all transactions initiated
by the host must be 32-bits accesses. The byte swap mechanisms for the DMA engine are more
complicated. The byte swap mechanisms only swap bytes when accessing 32-bit words and are
disabled when transferring packet payloads.

Note: There is no byte swap mechanism for the configuration registers themselves. These
registers are typically accessed once and there is no significant performance degradation if
the byte swapping has to be done by software.

7.9 32-bit/64-bit Addressing

The PCIe module supports 32-bit and 64-bit addressing. The device reports 64-bit mode in
PCI_BAR0[2:1] and requires a 64-bit address to be loaded in PCI_BAR0/PCI_BAR1. The device accepts
32-bit addressing and 64-bit addressing for target transactions (3 Dword/4 Dword transaction format)
if the upper 32-bit address is zero; otherwise, only 64-bit addressing (4 Dword format) is accepted.

Similarly, when the PCIe module initiates a transaction (DMA controller), the address size is 32-bit if the
target address is in the first 4 Gb of address space and is 64-bit otherwise.

7.10 Registers

7.10.1 PCIe Configuration Space

The PCIe configuration space is listed in Table 7-1, which conforms to the normal configuration space in
defined in PCIe specification.

Table 7-1 PCI Configuration Space

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x0 Device ID Vendor ID

0x4 Status Command

0x8 Class Code Revision ID

0xC BIST Header Type Latency Timer Cache Line Size

0x10 BAR 0 (address_low)

0x14 BAR 1 (address_high)

0x18 BAR2 (unused)

0x1C BAR2 (unused)

0x20 BAR2 (unused)

0x24 BAR2 (unused)

0x28 CardBus CIS pointer

0x2C Subsystem Device ID Subsystem Vendor ID

0x30 Expansion ROM Base Address (unused)

331496-001 265

PCIe Interface—FM5000/FM6000 Datasheet

The Vendor ID field is 0x8086. The device ID is 0x155B.

Only Base Address 0 (BAR0) is used. The window size is 24 MB. The address offset relative to base is
equal to the register multiple by four.

BAR0[0x1100*4] => PCI_CTRL
BAR0[0x380000*4] => L2L_MAC_TABLE_LOOKUP

7.10.2 PCIe Control Registers

The PCIe module control registers are listed here:

• PCI_ENDIANISM — Controls little/big endian for packet payload.

• PCI_COMMAND — Controls DMA engine state for transmit and receive.

• PCI_STATUS — Reports DMA engine status.

• PCI_COASLESCING — Controls interrupt rate.

• PCI_RX_BD_BASE, PCI_RX_BD_END, PCI_TX_BD_BASE and PCI_TX_BD_END — Define
descriptor list locations.

• PCI_IP, PCI_IM and PCI_COALESCING — Interrupt mask and coalescing configuration.

• PCI_CURRENT_TX_DATA_PTR, PCI_CURRENT_RX_DATA_PTR,
PCI_CURRENT_TX_BD_PTR and PCI_CURRENT_RX_BD_PTR — Monitoring information.

• PCI_IP and PCI_IM — Interrupt status and interrupt mask.

0x34 Reserved Cap Ptr (0x40)

0x38 Reserved

0x3C Max Latency Min Grant Interrupt Pin Interrupt Line

0x40 Power Management Capabilities Next_Cap_ptr (0x50) PM Cap ID (0x01)

0x44 PM Data

0x50 MSI Capabilities Next_Cap_ptr (0x60) MSI Cap ID (0x05)

0x54 MSI Address High

0x58 MSI Address Low

0x5C PCIe Capabilities MSI Data

0x60 Next_Cap_ptr (0x00) PCIe Cap ID (0x10

0x64 PCIe Link Capabilities

0x68 PCIe Device Status PCIe Device Control

0x6C PCIe Link Capabilities

0x70 PCIe Link Status PCIe Link Control

0x74:0xFF PCIe Reserved (all 0x0)

0x100:0xFF PCIe Reserved (all 0x0)

Table 7-1 PCI Configuration Space (Continued)

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

FM5000/FM6000 Datasheet—PCIe Interface

266 331496-001

• PCI_TX_FRAME_LEN — Defines minimum/maximum frame length.

• PCI_SIZE — Defines DMA block transfer size.

• PCI_DMA_CFG — Defines DMA configuration; enable/disable fabric tag location and size.

• PCI_FRAME_TIMEOUT — Defines the maximum time for a frame to be waiting for resources.

• PCI_STAT_COUNTER — Counts PCIe error events. General frame counters for PCIe port available
from STATS unit.

• PCI_CORE_CTRL — Core control options.

• PCI_CORE_DEBUG — Various debug registers.

7.10.2.1 Command Register

The Command register is used to control the DMA engine packet processor operation.

Table 7-2 PCIe DMA Command Definitions

Name Value Description

PCI_TX_START 0x0001 Instructs the FMPCI Tx packet processor to begin processing descriptors from the Transmit
Descriptor Table.

PCI_RX_START 0x0002 Instructs the FMPCI Rx packet processor to begin processing descriptors from the Receive
Descriptor Ring.

PCI_TX_STOP 0x0003 Stops the Tx packet processor and resets the descriptor index to zero.

PCI_RX_STOP 0x0004 Stops the Rx packet processor and resets the descriptor index to zero.

PCI_TX_POST 0x0005 Informs the Tx processor that new descriptors have been written to the Tx descriptor ring. The
number of packets processed is included in argument and used to determine the received packet
counter, used for coalescing only.

PCI_RX_POST 0x0006 Informs the Rx packet processor that new descriptors have been written to the Rx descriptor ring.
The number of packets processed is included in argument and used to determine the received
packet counter, used for coalescing only.

PCI_TX_SUSPEND 0x0007 Ask the Tx to go idle at the end of the current frame regardless if there are more BDs ready to
transmit. This command has no effect if the transmitter has not been started.
The transmitter can be restarted using a TX_PORT command.

PCI_RX_SUSPEND 0x0008 Ask the Rx to go idle at the end of the current frame regardless if there are more BDs ready to
receive data and there is data available. This command has no effect if the receiver has not been
started. The RX can be restarted using a PCI_RX_POST command.

PCI_TX_DRAIN 0x0009 Signal Tx to go into a drain mode after the current in-flight frame. All data from the CPU is drained
for now on until a TX_STOP/TX_START command sequence executes. While in drain mode, the
BDs and frame data is still read from the CPU but not transmitted to the fabric. A TX_POST
command or TX_SUSPEND command cancels the drain mode. The command is intended to enable
a software device driver to be shut down cleanly as soon as possible.

PCI_RX_DRAIN 0x000A Signal Rx to go into a drain mode immediately. The current frame in transit is terminated with an
error code and all data from the fabric is drained for now on until any Rx command executes.

331496-001 267

PCIe Interface—FM5000/FM6000 Datasheet

7.10.2.2 Status Register

A read from the PCI_STATUS register returns the following information listed in Table 7-3.

7.10.2.3 Descriptor List Boundaries

7.10.2.3.1 Receive Descriptor Table Base Address

This 64-bit register specifies the physical address in host memory of the base of the Receive Descriptor
Table.

This register is read each time the Rx processor starts after a reset (either by PCI reset or by writing
the FMPCI_RESET_RX command).

Note: The address must be aligned to a 32-byte boundary.

7.10.2.3.2 Receive Descriptor Table End Address

This register defines the end address of the Receive Descriptor Table. The Rx descriptor logic compares
the current pointer after it was incremented to that value and then resets the pointer to the base
address if found greater or equal.

7.10.2.3.3 Transmit Descriptor Table Base Address

This 32-bit register specifies the physical address in host memory of the base of the Transmit Descriptor
Table.

This register is read each time the Tx processor starts after a reset (either by PCI reset or by writing the
FMPCI_RESET_TX command).

Note: The address must be aligned to a 32-byte boundary.

Table 7-3 PCIe DMA Status Register Read Format

Name Bits Description

TxState 2:0 Indicates the current Tx processor status:
000b = Stopped
001b = Running
010b = Idle
011b = Draining
100b = Pause

All other values are reserved.

RxState 3:2 Indicates the current Rx processor status:
00b = Stopped
01b = Running
10b = Idle
11b = Draining

FM5000/FM6000 Datasheet—PCIe Interface

268 331496-001

7.10.2.3.4 Transmit Descriptor Table End Address

This register defines the end address of the Transmitter Descriptor Table. The Tx descriptor logic
compares the current pointer after it was incremented to that value and then resets the pointer to the
base address if found greater or equal.

7.10.2.4 Interrupt Status Register

The PCIe block posts an interrupt when the DMA engine has transferred a packet (Rx or Tx) or, in the
case of a coalescing interrupt, when there were a certain number of packets transferred or a waiting
time was exceeded.

The DMA Engine Interrupt Status register is listed in Table 7-4.

7.10.2.4.1 Interrupt Mask Register

The DMA Engine Interrupt Mask register enables interrupt sources to be masked.

7.10.2.4.2 Coalescing

The control registers define the parameters for interrupt coalescing. It defines the latency to post an
interrupt message for Tx and Rx interrupts and the maximum number of packets transferred before
posting an interrupt.

7.11 Packet DMA Engine

The packet DMA engine transfers packets between the core switch and the host memory following a list
of buffer descriptors. There is a list of buffer descriptors for transmit and a list for receives. The number
of buffer descriptors per list must be a power of two and the base must be aligned to a 32-byte
boundary (the size of a buffer descriptor) as shown in Figure 7-3.

The packet DMA engine supports fragmentation packets into multiple buffers in transmit and receive.

Table 7-4 PCIe DMA Interrupt Status Register

Name Bits Type Description

Tx 0 RW1C The TX packet processor completed processing on a Tx descriptor.

Rx 1 RW1C The Rx packet processor completed processing an Rx descriptor.

Coalescing 2 RW1C The set of Tx or Rx descriptors were processed or the coalescing waiting timer expired.

331496-001 269

PCIe Interface—FM5000/FM6000 Datasheet

7.11.1 Buffer Descriptors

The DMA transfer for transmit and receive uses a 16-byte buffer descriptor structure as listed in
Table 7-5.

Figure 7-3 PCIe DMA Buffer

Table 7-5 PCIe DMA Buffer Descriptor Structure

Offset Byte 3 Byte 2 Byte 1 Byte 0

0x00 Buffer/Data Length Unused Status

0x04 Buffer Address Low

0x08 Buffer Address High

0x0C Reserved

0x10 Reserved

0x14 F64 Tag

0x18 F96 Tag (continued)

0x1C Reserved

FM5000/FM6000 Datasheet—PCIe Interface

270 331496-001

7.11.1.1 Status

The status field is listed in Table 7-6and is used to report the state of this buffer descriptor.

7.11.1.2 Buffer Length

For both Rx and Tx descriptors, this is the size of the buffer pointed to by the Buffer Address field in
bytes.

The Rx packet processor reads this field to determine the size of the buffer prior to saving data into the
buffer, the buffer length is updated when the buffer was consumed. The Tx processor reads this field to
determine how many bytes to transmit.

7.11.1.3 Buffer Address

This is the address of the buffer in which the data is to be placed by the Rx processor or from which
data is to be transmitted by the Tx processor. This buffer is contained in host memory and the address
is that returned by passing a Linux* kernel virtual address to the dma_map_single function call.

The buffer address is always 64 bits. If the upper 32 bits are set to 0x0, PCIe initiates a 3 Dword
transaction (32-bit addresses); otherwise, it generates a 4 Dword transaction (64-bit address).

There is no alignment on the address except that it must not cross a 4 Gb boundary.

Table 7-6 PCIe DMA Buffer Descriptor Status Field

Name Bits Description

READY 0 Written by software, read by hardware.
The descriptor was prepared by software and is ready for processing by the Rx/Tx packet processors.

STOP 1 Written by software, read by hardware.
The Tx/Rx packet processor transitions to the STOPPED state after processing this descriptor.

DONE 2 Written by hardware, read by software.
The descriptor was used by hardware and ready to be read by software.

EOP 3 Written by software on transmit to indicate that this buffer is the last buffer of this packet.
Written by hardware on receive to indicate that this buffer is the last buffer of the packet.

ERR 5:4 Written by hardware on receive to indicate if an error was detected.
The possible values are:

0x0 = This frame had no error.
0x1 = An unrecoverable ECC error occurred while the packet was retrieved from switch fabric main

memory.
0x2 = Packet was truncated due to a timeout.

Written by software on transmit to flag an error code to the fabric. The possible values are:
0x0 = Frame is good.
0x1 = Frame has bad CRC.
0x2 = Frame has framing error.

The value 0x1 and 0x2 are for testing purpose. The value 0x2is also automatically posted if the DMA is
stopped in a middle of a frame and the frame had to be cut short to the fabric (incomplete frame).

331496-001 271

PCIe Interface—FM5000/FM6000 Datasheet

7.11.1.4 F64 Tag

This field is the F64 tag that was received with the packet or has to be transmitted along with the
packet. Two sizes are supported; 64-bit or 96-bit and two locations are supported; at offset 0 and at
offset 12. The actual F64 tag format is microcode dependent and the actual format is ignored by the
DMA controller except for Pause packets.

The exact format for the FM5000/FM6000 microcode is defined as part of this specification and varies
slightly depending of the location of the tag.

The F-tag format at offset 0 is listed in Table 7-7.

The F-tag format at offset 12 is listed in Table 7-8.

Packets that are transmitted and received to the switch fabric must contain a proprietary F64 F-tag.
Packets read from memory or written to memory do not have the F-tag present in the payload. On
switch egress (going to CPU) the DMA engine removes the F-tag from the packet and saves it in all BDs
used for this packet. On switch ingress (coming from CPU), the DMA engine reads the F-tag defined in
the first BD of the packet and inserts it into the packet before sending it to the fabric. The F-tag
includes the VID and VPRI of the packet.

There are two options for the location of the F-tag within the packet. If the F-tag location is configured
for offset 12, the normal VLAN tag is absent in the packet memory, and the software device driver must
pass this information to the kernel out-of-band using the content of the F-tag. If the F-tag is configured
for offset 0, the normal VLAN tag could be made available in the packets to the CPU using switch
tagging options.

Using an F-tag at offset 12 is not recommended for new designs and will be phased out over time.

Table 7-7 F-tag Format for Offset 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

USER FTYPE VTYPE SWPRI

VLAN PRI CFI VLAN

Source GloRT

Destination GloRT

Table 7-8 PCIe F-tag Format at Offset 12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FTYPE VTYPE SWPRI USER

VLAN PRI CFI VLAN

Source GloRT

Destination GloRT

EXTRA (if F-tag is 96 bits)

EXTRA (if F-tag is 96 bits)

FM5000/FM6000 Datasheet—PCIe Interface

272 331496-001

7.11.2 Packet Processing Overview

The Tx and Rx packet processors read descriptors from a ring in host memory and process these
descriptors in order until they exhaust their respective rings. The processors have identical state
machines. Software can start and stop the processors by writing commands to the Command register.
The states are STOPPED, RUNNING, IDLE, DRAIN (and PAUSE for TX).

Note: DMA terminates incomplete frames to the fabric with a framing error trailing code if the
DMA cannot complete the packet (no end).

In the STOPPED state, the packet processor is not processing descriptors and the descriptor index
(array index into the descriptor table) is zero. Software causes the packet processor to start processing
descriptors by writing the START command to the Command register. At this transition, the packet
processor reads the Descriptor Ring Base Address and Descriptor Ring Length Mask registers and resets
the Descriptor Index Register.

The packet processor reads descriptors and processes them until it finds a descriptor with either a
DONE bit set or a RDY bit reset in the descriptor status field. As the processor fetches each descriptor it
increments the Descriptor Index by 16, masks the result with the Descriptor Index Mask and reads the
next descriptor.

When the packet processor finds a descriptor with the DONE bit set or the RDY bit reset, it stops
reading packets, and transitions to the IDLE state. The packet processor enters the RUNNING state
again when software writes a POST command to the command status register. At that point the
hardware returns to the RUNNING state and starts by re-reading the last packet descriptor that was
read.

The DMA engine raises interrupts only at frame boundaries. It does not generate an interrupt if a buffer
was consumed, in receive or transmit, and this buffer doesn't terminate a packet.

Furthermore, the DMA engine has a coalescing feature to reduce the number of interrupts to the host
processor. This feature delays interrupt posting for transmit or receive when either sufficient number of
packets are transmitted or received or if the waiting time was exceeded. The coalescing can be
independently set for both Tx and Rx.

The exact process is as follows:

331496-001 273

PCIe Interface—FM5000/FM6000 Datasheet

uint16 packetCountRx;
uint16 packetCountTx;

if (startTX or stopTX)
packetCounterTx = 0

if (startRX or stopRX)
packetCounterRx = 0

if (packetTransmitted)
setTxInterrupt()
packetCounterTx++
if (packetCounterTx > coalescingPacketCountLimit)
 setCoalescingInterrupt()

if (packetReceived)
setRxInterrupt()
packetCounterRx++
if (packetCounterRx > coalescingPacketCountLimit)
 setCoalescingInterrupt()

if (commandTxPost)
if (packetCounterTx > value)
packetCounterTx -= value
else
 packetCounterTx = 0

if (commandRxPost)
if (packetCounterRx > value)
packetCounterRx -= value
else
 packetCounterRx = 0

if (hostRequestClearingCoalescingInterrupt)
 timer = 0
 clearCoalescingInterrupt()

at each CoreClock/128:
if (packetCounterTx != 0 or packetCounterRx != 0)
 if (timer > coalescingTimeout)
 setCoalescingInterrupt()
 else
 timer++
else
 timer = 0

FM5000/FM6000 Datasheet—PCIe Interface

274 331496-001

7.11.3 Fabric Congestion Management

The PCIe block is a fabric port like any other external Ethernet port and supports the same congestion
management features and also supports reacting to receiving PAUSE frames from the fabric. For
example, it stops sending traffic to fabric after receiving a PAUSE-ON packet and restarts on a
PAUSE-OFF frame. However, there are a few differences compared with a normal external Ethernet
port.

7.11.3.1 PAUSE Detection

The PCIe uses the content of the F-Tag to determine if the frame is a PAUSE-ON or a PAUSE-OFF frame.
The fabric egress microcode sets the first word of the F-Tag to 0xFFFFxxxx for PAUSE-ON and
0x00FFxxxx for PAUSE-OFF. The PCIe port uses this information to detect receiving PAUSE-ON or
PAUSE-OFF packets and no other criteria (packet length, MAC address, etc...) is used. If the first word
of the F-Tag doesn't match any of these two words, this is assumed to be a normal packet.

Note: The PAUSE frames are passed to the CPU, which would most likely drop them.

7.11.3.2 PAUSE Reaction

PCIe stops transmitting packets to the fabric after receiving a PAUSE-ON (going to PAUSE state) and
resumes transmission after receiving a PAUSE-OFF (going out of PAUSE state). The PAUSE state clears
itself after 500 ms from when the last PAUSE-ON was received, or if the transmitter is stopped and then
restarted. The pause state is not cleared if the transmitter is placed in and out of suspend mode. If a
current frame was in flight, its transmission is terminated before the PAUSE-ON is applied. The pause
state is reported in the PCI_IP register and can be manually cleared.

331496-001 275

External Bus Interface (EBI)—FM5000/FM6000 Datasheet

8.0 External Bus Interface (EBI)

The EBI controller is designed to interface with simple parallel local buses. This interface is backward
compatible with the FM4000 series EBI controllers.

8.1 Overview

The EBI supports the following signals:

• Bus interface:

— ADDR

— DATA

— AS_N

— CS_N

— RW_N

— DTACK_N

— DERR_N

— PAR

— EBI_CLK

• DMA control:

— RXRDY_N

— RXEOT_N

— TXRDY_N

• Other pins:

— INTR_N

The maximum EBI_CLK rate is 66 MHz.

The EBI is configured through configuration pins available in the LSM. The strapping options for CPU
are:

• CS_N — Defines if EBI is enabled or not. If this pin is held low when CHIP_RESET_N is de-asserted,
the switch assumes that EBI is not used and all EBI pins (including EBI_CLK) are then ignored.

• DTACK_INV — Defines the polarity of DTACK.

• RW_INV (configuration pin for polarity of read/write) — Defines the polarity of RW_INV.

FM5000/FM6000 Datasheet—External Bus Interface (EBI)

276 331496-001

• IGNORE_PARITY — Defines if parity is used or not.

• PARITY_EVEN — Defines the parity type.

8.2 Bus Timing

The CPU bus interface timing diagram is shown in Figure 8-1 (assumes DTACK_INV and RW_INV are
both set to 0b).

The CPU bus interface is synchronous and the switch samples/drives at rising edge of the CPU clock and
follows a simple protocol:

• A cycle starts when CS_N and AS_N are both asserted (low). The ADDR and RW_N signals are also
sampled on the same cycle to determine the register addressed and if the cycle is a read or a write.

— The interpretation of RW_N depends on the strapping of the pin RW_INV. If the RW_INV is
strapped to GND, then RW_N = 1b is READ and RW_N = 0b is WRITE. If the RW_INV is
strapped to VDD25, then RW_N = 1b is WRITE and RW_N = 0b is READ.

• For a write cycle, the data is always sampled on the next cycle. Furthermore, the switch has a small
write FIFO and asserts a DTACK_N signal on the next cycle as well if this write FIFO is not full;
otherwise, the DTACK_N is delayed until this FIFO has room to store the data. The minimum cycle
time is two clock cycles.

— DERR_N is actively driven at the same time as DTACK_N is asserted. It is asserted (logic low) if
the data parity is incorrect and de-asserted (logic high) if the data parity is correct.

Note: The switch internally cancels the write operation if the parity is incorrect.

• For a read cycle, the switch delays asserting DATA and DTACK_N until data is available and drives
both signals on the same clock cycle. The minimum cycle time is three clock cycles.

— The parity on the data bus is presented at the same time as the data.

• After the read or the write cycle completes, the switch actively de-asserts DTACK_N for one cycle
and then tri-sates the DTACK_N signal.

Note: The switch can detect a new read or write cycle on the same cycle on which DTACK_N is
actively de-asserted or on any follow-on cycles.

Figure 8-1 CPU Bus Timing Diagram

331496-001 277

External Bus Interface (EBI)—FM5000/FM6000 Datasheet

• The bus cycle latency from cycle start to DTACK_N being asserted is varied depending on the
register accessed and the traffic load in the switch. The worst case is estimated to be 5 µs.

8.2.1 Using DATA_HOLD

The CPU bus interface also supports a data holding mode (asserted with DATA_HOLD strapping option)
where the DTACK_N (for read and write cycles) and DATA (for read cycles) are maintained asserted
until a chip select is de-asserted. The DTACK_N and DATA are then immediately tri-stated coincidentally
with the de-assertion of chip select. This mode is intended for situations where a fixed length cycle is
needed, the length of the cycle must be greater than the worst delay expected on DTACK_N.

Figure 8-2 shows the effect of the DATA_HOLD option.

Figure 8-2 Effect of EBI DATA_HOLD on CPU Cycles

FM5000/FM6000 Datasheet—External Bus Interface (EBI)

278 331496-001

8.3 Atomic Accesses

The frame handler includes tables that are wider than 32 bits, which need to be accessed atomically.
For example, the data must be written as one single large word and not as multiple smaller 32-bit
words. This ensures that the table doesn't contain an intermediate incorrect value at any point in time
or that software doesn't read a false value. The switch includes extra circuitry to hold the data words
into temporary registers before performing the actual read or write. The exact process is the following.

For write:

• Software should write the entry starting with the least significant word and terminate with the
most significant word.

• Hardware stores the least significant words into a temporary cache and then issues a write into
the table when the most significant word is written using the content of the temporary registers
to complete the entry.

• Software can accelerate loading an entire table with the same value (0 by example) by writing
the least significant words only once and load successive entries by writing only the most
significant word.

For read:

• Software might read an entry in any order.

• Hardware reads a table entry each time the index or the table is different from the last index or
table read or written, and saves all words read into a temporary cache and then returns the
particular word addressed by the software. If the index and table are the same as the last index
and table, the content of the cache is used to return the word addressed.

• Software does not have to read all words if they are not needed.

There is only one set of temporary registers per bus master (one for PCIe, one for EBI) for this purpose.
Accesses to an atomic table might be interleaved with accesses to non-atomic tables or single registers
that are outside of the frame handler without causing problems to either type of access as long as it is
understood that the non-atomic accesses might occur out of sequence with the atomic accesses.

8.4 Little and Big Endian Support

All registers, regardless of their width, are 32-bit aligned in the memory map. As an example, a 64-bit
register is not necessarily aligned on a 64-bit boundary. And all registers greater than 32 bits are
accessed least significant word first. As an example, a 128-bit register would be accessed in the
following manner:

Address X+0: DATA[31:0] (least significant word)
Address X+1: DATA[63:32]
Address X+2: DATA[95:64]
Address X+3: DATA[127:96] (most significant word)

331496-001 279

External Bus Interface (EBI)—FM5000/FM6000 Datasheet

Any large entity in a single large register (such as a 48-bit MAC address) is stored as a multiple of 32-
bits where each 32-bit entity contains up to four bytes and where the least significant byte is assumed
to be mapped using the least significant 8 bits of the 32-bit word. For example, the default IEEE
assigned LACP frame is stored as follows:

The address is transmitted most significant byte first, starting by 0x01 in this case and terminating with
0x02.

This is the natural encoding for a little-endian processor such as the Intel x86 processor family and any
large register might be accessed directly. In the case of a big-endian processor, the content of any
memory must be accessed 32-bits at a time and reassembled into a 64-bit word manually.

Accessing a 64-bit register with a little-endian processor example follows:

Accessing a 32-bit register with a bit-endian processor:

There are only a few registers where this type of access is required and the effect on the CPU is usually
negligible (the Intel API takes care of this).

However, the transfer of packets is not negligible and poses a challenge because the byte ordering
within memory is not the same between a little- and big-endian processor. To avoid the processor
having to swap bytes, the switch offers an option for byte ordering in the LCI_CFG register.

This bit only affects the interpretation of byte positions within the packet payload words sent to or
received from the CPU. In the big endian configuration, successive bytes of a packet must be stored by
placing the first byte in the most significant byte location of memory, moving toward the least
significant byte. In the little endian configuration, successive bytes of a packet must be stored in the
opposite sense, from least significant byte to most. In the case of 32-bit quantities transmitted over a
32-bit bus, how the CPU handles little or bit endian does not matter since all bit fields are defined
explicitly. Thus the Tx command and Rx status words (and all other registers in the Intel® Ethernet
Switch Family) are defined the same for both little-endian and big-endian CPUs, independently of the
LCI_CFG setting.

long long macAddress = 0x0180C2000002LL;
long long *register_ptr;

*register_ptr = macAddress;

long long macAddress = 0x0180C2000002LL;;
long long *register_ptr;

*(((unsigned int *) register_ptr)+0) = macAddress;
*(((unsigned int *) register_ptr)+1) = macAddress >> 32;

0xC2 0x00 0x00 0x02

0x01 0x80

31 24 23 16 15 8 7 0

Address X+0

Address X+1

MAC Address = 0x0180C2000002 (LACP FRAME)

FM5000/FM6000 Datasheet—External Bus Interface (EBI)

280 331496-001

8.5 CPU Frame Transfer

The FM5000/FM6000 supports packet transfers between the CPU bus interface and the switch fabric as
if it were an external Ethernet port. Since the interface only supports slave mode operation, it cannot
store or retrieve packet data directly to or from the CPU host memory. Instead, an external bus
interface master must individually write or read each word of a packet being sent or received. This
external bus master does not need to be the CPU itself. The FM5000/FM6000 series defines three
additional bus signals that provide compatibility with certain standalone dual-channel DMA controllers,
such as the PLX 9056. Such an arrangement is shown in Figure 8-3.

Figure 8-3 DMA Transfer via EBI

331496-001 281

External Bus Interface (EBI)—FM5000/FM6000 Datasheet

8.5.1 Packet Transmission via EBI

The packet format for transmissions on EBI is listed in Table 8-1.

The first word (CONTROL) defines the length of the packet in bytes. The control word is not sent to the
fabric. The following words are the packet payload and are sent to the fabric. Padding (zeros) are added
if the length is smaller than minimum configured.

The general protocol for transmitting a packet through the switch is the following:

1. Determine that the transmit pathway is ready to receive a packet by either reading the TxReady bit
of the LCI_STATUS register (non-DMA mode) or by observing the status of the TXRDY_N external
pin (DMA mode). If this signal is inactive, the bus master must wait, possibly polling TxReady, until
the transfer FIFO is ready. This condition never persists for any prolonged length of time (more
than a few bus cycles).

2. Write the packet control word to the LCI_TX_FIFO register. The control word identifies the packet
length.

3. Write frame payload words to the LCI_TX_FIFO register.

The packets provided to the FM5000/FM6000 must include a properly formatted F64 or F56 ISL tag.

The format of the Tx command word is listed in Table 8-2.

Table 8-1 EBI Tx Packet Format

Word # Description

0 CONTROL

1 PAYLOAD_WORD[0]

2 PAYLOAD_WORD[1]

... ...

N PAYLOAD_WORD[N-1]

Table 8-2 Format of the EBI TX Command Word

Bit Field Field Name Description

15:0 RSVD Reserved. Write 0x0.

29:16 Length Length of the packet in bytes.

31:30 RSVD Reserved. Write 0x0.

FM5000/FM6000 Datasheet—External Bus Interface (EBI)

282 331496-001

8.5.2 Packet Reception via EBI

The packet format for reception on EBI is listed in Table 8-3.

The last word (STATUS) defines the length of the packet and if the packet had an error or not.

The general protocol for receiving a packet from the switch is as follows:

• Determine that the switch has received a packet for the CPU, either by observing that the RXRDY_N
external pin is low or by polling RxReady in the LCI_STATUS register or by relying on the
NewFrameRecv interrupt in LCI_IP. The interrupt is set when a new packet is received and is ready
to be read by the CPU on the EBI Interface.

• Read successive words of the packet from the LCI_RX_FIFO register. The last word received is a
status word indicating the byte length and error status of the packet. The last word is marked by
having the EOT bit set in the LCI_STATUS register before the word is read from LCI_RX_FIFO and
by having by asserting RXEOT_N external pin while the word is read from the LCI_RX_FIFO (see
Figure 8-4).

The packet received include and F64 or F56 ISL tag. The fields of this tag encode information useful for
software:

• Type of frame (normally forwarded versus trapped).

• Source of the packet (in the Source GloRT).

• If the frame was trapped to the CPU, the reason for trapping (in the Destination GloRT).

• Associated system priority and VLAN.

The FM5000/FM6000 supports two levels of padding.

• Level 1 padding is done in the MSB to make the packet 32-bits aligned. This is always done by the
hardware automatically regardless of HostPadding bit in LCI_CFG register.

• Level 2 padding is done in the HSM to make the packet 64-bits aligned if the HostPadding bit in
LCI_CFG is set to 1b.

The format of the Rx status word is listed in Table 8-4.

Table 8-3 EBI Tx Packet Format

Word # Description

0 PAYLOAD_WORD[0]

1 PAYLOAD_WORD[1]

... ...

N-1 PAYLOAD_WORD[N-1]

0 STATUS

331496-001 283

External Bus Interface (EBI)—FM5000/FM6000 Datasheet

To avoid unreliable frame timeout on packets enqueued to the EBI port, the CPU must dequeue any
waiting frames at a rate no slower than one per FRAME_TIME_OUT.timeOutMult * 1024 *
PCIE_REFCLK_PERIOD.

8.5.3 Packet Transfer

The EBI packet transfer module supports little-endian and big-endian data encoding to facilitate
handling of packets in little-endian and big-endian processors. The control of the data encoding is
defined in the LCI_CFG register. The following tables list the encoding for packet transmission and
reception in both data encoding modes.

8.5.3.1 Little Endian Packet Transfer

Table 8-4 Format of the EBI RX Status Word

Bit Field Field Name Description

0 Error A value of 1b indicates the packet was corrupted in switch memory due to a parity error. The
FM5000/FM6000 series discards any packet addressed to the CPU that is received from the network
with a bad CRC.

15:1 RSVD Reserved. Written as 0x0.

29:16 Length Length of the packet in bytes.

31:30 RSVD Reserved. Written as 0x0.

Table 8-5 EBI Little Endian Transmission Format

Phase 31:24 23:16 15:8 7:0

Command Word Length 0

Payload frame[3] frame[2] frame[1] frame[0]

Payload . . .

Payload No No No frame[Length-1]

Table 8-6 EBI Little Endian Reception Format

Phase 31:24 23:16 15:8 7:0

Payload frame[3] frame[2] frame[1] frame[0]

Payload . . .

Payload No No No frame[Length-1]

Status Word Length 0 rxStatus

FM5000/FM6000 Datasheet—External Bus Interface (EBI)

284 331496-001

8.5.3.2 Big Endian Packet Transfer

8.6 Packet Transfer DMA Timing

Packet transmission with an external DMA controller is shown in Figure 8-4. The external TXRDY_N
signal reflects the state of the TxReady bit the LCI_STATUS register. It is asserted each time the
FM5000/FM6000 is ready to accept a word from the CPU. The DMA controller can write data words to
LCI_TX_FIFO as long as this signal is asserted.

Table 8-7 EBI Big Endian Transmission Format

Phase 31:24 23:16 15:8 7:0

Command Word Length 0

Payload frame[3] frame[2] frame[1] frame[0]

Payload . . .

Payload frame[Length-1] No No No

Table 8-8 EBI Big Endian Reception Format

Phase 31:24 23:16 15:8 7:0

Payload frame[3] frame[2] frame[1] frame[0]

Payload . . .

Payload frame[Length-1] No No No

Status Word Length 0 rxStatus

Figure 8-4 DMA Packet Transmission Using EBI

331496-001 285

External Bus Interface (EBI)—FM5000/FM6000 Datasheet

The timing of packet reception with an external DMA controller is shown in Figure 8-5. The RXREQ_N
signal reflects the state of the RxReady bit in the LCI_STATUS register. It is asserted each time the
FM5000/FM6000 has a data word ready to be read from LCI_RX_FIFO. The DMA controller can read
LCI_RX_FIFO as long as this signal is asserted. When the last word of the packet transfer is being read
on the bus (the LCI_RX_STATUS word), the FM5000/FM6000 asserts the RXEOT_N signal to indicate
the end-of-transfer condition. The EOT signal notifies a DMA controller with buffer chaining support to
close the current buffer and proceed to the next one in its descriptor list.

Figure 8-5 DMA Packet Reception Using EBI

FM5000/FM6000 Datasheet—External Bus Interface (EBI)

286 331496-001

NOTE: This page intentionally left blank.

331496-001 287

Peripherals—FM5000/FM6000 Datasheet

9.0 Peripherals

There are several peripheral interfaces available in the FM5000/FM6000 that can be used for purposes
such as reading boot configurations, monitoring and controlling external PHYs, or driving external
status LEDs.

9.1 Overview

Peripherals include the following elements:

• Clocking

• Counter Rate Monitor

• SerDes Management

• I2C Controller

• MDIO Controller

• General Purpose IO (GPIO) Controller

• SPI Interface

• LED Controller

• JTAG Interface

9.2 Clocking

The FM5000/FM6000 clock distribution is shown in Figure 9-1.

FM5000/FM6000 Datasheet—Peripherals

288 331496-001

There are seven input clocks possible:

• Four required Ethernet reference clocks:

— 156.25 MHz

— LVPECL

— One reference clock used per set of 6 x EPLs

• Required PCIe reference clock:

— 125 MHz

— LVPECL

• EBI clock:

— For local bus interface

— Only required if EBI used, ground both EBI_CLK and CS_N if not used

— LVCMOS

• Test clock:

— For test only

— LVPECL

Figure 9-1 Switch Clocking

331496-001 289

Peripherals—FM5000/FM6000 Datasheet

Note: The LVPECL reference clocks input support an internal termination that can be turned off.
See LED_DATA[2:0] pins for details (Section 3.3.9).

The switch has two programmable PLLs: one for generating 337.5 MHz and one for generating 250 MHz
and 500 MHz. Both PLLs have default configurations to produce the right frequency after reset and do
not need to be re-configured. The default configuration for each can be overridden if desired using the
PLL_CTRL register. The multipliers and dividers for each PLL must be programmed such that the PLL
operates within ±12% of its core frequency (2.7 GHz for PLL1 and 2.0 GHz for PLL2). The PLL1 provides
the normal clock source for MSB, SPICO, EPLs MACs, and SBUS controller modules. A set of clock
multiplexers for each of these modules enables selecting an alternate external clock source if desired.
The PLL2 provides the normal source for PCIe core. In this case, two clocks are produced and are in
sync to each other; 500 MHz and 250 MHz. These clocks are used for speed negotiation between Gen1
and Gen2 PCIe.

Note: The PLL2 can potentially be reconfigured but it is not advised to do so as it has to match
the PCIe serdes rate.

For EBI, the selection depends on the state of the CS_N pin at reset. If this pin is low, it indicates that
the EBI is not used and the EBI module is clocked using the PCIE_REFCLK. If the pin is set high, it
indicates that the EBI is used and the EBI module is clocked using the EBI_CLK. For the other modules,
the selection is done by software via the PLL_CTRL register, which is also accessible via the JTAG
interface.

PLL1 configuration:

PLL2 configuration:

Fco = (PCIE_REFCLK/divider) x 2 x (Multiplier)
Fout = Fco / 16

Default multiplier => 54 (PLL_CTRL.Multiplier1)
Default divider => 5 (PLL_CTRL.Divider1)

Fco = (125MHZ/5) x 2 x 54 => 2.7GHZ
Fout = 2.7 / 8 => 337.5MHZ

Fco = (PCIE_REFCLK/divider) x 2 x (Multiplier)
Fout1 = Fco / 8
Fout2 = Fco / 16

Default multiplier => 16 (PLL_CTRL.Multiplier2)
Default divider => 1 (PLL_CTRL.Divider2)

Fco = (125MHZ/1) x 2 x 16 => 4.0GHZ
Fout1 = 4.0 / 8 => 500.0MHZ
Fout1 = 4.0 / 16 => 250.0MHZ

FM5000/FM6000 Datasheet—Peripherals

290 331496-001

The manageability module also produces the following reference timers used by other modules:

• PAUSE

• POLICERS

• L2 LOOKUP SWEEPERS

• FRAME TIMEOUT

The frame timeout period is programmed in FRAME_TIME_OUT register while the other timers are
programmed in the SWEEPER_CFG register.

9.3 Counter Rate Monitor

The FM5000/FM6000 provides general counter rate monitoring and memory management functions to
reduce the need for the CPU to perform repetitive periodic operations in the switch. This module's
primary purpose is counter/state monitoring, but it includes other services as well. The services offered
are:

• Monitor rate counter changes (too fast or too slow)

• Report state changes

• Monitor queue sizes

• Report max queue sizes

• Copy memory blocks

• Initialize memory blocks

• Compute checksums

The CRM structure is divided into four sets of registers:

• 2048 data set memory

• 64 commands definition registers

• Control register

• Interrupt registers

The control and status registers are used to control the CRM globally. The control register is used to
start and stop the CRM and define the index range of the sequence of commands to execute. The status
register is used to define the next command to execute (before start) or report current one being
executed (while running) and the current state (running/stopped) of the CRM module.

331496-001 291

Peripherals—FM5000/FM6000 Datasheet

The command registers are used to define commands. These commands can have any data size set
associated with each one. When running, the CRM executes the sequence of commands defined in the
CRM_CTRL register, once or repetitively. Each command has its own interrupt bit in CRM_IP that can be
used to post an interrupt the processor. Each interrupt is maskable using the CRM_IM register.

It is possible for the CPU, at any time, to stop the current monitoring process and execute a special
command (or series of commands). The process would be:

1. Stop CRM

2. Wait for CRM to indicate it has stopped.

3. Save the index of the next command to execute.

4. Load a temporary list of commands (possibly by using unused command space).

5. Launch execution of that new program (single execution), wait for its completion by polling
corresponding CRM_IP bit for this command (or waiting for interrupt).

6. Re-active the previous program at the place it was stopped.

The CRM can only be stopped at a command boundary. If a single command is going through a large
data set, the CRM might take a while before stopping.

Table 9-2 lists the CRM commands register set.

Table 9-1 CRM Control/Status Registers

Register Sub-field Width Definition

CRM_CTRL Run 1 Start or stop the CRM.
Stopping might require some time as the current command has to complete.

FirstCommandIndex 6 Index of first command of the sequence.

LastCommandIndex 6 Index of first command of the sequence.

Continuous 1 Defines if the sequence of commands is executed continuously or only once.
0b = Only once
1b = Continuously

If executed only once, the run bit is cleared at the end of the sequence.

TickPrescale 4 Defines (in power of two) the pre-scaler to apply to the PCIE_REFCLK to
produce the reference time for the CRM.

CRM_STATUS Running 1 (READ ONLY) Indicates if CRM is running or stopped.
0b = Stopped
1b = Running

Note: Stopping the CRM (turning Run bit to 0) might be delayed until the
current command being executed completes.

CommandIndex 6 If stopped, this is the index to the next command to execute.
If stopped because the sequence completed, the command index is
CommandIndex 6 reset to the FirstCommandIndex. The value must be set to
any command in the sequence before starting the CRM. If running, this is the
index of the current command being executed.

CRM_TIME Tick 32 Current tick counter.

FM5000/FM6000 Datasheet—Peripherals

292 331496-001

The data set is a two dimensional array of 32-bit data, CRM_DATA[0..2047,0..1]. The first index is the
data pointer (as defined in the CRM_COMMAND register) while the second is interpreted depending of
the command used. Table 9-3 lists the commands.

Table 9-2 CRM Commands Register Set

Register Sub-field Width Definition

CRM_COMMAND[63:0] Command 3 Defines the command to execute (see Table 9-3).

DataIndex 11 Pointer of the data section for this command.
Not used for all commands.

Count 20 Defines the number of registers to walk through by this command.
If the command needs a data section, the count is limited to Count 20 2048
maximum (total size of data set). If the command doesn't need a data
section (such as a memory set), the limit is 1,048,575. The count is the
number of registers, not the number of bytes or words.

CRM_REGISTER[63:0] BaseAddress 22 First register address.

Size 2 Defines register size (0=32-bit, 1=64-bit, 2=96-bit, 3=128-bit).

BlockSize1Shift 4 Defines register block size in power of 2.
Block size is 1<<BlockSize1Shift.

Stride1Shift 4 Defines stride to next block in power of 2.
Stride is 1<<Stride1Shift.

BlockSize2Shift 4 Defines second level register block size in power of 2.
Block size is 1<<BlockSize2Shift.

Stride2Shift 4 Defines second level stride to next block in power of 2.
Stride is 1<<Stride2Shift.

CRM_PERIOD[63:0] Interval 32 Defines time interval before executing this command.
The timebase (CRM tick) is a pre-scale PCIE_REFCLK (1 to 65536 in power of
two). A value of 0x0 is as fast as possible.

LastTick 32 Defines last time the command was executed.

CRM_PARAM[63:0] Param 32 Defines the parameters for each command.
Interpretation depends on the command.

Table 9-3 CRM Command Definition

Command Definition CRM_PARAM CRM_DATA[0] CRM_DATA[1] Interrupt

0 Memory Set Initialize a memory block. Value to set1 N/A N/A Set after
initialization
completes.

1 Memory Copy Copy a memory block from
one location to another
location.

Destination
register (least
significant 22
bits used only)

N/A N/A Set after copy
completes.

2 Monitor Rate
Increase

Increment counter if a
register changed by more
than a certain limit. If the
register size is greater than
32, CRM reads the entire
register, but uses only the
least significant 32 bits for
this operation.

Limit Last value Count Set if at least one
counter in the data
set exceeded the
last value.

331496-001 293

Peripherals—FM5000/FM6000 Datasheet

A single command might be interested in a set of registers that is not contiguous in memory. For this
reason, the register definition includes two levels of block sizes and strides that enable a single
command to efficiently be performed over a large set of registers.

The basic pseudo code of the overall CRM module is:

while (1)

if (Run)

Check if time to run this command
if (tick - CRM_PERIOD[CommandIndex].LastTick > CRM_PERIOD[CommandIndex].Interval)
 if (tick - CRM_PERIOD[CommandIndex].LastTick > CRM_PERIOD[CommandIndex].Interval*2)
 CRM_PERIOD[CommandIndex].LastTick = tick
 else
 CRM_PERIOD[CommandIndex].LastTick += CRM_PERIOD[CommandIndex].Interval

 baseAddress = CRM_REGISTER[CommandIndex].BaseAddress
 count0 = 0
 count1 = 0
 count2 = 0
 if (registerSize == 0)
 size0=1
 else if (registerSize == 1)

3 Monitor Changes Check for change and save
it. If the register size is
greater than 32, CRM reads
the entire register, but uses
only the least significant 32
bits for this operation.

Mask Last value Tick at change Set if at least one
counter in the data
set changed.

4 Save Max Compare value to last and
save if max. If the register
size is greater than 32,
CRM reads the entire
register, but uses only the
least significant 32 bits for
this operation.

Mask Maximum value Tick at change Set when a new
maximum is found.

5 Monitor Rate
Stagnant

Increment counter if
register change by less
than a certain limit. If the
register size is greater than
32, CRM reads the entire
register, but uses only the
least significant 32 bits for
this operation.

Limit Last value Count Set if at least one
counter in the data
set is not
incrementing fast
enough.

6 Count if greater or
equal

Count if greater or equal.
Increment counter if
register is greater or equal
to limit. If the register size
is greater than 32, CRM
reads the entire register,
but uses only the least
significant 32 bits for this
operation.

Mask Limit Count Set if at least one
counter in the data
set is increased.

7 Compute
Checksum

Read table and compute a
32-bit 1's complement
checksum. If the register
size is greater than 32 bits,
each 32-bit word is added
to the checksum.

Expected
checksum

N/A N/A Set if checksum
computed does not
match checksum
expected.

1. The CRM_PARAM register is a 32-bit register, for the SET MEMORY command, this value is replicated to match the size of the set
(32,64,96,128).

Table 9-3 CRM Command Definition (Continued)

Command Definition CRM_PARAM CRM_DATA[0] CRM_DATA[1] Interrupt

FM5000/FM6000 Datasheet—Peripherals

294 331496-001

 size0=2
 else if (registerSize == 2)
 size0=4
 else if (registerSize == 3)
 size0=4
 size1 = 1<<CRM_REGISTER[CommandIndex].BlockSizeShift1
 size2 = 1<<CRM_REGISTER[CommandIndex].BlockSizeShift2
 stride1 = 1<<CRM_REGISTER[CommandIndex].StrideShift1
 stride2 = 1<<CRM_REGISTER[CommandIndex].StrideShift2

 foreach "i" in (0..CRM_COMMAND[CommandIndex].Count)

 # Compute address
 address = baseAddress + count0 * size0 + count1 * stride1 + count2 * stride2

 # Execute command at address "address"
 switch (CRM_COMMAND[CommandIndex].Command)
 case 0:
 # Set memory
 case 1:
 # Copy memory
 case 2:
 # Monitor rate too fast
 case 3:
 # Monitor changes
 case 4:
 # Monitor max
 case 5:
 # Monitor rate too slow
 case 6:
 # Count changes greater than limit
 case 7:
 # Add register content to checksum

 # Advance counter
 count0++
 if (count0 == size1)
 count0 = 0
 count1++
 if (count1 == size2)
 count1 = 0
 count2++

Pass to next command
if (CommandIndex = LastCommandIndex)
 CommandIndex = FirstCommandIndex
else
 CommandIndex++

9.4 SerDes Management

All SerDes (96 for Ethernet and 4 for PCIe) are linked together using a low frequency SBUS.

Note: The SBus IDs for the PCIe SerDes are in the range 1-4, while the SBus IDs for the EPL
SerDes are in the range 5-100. The offset of 1 for the PCIe SerDes, and the offset of 5 for
the EPL SerDes are incorporated in the SerDes register definitions. This means that the
SerDes macro definitions expect an index in the range 0-3 for the PCIe SerDes, and an
index in the range 0-95 for the EPL SerDes.

The controller for the serial bus is located in the JSS unit along with a micro-controller and a JTAG
controller.

331496-001 295

Peripherals—FM5000/FM6000 Datasheet

The SBUS controller supports three masters; host (via manageability module), JTAG (for manufacturing
purpose) and a local micro-controller. The local micro-controller is also part of the SBUS, enabling the
host to access the micro-controller (such as downloading code, reading or writing registers, etc.).

The role of the micro-controller is to provide SerDes management and free up the host processor from
timing critical tasks such as DFE tuning.

Note: The SPICO micro-controller should be accessed using the reserved SBus ID 0xFD, while the
SBus controller should be accessed using the reserved SBus ID 0xFE.

The SBUS is a slow bus with 101 end points. As a result, the access time to any register in any SerDes
is long, up to 6 µs. To prevent the internal management bus of the switch to be on hold for that long,
the manageability module provides a command register that latches a command issued from a host
(local or remote) and frees up the internal bus while the command is being executed. The host might
poll the command register at a later time to see if the command executed. The host must wait for a
previous command to complete before a new one can be issued.

The command register contains:

• Device (1..4 = PCIe SerDes, 5..96 = Ethernet SerDes, 101 = SPICO).

• Register (0..255)

• Operation (read, write, reset)

• Execute (transition from 0 to 1 starts the command)

• Busy (0 = idle, 1 = executing a command)

The transaction on the serial bus starts as soon as the command is written. A read back from the
register returns a busy bit to indicate that the command executed. The busy bit is cleared when the
command execution completes.

Figure 9-2 SerDes Serial Bus Interface

FM5000/FM6000 Datasheet—Peripherals

296 331496-001

The software access for a read back is:

The software access for a write command is:

Writes to command registers are ignored while a command executes. Reading any register returns the
current value; however, the SBUS_RESPONSE content is undefined while a READ command executes.

The switch management bus supports multiple masters in the system (PCIe, EBI, etc...) and a problem
might arise if two masters try to read different SerDes registers.

In this case, the command read(B) is ignored and the variable y contains the result of read(A), which is
not the desired objective. This problem is common for many registers in the switch and there is no logic
in the switch to prevent this. To avoid this problem, only one master should issue a read or write
command at a time and complete it before any other master issues a read command.

The SBUS_CFG register defines the reset state of the SBUS controller and the clock ratio. The clock
ratio should be set to 4.

// Start command
SBUS_COMMAND = (EXECUTE_BIT) + (READ << 16) + (device << 8) + (register);

// Wait for command to complete
while (SBUS_COMMAND & BUSY_BIT) yield();

// Read data
data = SBUS_RESPONSE;

// Clear register for next command
SBUS_COMMAND = 0;

// Write data
SBUS_REQUEST = data;

// Write command
SBUS_COMMAND = (EXECUTE_BIT) + (READ << 16) + (device << 8) + (register);

// Wait for command to complete
while (SBUS_COMMAND & BUSY_BIT) yield();

// Clear register for next command
SBUS_COMMAND = 0;

Local processor on PCIe

SBUS_COMMAND = read(A)
.
.
.
.
.
.
x = SBUS_RESPONSE

Local processor on EBI

SBUS_COMMAND = read(B)
.
.
.
y = SBUS_RESPONSE

331496-001 297

Peripherals—FM5000/FM6000 Datasheet

9.4.1 SPICO Micro-controller

The SBUS_SPICO register controls the SPICO controller.The SPICO controller can be in any of the
following three states at any time.

Reset

SPICO controller is in reset and all internal circuits reset to the their default state. Software cannot
be downloaded while the SPICO controller is in this state.

Disabled

SPICO controller is out of reset but the micro-processor is not running. Software might be
downloaded while the SPICO is in this state.

Enabled

SPICO controller is out of reset and executing code.

The bootstrap process is:

• Place the SPICO in reset (default after chip reset)

— SBUS_SPICO.Reset = 1b

— SBUS_SPICO.Enable = 0b

• Take SPICO out of reset

— SBUS_SPICO.Reset = 0b

• Download software

— Instructions to be supplied, uses a series of SBUS_COMMAND=WRITE (device = 101,...)

• Start micro-controller

— SBUS_SPICO.Enable = 1b

9.4.2 SerDes Registers

The SerDes registers are documented in the register section. The operations for each type of SerDes,
PCIe or Ethernet, are documented in the PCIe and Ethernet Port Logic sections, respectively.

9.4.3 Device Address to Serdes Map

Table 9-4 lists the SBUS to SerDes/EPL mapping as well as the SBUS ordering on the serial bus. Both
the EPLs and the PCIe module have four SerDes each. The PCIe SBUS is the first one on the ring and
covers the SBUS address range 1 to 4, followed by EPL[1] SBUS, which covers the address range 5 to 9
and so on.

FM5000/FM6000 Datasheet—Peripherals

298 331496-001

Table 9-4 SBUS to SerDes/EPL Mapping

Interface SBUS Order SBUS Address

PCIe 1 1

EPL[1] 2 5

EPL[3] 3 9

EPL[5] 4 13

EPL[6] 5 17

EPL[16] 6 21

EPL[17] 7 25

EPL[18] 8 29

EPL[19] 9 33

EPL[20] 10 37

EPL[14] 11 41

EPL[9] 12 45

EPL[11] 13 49

EPL[13] 14 53

EPL[15] 15 57

EPL[21] 16 61

EPL[22] 17 65

EPL[23] 18 69

EPL[24 19 73

EPL[2] 20 77

EPL[4] 21 81

EPL[6] 22 85

EPL[8] 23 89

EPL[10] 24 93

EPL[12] 25 97

331496-001 299

Peripherals—FM5000/FM6000 Datasheet

9.5 I2C Controller

The FM5000/FM6000 contains one I2C controller. The I2C controller supports the following features:

• 100 KHz or 400 KHz operation.

— The speed is programmable through the I2C_CFG register and the switch supports a larger set.

— Slave mode enabling external masters to read/write registers in the chip.

— All registers are accessible except for the LCI_TX_FIFO and LCI_RX_FIFO registers. Those have
special handling and are not accessible from the I2C. As a result, it is not possible to send or
receive frames via I2C.

• Master mode enabling the switch to access external I2C devices.

• Configurable I2C slave address.

• Boot configuration from I2C serial EEPROM.

• Bus arbitration.

— The I2C controller attempts to gain the bus only once and returns an error if it didn't succeed.
Software needs to retry at a later time.

• 7-bit addressing mode.

The I2C controller doesn't support the following features found in some I2C devices:

• SMBus

• General call address.

• 10-bit addressing mode.

• Start byte.

• Mix-speed mode.

• High-speed mode.

Figure 9-3 shows the basic read and write accesses.

FM5000/FM6000 Datasheet—Peripherals

300 331496-001

The SDA and SDC pins are open drain with external pull ups. This structure has the disadvantage of
creating slow rising edges that can potentially be incorrectly interpreted as a double transition. To
prevent this, the FM5000/FM6000 incorporates a digital filtering circuit to ensure that only complete
transitions of either SDC or SDA are detected. The filter operates by sampling the SDA and SDC using
the EBI clock rate and only reports transitions that are stable for at least 16 cycles.

The I2C controller supports a timeout of 100 µs (1/10 of the I2C clock rate) that aborts the current cycle
and returns all pins to 1.

In the slave mode, an external agent on the I2C bus can access any register of the chip as the CPU
does.

The slave mode has the following characteristics:

• Slave address is user configurable and defaults to 1000xxx (0x40-0x47) where xxx is defined by
the I2C_ADDR configurations strapping pins (derived from pull up or pull down on the DMA pins).

• All write accesses start with a 3-byte address field to indicate which address (register or table) to
read followed by N 4-byte data words. Address and data must be sent MSB first. Data words are
written into consecutive addresses starting with the address given. The address is incremented at
the end of the data transfer. The master is at liberty to write any number of words and it is assumed
that the master never attempts to write into an illegal address. It is possible for a write access to
only include the 3-0 byte address without any data words. This is used to load an address into the
chip for an eventual read (note that the address is saved only if 3 address bytes are sent).

Figure 9-3 I2C Basic Accesses

331496-001 301

Peripherals—FM5000/FM6000 Datasheet

• All read accesses return consecutive 4-byte words starting with the last address used during a write
cycle. The actual register is latched just before the first byte of the word that was sent. The master
is at liberty to read any number of words and terminates with a NAK on the last byte desired, which
could any byte.

• The controller supports restart cycles (a stop-start).

These characteristics are shown in Figure 9-4.

Figure 9-4 Access to Internal Registers via I2C

FM5000/FM6000 Datasheet—Peripherals

302 331496-001

In the master mode, the I2C controller is capable of issuing automatic I2C accesses:

• Write — Can write up to 8 bytes

• Write-read — Can write up to 4 bytes and receive up to 4 bytes

• Read — Can read up to 8 bytes

The I2C registers are:

• I2C_CFG

— Enable (1 bit) — Defines if the switch answers to an I2C address from an external master or
not

— Address (7 bits) — Defines the address to which the switch answers

— Divider (12 bits) — Defines clock rate as a divider of the PCIE_REFCLK base clock (which is
CPU_CLK divided by 2)

— Filter (5 bits) — Defines the number of clocks for data to be stable before being recognized.
This register is used to filter glitches on I2C with bad slew rate.

• I2C_DATA_W (32 bits) — Contains the first word for write or write-read commands.

• I2C_DATA_RW (32 bits) — Contains the second word for the write or the read for the write-read
or read commands.

• I2C_CTRL — Used when I2C controller is master

— Address (8 bits) — Defines the address of the device to access (lower bit ignored)

— Command (2 bits) — Execute command write, write-read, read, null.

— LengthW (4 bits) — Defines the number of bytes to send (0..12)

— LengthR (4 bits) — Defines the number of bytes to read (0..12)

— LengthSent (4 bits) — Number of bytes actually written (0..LengthW). Defines the length
sent. It is shorter than LengthW if and only if a NAK is received prematurely.

• Status (4 bits) — Defines the status of the command (completed, aborted, etc...)

The possible transactions are shown in Figure 9-5.

331496-001 303

Peripherals—FM5000/FM6000 Datasheet

Figure 9-5 Combine I2C Accesses

FM5000/FM6000 Datasheet—Peripherals

304 331496-001

9.6 MDIO Controller

The FM5000/FM6000 contains one MDIO controller. The MDIO controller is designed to enable the CPU
to access MDIO devices through the switch. Features include:

• Support for clauses 22 and 45.

• Master only. The switch cannot be the target for any access.

• 3.3V/2.5V level compatibility only. An external level converter is required for access to 1.2V MDIO
as defined in the IEEE802.3ae specification.

The clause 22 format is shown in Figure 9-6.

Clause 45 frame format is shown in Figure 9-7.

Figure 9-6 Clause 22 MDIO Transaction Format

331496-001 305

Peripherals—FM5000/FM6000 Datasheet

Figure 9-7 Clause 45 MDIO Transaction Format

FM5000/FM6000 Datasheet—Peripherals

306 331496-001

The register settings that support these transactions are:

• MDIO_CFG

— Divider (12 bits) — Defines the clock divider (from PCIE_REFCLK clock)

— Preamble — Defines if the 32-bit pre-amble is always sent or not.

• MDIO_DATA — The data sent or read. Only 16 bits.

• MDIO_CTRL

— PHY Address (5 bits)

— Device Address (5 bits) — Note that in 1 GbE mode this field becomes the register field.

— Register Address (16 bits) — Note that in 1 GbE mode this field is unused.

— Command (2 bits)

• Null: Do nothing

• Write: Send register address frame and then write frame.

• Sequential-read: Send read command frame only.

• Random-read: Send register address frame followed by a read frame.

— Device Type (1 bit) — Defines if the frame format is compatible with clause 22 (0) or clause 45
(1). For the clause 22, the commands sequential-read and random-read are exactly equivalent.

— Status — Returns the status of the command.

9.7 General Purpose IO (GPIO) Controller

The GPIO controller is 16-bits wide and supports:

• Input, output, open-drain.

• Interrupts per bit

— Configurable for low to high or high to low or both.

The following registers are defined for the controller:

• GPIO_DATA

• GPIO_CTRL

• GPIO_IP

• GPIO_IM

All GPIO pins are defaulted as inputs after reset and sampled to determine default hardware options. If
BOOT_MODE is set to SPI, the SPI controller is enabled and GPIO[3,4,5] become outputs immediately
superseding the default state and also superseding the GPIO_CTRL configuration for those bits until
boot completes. Similarly, if software enables the SPI controller, the same pins GPIO[3,4,5] are taken
over by the SPI controller as well, and the GPIO_CTRL setting is ignored for those pins.

Table 9-5 lists the GPIO pin strapping options and default reset states.

331496-001 307

Peripherals—FM5000/FM6000 Datasheet

9.8 SPI Interface

9.8.1 Overview

The SPI interface is an optional serial interface that can be used by the switch to upload a default
configuration after reset. The SPI interface is multiplexed with general purpose I/Os and is
automatically activated if the BOOT_MODE strapping options are set to boot from SPI. After
configuration, the general purpose I/O pins revert to normal operation. The SPI interface also offers a
management interface enabling a CPU, local or remote, to initiates transactions on the SPI bus. The SPI
interface supports normal read mode (single pin), a dual-pin mode and a quad-pin mode. Speed can be
up to 62.5 MHz (1/2 of 125 MHz reference clock), the default speed is 500 KHz.

The signals are listed in Table 9-6.

Table 9-5 GPIO Strapping Options

GPIO Pin Strapping Option After Reset SPI Disabled After Reset SPI Enabled

0 DTACK_INV Input Input

1 RW_INV Input Input

2 IGNORE_PARITY Input Input

3 N/A Input Output (SPI_CLK)1

1. return to input after boot completes unless boot command include enabled SPI_CFG.

4 N/A Input Output (SPI_CS_N)1

5 N/A Input Output (SPI_MOSI/SPI_IO0)1

6 N/A Input Input (SPI_SPI_MISO/SPIO_IO1)

7 BOOT_MODE[0] Input Input

8 BOOT_MODE[1] Input Input

9 BOOT_MODE[2] Input Input

10 PARITY_EVEN Input Input

11 I2C_ADDR[0] Input Input

12 I2C_ADDR[1] Input Input

13 I2C_ADDR[2] Input Input

14 DATA_HOLD Input Input (SPI_IO3]

15 Not used Input Input (SPI_IO2]

Table 9-6 SPI Signals

Signal Name Signal Direction Signal Description

SPI_CS_N Out SPI chip select (active low).

SPI_SCK Out Clock for SPI interface. Maximum is 62.5 MHz.

SPI_MOSI/IO0 Out Serial Data Output (MOSI, Master-Out- Slave-In, since the FM5000/FM6000 switch is
master). Connect to serial data input of serial EEPROM/FLASH. Also used as a serial data
input (IO0) when operating in dual-pin mode.

FM5000/FM6000 Datasheet—Peripherals

308 331496-001

9.8.2 Boot

The SPI configuration upload is a two step process. First it retrieves the base address of the boot image
and second it retrieves and executes the boot image. The actual location of the base address of the
image depends on the BOOT_MODE strapping option and enables multiple images (up to four) to be
stored in the same Flash.

Figure 9-8 shows the two transactions being performed in a single-pin mode.

Figure 9-9 shows the same two transactions with the second transaction as a request to be in dual-pin
mode.

SPI_MISO/IO1 In Serial Data Input (MISO, Master-In-Slave-Out, since the FM5000/FM6000 switch is
master). Connect to serial data output of serial EEPROM/FLASH. Also used as a second
serial data input (IO1) when operating in dual-pin mode.

SPI_IO2 In Serial Data IO2. Used as a third serial data input in quad-pin mode.

SPI_IO3 In Serial Data IO3. Used as a fourth serial data input in quad-pin mode.

Figure 9-8 SPI Boot Access

Table 9-6 SPI Signals (Continued)

Signal Name Signal Direction Signal Description

331496-001 309

Peripherals—FM5000/FM6000 Datasheet

The exact process is:

• Switch is reset, BOOT_MODE is set to SPI for image 0,1,2 or 3.

• Switch configure GPIO to select special SPI pins.

• Switch asserts SPI_CS_N and send a read command (0x03) at address 0, 4, 8, 12 depending of the
image selected.

— Data is driven on the negative edge the clock.

— Most significant bit is sent first.

— Rate is 1/1024th of reference clock (122 KHz).

• Switch reads 32-bit word to recover base address of image selected.

— First 8 bits defines speed (bit 5-3) and mode (7:6).

— Next 24 bits define offset to read instructions.

• Switch de-asserts and re-asserts SPI_CS_N and sends a read command at address previously
recovered.

— Command is 0x03 for single-pin read, 0x0B for fast-read, 0x3B for dual and 0x6B for quad.

• Switch read data words (32 bits at the time) until end of configuration.

— Data is sampled on the positive edge of the clock.

• De-activate SPI_CS_N, SPI_CLK and return GPIO to former mode.

Figure 9-9 SPI Boot Access (Dual-pin Mode)

FM5000/FM6000 Datasheet—Peripherals

310 331496-001

9.8.3 Management

The SPI controller also includes capability for the host (local or remote) to issue commands on the SPI
bus.

The SPI_CTRL Register controls the interface:

• ENABLE — Indicates if the controller is enabled or not

• FREQ — Defines speed of operation

• CMD[3:0] — Command to execute

• SHIFT_METHOD — Single, dual or quad

• DATA_SIZE — 1, 2, 3, 4 bytes (4 bytes coded as 00b)

• HEADER_SIZE — 1, 2, 3, 4 bytes (4 bytes coded as 00b)

Register SPI_HEADER contains the header, register SPI_TX_DATA contains the data to shift out, and
register SPI_RX_DATA contains the data shift in.

Note: Enabling the SPI controller overrides control of GPIO/SPI pins from the GPIO controller. The
shift method is only applicable for data read.

The command is a 4-bit structure:

Bit 0 = Indicates if a header must be shifted out

Bit 1 = Indicates if an 8-bit idle must be shifted out (used for turn-around in read-fast, read-
dual, read-quad modes)

Bit 2 = Indicates if data must be shifted in/out

Bit 3 = Indicates if the SPI_CS_N must be deasserted or left asserted (set to 0b to leave
asserted).

Figure 9-10 shows a management request with all four steps enabled, each step can potentially be
disabled.

The command must be cleared (all 4 bits set to 0b) before a new command can be issued.

Figure 9-10 SPI Single Word Access

331496-001 311

Peripherals—FM5000/FM6000 Datasheet

As an example, to read at a random address in an SPI-based EEPROM, the instruction to send is 0x03
followed by the address to read (total 32 bits) and followed by 32 bits of data read. Execution is as
follows:

To read sequence of four words in quad-bit mode without de-selecting between words:

Figure 9-11 shows the timing diagram for this sequence.

SPI_HEADER = 0x03000000 + <addr> # Set command (high byte) and address
SPI_TX_DATA = <don't care> # Set command (high byte) and address
SPI_CTRL.Enable = 1 # Enable controller
SPI_CTRL.Freq = 0; # Max rate
SPI_CTRL.ShiftMethod = 0; # Single pin mode
SPI_CTRL.HeaderSize = 0; # 4 bytes header
SPI_CTRL.DataSize = 0; # 4 bytes data size
SPI_CTRL.Cmd = 4'b1101; # Send Header, Get Data, Deselect when done
---wait 1.024us---
data = SPI_RX_DATA # Data read
SPI_CTRL.Cmd = 4'b0000; # Clear command

SPI_HEADER = 0x6B000000 + <addr> # Set command and address
SPI_CTRL.Enable = 1 # Enable controller
SPI_CTRL.Freq = 0; # Max rate
SPI_CTRL.ShiftMethod = 2; # Quad pin mode
SPI_CTRL.HeaderSize = 0; # 4 bytes header
SPI_CTRL.DataSize = 0; # 4 bytes data size
SPI_CTRL.Cmd = 4'b0111; # Send Header, Idle 1 byte, Get Data, Keep selected when done
---wait 0.75us---
data = SPI_RX_DATA # Data word 0
SPI_CTRL.Cmd = 4'b0000; # Clear command
SPI_CTRL.Cmd = 4'b0100; # Get more data
---wait 0.12us---
data = SPI_RX_DATA # Data word 1
SPI_CTRL.Cmd = 4'b0000; # Clear command
SPI_CTRL.Cmd = 4'b0100; # Get more data
---wait 0.12us---
data = SPI_RX_DATA # Data word 2
SPI_CTRL.Cmd = 4'b0000; # Clear command
SPI_CTRL.Cmd = 4'b1100; # Get more data, deselect when done
---wait 0.12us---
data = SPI_RX_DATA # Data word 3
SPI_CTRL.Cmd = 4'b0000; # Clear command

Figure 9-11 SPI Multiple Words Access

FM5000/FM6000 Datasheet—Peripherals

312 331496-001

9.9 LED Controller

The LED interface consists of five signals: LED_CLK, LED_DATA0, LED_DATA1, LED_DATA2, and
LED_EN.

Those five signals are used to transmit three bits of status data per MAC over the time multiplexed data
pins.

The LED interface is controlled via the LED_CFG register which defines:

• LED_FREQ (24 bits) — A divider to derive the LED_CLK from the PCIE_REF_CLK (125 MHz). The
exact frequency is equal to PCIE_REF_CLK/(LED_FREQ+1)/2. A value of zero is not supported.

• LED_ENABLE (1 bit) — Controls if the LED's are enabled (1b) or disabled (0b)

The overall timing diagram is shown in Figure 9-12. Each MAC is identified with a number X.Y where X
is the EPL number (1 through 24) and Y is the MAC number within that EPL (0 through 3).

The LED_EN is asserted for one clock cycle to mark the beginning of a 97 clock cycle. Each successive
clock cycle carries the three bits per MAC (24x4 = 96). Table 9-7 contains the 3-bit LED state encoding.

Figure 9-12 LED Timing Diagram

Table 9-7 LED Controller State Decoding

DATA0 DATA1 DATA2 State

0 0 0 Port is in reset.

0 0 1 Port is down, this state reflects the non-debounced link down state.

0 1 0 Port has detected remote fault.

0 1 1 Port has detected local fault.

1 0 0 Link is up, no packets transmitted or received since last sample.

1 1 1 Packet received since last sample.

1 x 1 Packet transmitted since last sample.

331496-001 313

Peripherals—FM5000/FM6000 Datasheet

9.10 JTAG Interface

The JTAG controller is compliant to the IEEE 1149.1-2001 specification and provides the following basic
external chip debug features:

• Access to an identification register.

• Access to the boundary scan.

• Access to the internal scan chains.

• Ability to Clamp and HighZ all outputs (except SerDes).

The maximum frequency of operation is 40 MHz.

The supported operations of these registers are:

• Load IR (instruction register)

• Capture — Initializes/captures/freezes value of register.

• Shift— Serially shifts in/out value into/out of register.

• Update— Validates the contents of the register. For example, logic can now use the new value for
its internal operation.

The JTAG reset domain is separate and independent from the chip reset domain.

9.10.1 Tap Controller

The tap controller is a finite state machine of 16 states controlled by the 5-pin JTAG interface. It is
defined by IEEE 1149.1-2001. Supported JTAG instructions are listed in Table 9-8.

See the Intel® Ethernet Switch FM6000 Series – Boundary Scan Description Language (BSDL) file for
boundary scan chain information.

Table 9-8 JTAG Instructions

Instruction Code (6b) Description

ICODE 0x01 Selects the identification register.

SAMPLE/PRELOAD 0x02 Selects the boundary scan register. Sample input pins to input boundary scan register and pre-
loads the output boundary scan register.

EXTEST 0x03 Selects the boundary scan register. Output boundary scan register cells drive the covered
output pins. Input boundary cell registers sample the input pins.

HIGHZ 0x06 Selects the bypass register and sets all covered output pins to high impedance.

CLAMP 0x07 Forces a known value on the outputs, but uses the bypass register to shorten scan length.

BYPASS 0x3F

FM5000/FM6000 Datasheet—Peripherals

314 331496-001

NOTE: This page intentionally left blank.

331496-001 315

Electrical Specification—FM5000/FM6000 Datasheet

10.0 Electrical Specification

This section describes the electrical specifications for the FM5000/FM6000.

10.1 Absolute Maximum Ratings

10.2 Recommended Operating Conditions

Table 10-1 Absolute Maximum Ratings

Symbol Parameter Min Max Units

VDD Variable core voltage -0.3 1.3 V

VDDS Fixed core voltage -0.3 1.3 V

AVDD SerDes analog voltage -0.3 1.3 V

VDD25 LVCMOS power supply -0.3 3.0 V

AVDD25 LVPECL (REFCLKs) power supply -0.3 3.0 V

VDDPLL PLL analog power supply -0.3 1.3 V

- Operating case temperature under bias - +115 C

- Storage temperature -65 +150 C

- ESD -2000 +2000 V

Table 10-2 Power Supply Voltages

Recap Parameter Symbol Min Voltage (V) Max Voltage (V) Comments

Core Voltage 1/Core Voltage 2 VDD/VDDS 0.91 1.14

PLL Analog Power Supply VDDPLL 1.05 1.15

SerDes Analog Voltage AVDD 0.95 1.05 No SerDes at 10 GbE.

SerDes Analog Voltage AVDD 1.05 1.15 Any SerDes at 10 GbE.

LVCMOS and LVPECL Supplies VDD25, AVDD25 2.25 2.75

Notes:
1. VDD and VDDS voltages must be set to nominal values stored in the on-chip fuse box. These values should be read by the

software and the power supplies adjusted accordingly.
2. The tables that follow also assume that 10 GbE SerDes are used, so the nominal AVDD supply is set to 1.10V.
3. These devices only operate over the commercial temperature range of 0 to 85 °C case temperature.

FM5000/FM6000 Datasheet—Electrical Specification

316 331496-001

10.2.1 Voltage Scaling

Intel uses voltage scaling to satisfy device performance targets. When each part is tested, the required
nominal VDD and VDDS supply voltages are programmed into an on-chip fuse box. The nominal
voltages can range from 0.95V to 1.10V, with performance guaranteed over a ±40 mV span around
each s specific nominal value. The system design must have the capability to adjust both VDD and
VDDS based on the values programmed in the fuse box.

Note: The highest performance devices might also have high leakage current. For such parts, the
maximum sustained power numbers are observed at lower VDD and VDDS values than
listed in the tables that follow. The nominal VDD and VDDS values of those parts are
therefore determined more by power constraints than performance constraints.

10.2.2 Maximum Peak Current

Maximum peak current limits are provided in the sections that follow as guidance for system power
supply design. Under worst-case operating conditions and anomalous transient traffic loads, the current
needs on the VDD and VDDS supply domains might spike to very high levels. These transient conditions
generally do not arise for longer than a few milliseconds in production environments, if at all. However,
to guarantee correct device operation, the system power supply should be provisioned to deliver these
worst-case peak currents.

The device current requirements are highly sensitive to instantaneous traffic load, and in particular to
the distribution of packet lengths the switch must process. Smaller packets require more energy to
process than longer packets.

One consequence of this property is very high dI/dt characteristics. The device is capable of swinging
from idle to peak current conditions over very small windows of time. Under pathological lab test
conditions dI/dt can be 135 A/250 ns. For this reason, Intel strongly recommends the use of fast-
response, multi-phase power supplies. Best industry design practices should be employed to achieve
low impedance supply networks (below 1 mΩ) and adequate decoupling capacitance. Proper choice of
capacitance and a power supply with <5 s response time can support all conditions.

The typical current values listed represent typical current transients that might arise with a typical
worst-case distribution of network traffic typical of many applications: a 1:15 ratio of 64:256-byte
packets with, on average, 60 bytes of IFG (3x minimum). current values correspond to the theoretical
worst-case traffic condition: continuous 64-byte packets with minimum IFG on all ports with no internal
blocking in the switch.

Table 10-3 Maximum Peak Current1 for FM6324, FM6724 and FM5224

1. Please contact Intel if intending to use a port configuration that requires more than 66 scheduler tokens.

Supply Domain Symbol Max Voltage (V)
Maximum Peak Current (A)

Typical Margined

Core Voltage 1 VDD VDD(nom)+40 mv 55.5 98

Core Voltage 2 VDDS VDDS(nom)+40 mv 38.0 47.0

SerDes and PLL Supplies AVDD, VDDPLL 1.15 9.3 11.0

LVCMOS and LVPECL Supplies VDD25, AVDD25 2.75 0.6 0.6

331496-001 317

Electrical Specification—FM5000/FM6000 Datasheet

Notes: Typical numbers assume 75 ˚C case temperature.
Margined numbers assume 85 ˚C case temperature.

Notes: Typical numbers assume 75 ˚C case temperature.
Margined numbers assume 85 ˚C case temperature.

Notes: Typical numbers assume 75 ˚C case temperature.
Margined numbers assume 85 ˚C case temperature.

10.2.3 Maximum Sustained Power

Intel characterizes maximum sustained power as a requirement for system TDP. Over short time spans,
instantaneous power might see excursions to the maximum peak values (previously listed) in response
to fluctuations in supply voltage, synchronized bursts of minimum-size packets, and other transitory
conditions. However, over thermal time scales, with realistic worst-case traffic and power supply
behavior, the steady-state maximum power dissipated by the device is bounded by the values specified
in the sections that follow.

Typical and margined power values are provided in the section that follows. Both are obtained from
measurements over silicon parametric variance using a realistic worst-case use model. The typical
values assume the voltage levels are held at nominal values, allowing for transient excursions, while
the margined values are characterized at max voltage with no ripple. The margined values are further
buffered to allow for the full range of silicon variability that the manufacturing process might,
theoretically, produce.

Table 10-4 Maximum Peak Current1 for FM6348

1. Please contact Intel if intending to use a port configuration that requires more than 66 scheduler tokens.

Supply Domain Symbol Max Voltage (V)
Maximum Peak Current (A)

Typical Margined

Core Voltage 1 VDD VDD(nom)+40mV 91.0 175.0

Core Voltage 2 VDDS VDDS(nom)+40mv 60.5 77.5

SerDes and PLL Supplies AVDD, VDDPLL 1.15 10.8 12.5

LVCMOS and LVPECL Supplies VDD25, AVDD25 2.75 0.6 0.6

Table 10-5 Maximum Peak Current1 for FM6364 and FM6764

1. Please contact Intel if intending to use a port configuration that requires more than 66 scheduler tokens.

Supply Domain Symbol Max Voltage (V)
Maximum Peak Current (A)

Typical Margined

Core Voltage 1 VDD VDD(nom)+40mV 116.0 232.0

Core Voltage 2 VDDS VDDS(nom)+40mv 88.0 105.0

SerDes and PLL Supplies AVDD, VDDPLL 1.15 11.7 13.5

LVCMOS and LVPECL Supplies VDD25, AVDD25 2.75 0.6 0.6

FM5000/FM6000 Datasheet—Electrical Specification

318 331496-001

The traffic use model assumes all features are enabled in the device in their maximum power
configurations. It assumes the following distribution of packets on all active ports: 5% 64-byte, 75%
256-byte, 20% idle. Packets are assumed to require maximally deep header parsing (IPv6 or similar).

Notes: Typical numbers assume 75 ˚C case temperature.
Margined numbers assume 85 ˚C case temperature.

Notes: Typical numbers assume 75 ˚C case temperature.
Margined numbers assume 85 ˚C case temperature.

Notes: Typical numbers assume 75 ˚C case temperature.
Margined numbers assume 85 ˚C case temperature.

Table 10-6 Maximum Sustained Power Dissipation for FM6324, FM6724 and FM5224

Supply Domain Symbol
Voltage (V) Maximum Sustained Power (W)

Min Max Typical Margined

Core Voltage 1 VDD 0.95-1.10 +40mV 37.4 51.9

Core Voltage 2 VDDS 0.95-1.10 +40mV 29.0 41.6

SerDes and PLL Supplies AVDD, VDDPLL 0.95 1.15 10.2 12.7

LVCMOS and LVPECL Supplies VDD25, AVDD25 2.25 2.75 1.3 1.6

Total Power 73 102

Table 10-7 Maximum Sustained Power Dissipation for FM6348

Supply Domain Symbol
Voltage (V) Maximum Sustained Power (W)

Min Max Typical Margined

Core Voltage 1 VDD 0.95-1.10 +40mV 64.6 78.4

Core Voltage 2 VDDS 0.95-1.10 +40mV 45.1 64.5

SerDes and PLL Supplies AVDD, VDDPLL 1.10 1.15 11.8 14.4

LVCMOS and LVPECL Supplies VDD25, AVDD25 2.50 2.75 1.3 1.5

Total Power 120 154

Table 10-8 Maximum Sustained Power Dissipation for FM6364 and FM6764

Supply Domain Symbol
Voltage (V) Maximum Sustained Power (W)

Min Max Typical Margined

Core Voltage 1 VDD 0.95-1.10 +40mV 85.1 101.8

Core Voltage 2 VDDS 0.95-1.10 +40mV 57.8 79.7

SerDes and PLL Supplies AVDD, VDDPLL 1.10 1.15 12.9 15.5

LVCMOS and LVPECL Supplies VDD25, AVDD25 2.50 2.75 1.3 1.4

Total Power 156 195

331496-001 319

Electrical Specification—FM5000/FM6000 Datasheet

10.3 Thermal Characteristics

The FM5000/FM6000 devices are designed to work over the commercial temperature range of 0-85 ˚C
case temperature. Typical data center incoming air temperature is 35 ˚C. As can be seen in
Figure 10-1, the thermal resistance from ambient to case can be maintained at 0.2C/W using a heat
sink with airflow above 15 CFM. As shown in Table 10-8, the maximum sustained power for the FM6000
series is 195 W. This means that for 35 ˚C incoming air, the case temperature will be about 75 ˚C,
providing some margin for temporary power increases.

10.4 Power Supply Sequencing

Follow this order for power sequencing:

1. 12V

2. VDD/VDDS

3. VDDPLL/AVDD

4. VDD25/AVDD25

Figure 10-1 Thermal Characteristics

FM5000/FM6000 Datasheet—Electrical Specification

320 331496-001

10.5 REFCLK Specification

1. VDD/VDDS cannot start to ramp until the primary 12V rail is 90% of its final value. This is optionally under software control
using the VDD_OFF_N signal driven by the FPGA.

2. AVDD & VDDPLL should not start to ramp until VDD/VDDS is 90% of its final value. This can also be gated by VDD_OFF_N.
3. Total Power-Up time, from when the VDD/VDDS rail starts rising until the VDD25 rail gets to its final level is < 20 ms
4. In case of Power-Off, it is recommend that all power-rails get to ‘0’ level within 20 ms from the point the first power-rail

starts powering off, although this risk is considered low.
5. Ramp time for each power-rail: 10 s < Tramp < 1 ms.
6. Chip reset must be held asserted until power and clocks have been stable for 1024 clock cycles.

Figure 10-2 Power Supply Sequencing

Table 10-9 156.25 MHz Clock

Symbol Parameter Min Typ Max Units

VDD25 LVPECL voltage 2.5 V1

1. Input is 2.5V LVPECL. Internal termination is recommended.

Vdiff Differential voltage 0.4 0.7 1.0 V

Vcm Common voltage 0.85 1.15 1.6 V

Frequency 156.25 MHz

Duty cycle 40 50 60 %

Stability 30 50 ppm

Skew between P & N 3 ps

Jrc Input jitter RMS 0.24 ps

331496-001 321

Electrical Specification—FM5000/FM6000 Datasheet

10.6 DC Characteristics of LVCMOS PADs

There are three types of LVCMOS PADs: 4 mA, 8 mA, and 12 mA. The characteristics are shown in
Table 10-11.

The 4 mA LVCMOS are used for the following signals:

• LED_CLK,LED_EN,LED_DATA[2:0]

• I2C_SCL,I2C_SDA

• MDC,MDIO

The 8 mA LVCMOS are used for the following signals:

• DATA[31:0]

• PAR[3:0]

• DTACK_N,DERR_N,INTR_N

• GPIO[15:4], GPIO[2:0]

• PLL_CLKOUT

• TXRDY_N,RXRDY_N,RXEOT_N

The 12 mA LVCMOS are used for the following signals:

• GPIO[3]/SPI_SCK

Table 10-10 125 MHz Clock

Symbol Parameter Min Typ Max Units

VDD25 LVPECL voltage 2.5 V1

Vdiff Differential voltage 0.4 0.7 1.0 V

Vcm Common voltage 0.85 1.15 1.6 V

Frequency 125 MHz2

Duty cycle 40 50 60 %

Jrc Input jitter RMS 0.24 ps

1. Input is 2.5V LVPECL. Internal termination is recommended.
2. Input clock can conform to the PCI Express Base Specification 3.0, Gen 2 requirements.

Table 10-11 DC Characteristics of LVCMOS Pins

Parameter Symbol Test Conditions Min Typ Max Units

Output HIGH Current

IOH VDD25=2.5V - 4 - mA

IOH VDD25=2.5V - 8 - mA

IOH VDD25=2.5V - 12 - mA

Output LOW Current

IOL VDD25=2.5V - -4 - mA

IOL VDD25=2.5V - -8 - mA

IOL VDD25=2.5V - -12 - mA

Output HIGH Voltage VOH VDD25=2.5V VDD25 - 0.4 - - V

FM5000/FM6000 Datasheet—Electrical Specification

322 331496-001

10.7 Ethernet Output Specifications

10.8 Ethernet Input Specifications

Output LOW Voltage VOL VDD25=2.5V - - 0.4 V

Input Current
IL 0V < V pad < VDD25 - - ± 5 A

IL V pad ≥ VDD25 - - ± 500 A

Input HIGH Level
(Input and I/O pins) VIH Guaranteed Logic HIGH Level 1.7 - VDD25 +1.2 V

Input LOW Level
(Input and I/O pins) VIL Guaranteed Logic LOW Level -0.3 - 0.7 V

Clamp Diode Voltage VIK VDD=Min, IIN=-18mA - -0.7 -1.2 V

Table 10-12 Characteristics Ethernet Serdes Outputs

Symbol Parameter Min Typ Max Units

VO-PP Output voltage (peak-to-peak, differential) 400 - 1200 mV

VTCM Transmit Common-mode Voltage - 500 - mV

JTT

Duty Cycle Distortion - - 50 mUI

Random Jitter Component (RJ) - - 8.8 mUI

Deterministic Jitter Component (DJ) - - 150 mUI

ZOD Differential Output Impedance 80 100 120 ohms

TTR, TTF Rise, Fall Times of Differential Outputs (controllable) 29 - 60 ps

Table 10-13 Characteristics Ethernet Serdes Inputs

Symbol Parameter Min Typ Max Units

VI-PP Input Voltage (peak-to-peak, differential) 100 - - mV

VICM AC Input Common Mode Voltage - - 150 mV

JRT

Jitter Tolerance Mask at Baudrate/25000 - - 1.5 UI

Jitter Tolerance Mask at Baudrate/1667 - - 0.1 UI

Jitter Tolerance Mask at Baudrate/2 - - 0.1 UI

ZIN Differential Input Impedance 80 100 120 ohms

LDR Differential Return Loss 8 - - dB

XDS XAUI Differential Pair Skew - - 15 ps

KDS 10G Serial Differential Pair Skew - - 4.5 ps

XLS XAUI Lane-to-Lane Skew - - 12.8 ns

KLS 40GBase-nn Lane-to-Lane Skew - - TBD ns

Table 10-11 DC Characteristics of LVCMOS Pins (Continued)

Parameter Symbol Test Conditions Min Typ Max Units

331496-001 323

Electrical Specification—FM5000/FM6000 Datasheet

10.9 PCIe Output Specifications

Note: FM5000/FM6000 PCIe meets the PCIe Specification rev 3.0

10.10 PCIe Input Specifications

Note: FM5000/FM6000 PCIe meets the PCIe Specification rev 3.0

Table 10-14 Characteristics PCIe SerDes Outputs

Symbol Parameter Min Typ Max Units

VO-PP Output voltage (peak-to-peak, differential) 800 - 1200 mV

VOCM DC Output Common-mode Voltage 0 - 3.6 V

JTT

Duty Cycle Distortion - - 50 mUI

Random Jitter Component (RJ) - - 8.8 mUI

Deterministic Jitter Component (DJ) - - 150 mUI

ZOSE Single Ended Output Impedance - 50 - ohms

ZOD Differential Output Impedance 80 100 120 ohms

TTR, TTF Rise, Fall Times of Differential Outputs (controllable) 29 - 60 ps

Table 10-15 Characteristics PCIe SerDes Inputs

Symbol Parameter Min Typ Max Units

VI-PP Input Voltage (peak-to-peak, differential) 100 - - mV

VICM AC Input Common Mode Voltage - - 150 mV

ZID Differential Input Impedance 80 100 120 ohms

TRE Received Eye Width 0.4 - - UI

DRL Differential Return Loss 8 - - dB

FM5000/FM6000 Datasheet—Electrical Specification

324 331496-001

10.11 EBI Interface, General Timing
Requirements

Notes: DTACK_INV, RW_N_INV are static signals. They must be stable before RESET_N is
de-asserted. INTR is asynchronous signals.

Figure 10-3 EBI Signal Timing

Table 10-16 EBI Interface Timing Constraints

Parameter Symbol Min Typ Max Units Test Conditions

Clock cycle Tsu1 - - 66 MHz -

Input group 1 setup time to rising edge of clock Tsu1 4.0 - - ns -

Input group 1 hold time from rising edge of clock Th1 0.5 - - ns -

Input group 2 setup time to rising edge of clock Tsu1 4.0 - - ns -

Input group 2 hold time from rising edge of clock Th1 0.5 - - ns -

Rising edge of clock to output valid
Tov 0 - 6.5 ns 10 pf load

Tov 0 - 7.5 ns 30 pf load

331496-001 325

Electrical Specification—FM5000/FM6000 Datasheet

10.12 JTAG Interface

The JTAG interface follows standard timing as defined in the IEEE 1149.1 Standard Test Access Port and
Boundary-Scan Architecture, 2001.

Note: When not using the JTAG interface, either drive the TCK pin with an external clock, or drive
the TRST_N pin low. Conversely, when using the JTAG interface assert TRST_N along with
chip reset to ensure proper reset of the JTAG interface prior to use.

FM5000/FM6000 Datasheet—Electrical Specification

326 331496-001

NOTE: This page intentionally left blank.

331496-001 327

Mechanical Specification—FM5000/FM6000 Datasheet

11.0 Mechanical Specification

11.1 1677-Ball Package Dimensions

This section contains the FM5000/FM6000 package dimensions. The 1677-ball FM5000/FM6000
package is lead-free. See Table 11-1 and Table 11-2 for complete pin lists.

Packaging, storage moisture and re-flow conditions can be referred to Intel Manufacturing Advance
Service (MAS) report.

Note: The recommended contact force for a heat sink is 15 psi.

Figure 11-1 1677-Ball Package Bottom View

FM5000/FM6000 Datasheet—Mechanical Specification

328 331496-001

Figure 11-2 1677-Ball Package Top/Side View

331496-001 329

Mechanical Specification—FM5000/FM6000 Datasheet

11.2 1677-Ball Package

Figure 11-3 FM5000/FM6000 Ballout Diagram (Bottom View)

FM5000/FM6000 Datasheet—Mechanical Specification

330 331496-001

11.3 Pin List Ordered by Location
Table 11-1 Pin List Ordered by Location

Pin Name Pin Name Pin Name Pin Name

A1 NoBall A2 VSS A3 VDDS A4 VSS

A5 VDDS A6 VSS A7 VDDS A8 VSS

A9 VDD A10 VSS A11 VDDS A12 VSS

A13 VDDS A14 VSS A15 VDDS A16 VSS

A17 VDD A18 VSS A19 VDDS A20 VSS

A21 VDDS A22 VSS A23 VDDS A24 VSS

A25 VDD A26 VSS A27 VDDS A28 VSS

A29 VDDS A30 VSS A31 VDDS A32 VSS

A33 VDD A34 VSS A35 VDDS A36 VSS

A37 VDDS A38 VSS A39 VDDS A40 VSS

A41 NoBall B1 VSS B2 P20_TDP B3 VSS

B4 P20_TCP B5 VSS B6 P20_TBP B7 VSS

B8 P20_TAP B9 VSS B10 P14_TDP B11 VSS

B12 P14_TCP B13 VSS B14 P14_TBP B15 VSS

B16 P14_TAP B17 VSS B18 P12_TDP B19 VSS

B20 P12_TCP B21 VSS B22 P12_TBP B23 VSS

B24 P12_TAP B25 VSS B26 P08_TDP B27 VSS

B28 P08_TCP B29 VSS B30 P08_TBP B31 VSS

B32 P08_TAP B33 VSS B34 P04_TDP B35 VSS

B36 P04_TCP B37 VSS B38 P04_TBP B39 VSS

B40 P04_TAP B41 VSS C1 VSS C2 P20_TDN

C3 AVDD C4 P20_TCN C5 AVDD C6 P20_TBN

C7 AVDD C8 P20_TAN C9 VSS C10 P14_TDN

C11 AVDD C12 P14_TCN C13 AVDD C14 P14_TBN

C15 AVDD C16 P14_TAN C17 VSS C18 P12_TDN

C19 AVDD C20 P12_TCN C21 AVDD C22 P12_TBN

C23 AVDD C24 P12_TAN C25 VSS C26 P08_TDN

C27 AVDD C28 P08_TCN C29 AVDD C30 P08_TBN

C31 AVDD C32 P08_TAN C33 VSS C34 P04_TDN

C35 AVDD C36 P04_TCN C37 AVDD C38 P04_TBN

C39 AVDD C40 P04_TAN C41 VSS D1 VDD

D2 VSS D3 AVDD D4 AVDD D5 VDDS

D6 AVDD D7 AVDD D8 VSS D9 VSS

D10 VSS D11 AVDD D12 AVDD D13 VDDS

D14 AVDD D15 AVDD D16 VSS D17 VSS

331496-001 331

Mechanical Specification—FM5000/FM6000 Datasheet

D18 VSS D19 AVDD D20 AVDD D21 VDDS

D22 AVDD D23 AVDD D24 VSS D25 VSS

D26 VSS D27 AVDD D28 AVDD D29 VDDS

D30 AVDD D31 AVDD D32 VSS D33 VSS

D34 VSS D35 AVDD D36 AVDD D37 VDDS

D38 AVDD D39 AVDD D40 VSS D41 VDD

E1 VSS E2 P20_RDP E3 AVDD E4 P20_RCP

E5 VDDS E6 P20_RBP E7 AVDD E8 P20_RAP

E9 VDD E10 P14_RDP E11 AVDD E12 P14_RCP

E13 VDDS E14 P14_RBP E15 AVDD E16 P14_RAP

E17 VDD E18 P12_RDP E19 AVDD E20 P12_RCP

E21 VDDS E22 P12_RBP E23 AVDD E24 P12_RAP

E25 VDD E26 P08_RDP E27 AVDD E28 P08_RCP

E29 VDDS E30 P08_RBP E31 AVDD E32 P08_RAP

E33 VDD E34 P04_RDP E35 AVDD E36 P04_RCP

E37 VDDS E38 P04_RBP E39 AVDD E40 P04_RAP

E41 VSS F1 VSS F2 P20_RDN F3 VSS

F4 P20_RCN F5 VSS F6 P20_RBN F7 VSS

F8 P20_RAN F9 VDD F10 P14_RDN F11 VSS

F12 P14_RCN F13 VSS F14 P14_RBN F15 VSS

F16 P14_RAN F17 VDD F18 P12_RDN F19 VSS

F20 P12_RCN F21 VSS F22 P12_RBN F23 VSS

F24 P12_RAN F25 VDD F26 P08_RDN F27 VSS

F28 P08_RCN F29 VSS F30 P08_RBN F31 VSS

F32 P08_RAN F33 VDD F34 P04_RDN F35 VSS

F36 P04_RCN F37 VSS F38 P04_RBN F39 VSS

F40 P04_RAN F41 VSS G1 VDD G2 VSS

G3 VSS G4 VSS G5 VDD G6 VDD

G7 VDD G8 VDD G9 VDD G10 VDD

G11 VSS G12 VSS G13 VSS G14 VSS

G15 VSS G16 VDD G17 VDD G18 VDD

G19 VSS G20 VSS G21 VSS G22 VSS

G23 VSS G24 VDD G25 VDD G26 VDD

G27 VSS G28 VSS G29 VSS G30 VSS

G31 VSS G32 VDD G33 VDD G34 VDD

G35 VDD G36 VDD G37 VDD G38 VSS

G39 VSS G40 VSS G41 VDD H1 VSS

H2 P22_TDP H3 VSS H4 P22_TCP H5 VSS

Table 11-1 Pin List Ordered by Location (Continued)

Pin Name Pin Name Pin Name Pin Name

FM5000/FM6000 Datasheet—Mechanical Specification

332 331496-001

H6 P22_TBP H7 VSS H8 P22_TAP H9 VSS

H10 P16_TDP H11 VSS H12 P16_TCP H13 VSS

H14 P16_TBP H15 VSS H16 P16_TAP H17 VSS

H18 P10_TDP H19 VSS H20 P10_TCP H21 VSS

H22 P10_TBP H23 VSS H24 P10_TAP H25 VSS

H26 P06_TDP H27 VSS H28 P06_TCP H29 VSS

H30 P06_TBP H31 VSS H32 P06_TAP H33 VSS

H34 VSS H35 VDD H36 P02_RDN H37 P02_RDP

H38 VSS H39 P02_TDN H40 P02_TDP H41 VSS

J1 VSS J2 P22_TDN J3 AVDD J4 P22_TCN

J5 AVDD J6 P22_TBN J7 AVDD J8 P22_TAN

J9 VSS J10 P16_TDN J11 AVDD J12 P16_TCN

J13 AVDD J14 P16_TBN J15 AVDD J16 P16_TAN

J17 VSS J18 P10_TDN J19 AVDD J20 P10_TCN

J21 AVDD J22 P10_TBN J23 AVDD J24 P10_TAN

J25 VSS J26 P06_TDN J27 AVDD J28 P06_TCN

J29 AVDD J30 P06_TBN J31 AVDD J32 P06_TAN

J33 VSS J34 VSS J35 VDD J36 VSS

J37 AVDD J38 AVDD J39 AVDD J40 VSS

J41 VDDS K1 VDD K2 VSS K3 AVDD

K4 AVDD K5 VDDS K6 AVDD K7 AVDD

K8 VSS K9 VSS K10 VSS K11 AVDD

K12 AVDD K13 VDDS K14 AVDD K15 AVDD

K16 VSS K17 VSS K18 VSS K19 AVDD

K20 AVDD K21 VDDS K22 AVDD K23 AVDD

K24 VSS K25 VSS K26 VSS K27 AVDD

K28 AVDD K29 VDDS K30 AVDD K31 AVDD

K32 VSS K33 VSS K34 VSS K35 VDD

K36 P02_RCN K37 P02_RCP K38 AVDD K39 P02_TCN

K40 P02_TCP K41 VSS L1 VSS L2 P22_RDP

L3 AVDD L4 P22_RCP L5 VDDS L6 P22_RBP

L7 AVDD L8 P22_RAP L9 VDD L10 P16_RDP

L11 AVDD L12 P16_RCP L13 VDDS L14 P16_RBP

L15 AVDD L16 P16_RAP L17 VDD L18 P10_RDP

L19 AVDD L20 P10_RCP L21 VDDS L22 P10_RBP

L23 AVDD L24 P10_RAP L25 VDD L26 P06_RDP

L27 AVDD L28 P06_RCP L29 VDDS L30 P06_RBP

L31 AVDD L32 P06_RAP L33 VDD L34 VSS

Table 11-1 Pin List Ordered by Location (Continued)

Pin Name Pin Name Pin Name Pin Name

331496-001 333

Mechanical Specification—FM5000/FM6000 Datasheet

L35 VDD L36 VSS L37 VDDS L38 VDDS

L39 AVDD L40 VSS L41 VDDS M1 VSS

M2 P22_RDN M3 VSS M4 P22_RCN M5 VSS

M6 P22_RBN M7 VSS M8 P22_RAN M9 VDD

M10 P16_RDN M11 VSS M12 P16_RCN M13 VSS

M14 P16_RBN M15 VSS M16 P16_RAN M17 VDD

M18 P10_RDN M19 VSS M20 P10_RCN M21 VSS

M22 P10_RBN M23 VSS M24 P10_RAN M25 VDD

M26 P06_RDN M27 VSS M28 P06_RCN M29 VSS

M30 P06_RBN M31 VSS M32 P06_RAN M33 VDD

M34 VSS M35 VDD M36 P02_RBN M37 P02_RBP

M38 AVDD M39 P02_TBN M40 P02_TBP M41 VSS

N1 VDDS N2 VSS N3 VSS N4 VSS

N5 VDD N6 VDD N7 VDD N8 VDD

N9 VDD N10 VDD N11 VDD N12 VDD

N13 VSS N14 VSS N15 VSS N16 VSS

N17 VDD N18 VSS N19 VDD N20 VSS

N21 VDD N22 VSS N23 VDD N24 VSS

N25 VDD N26 VSS N27 VSS N28 VSS

N29 VSS N30 VSS N31 VSS N32 VSS

N33 VSS N34 VSS N35 VSS N36 VSS

N37 AVDD N38 AVDD N39 AVDD N40 VSS

N41 VDDS P1 VSS P2 P24_TAP P3 P24_TAN

P4 VSS P5 P24_RAP P6 P24_RAN P7 VDD

P8 P18_TAP P9 P18_TAN P10 VSS P11 P18_RAP

P12 P18_RAN P13 AVDD P14 ETH_RCK4P P15 Reserved

P16 VSS P17 VSS P18 VDD P19 VSS

P20 VDD P21 VSS P22 VDD P23 VSS

P24 VDD P25 VSS P26 VSS P27 PX_RCK_P

P28 ETH_RCK2P P29 AVDD P30 VSS P31 VFB1

P32 NC P33 VSS P34 CHIP_RESET_N P35 VSS

P36 P02_RAN P37 P02_RAP P38 VSS P39 P02_TAN

P40 P02_TAP P41 VSS R1 VDDS R2 VSS

R3 AVDD R4 AVDD R5 AVDD R6 VSS

R7 VDD R8 VSS R9 AVDD R10 AVDD

R11 AVDD R12 VSS R13 AVDD R14 ETH_RCK4N

R15 Reserved R16 VSS R17 VSS R18 VDD

R19 VDD R20 VSS R21 VSS R22 VSS

Table 11-1 Pin List Ordered by Location (Continued)

Pin Name Pin Name Pin Name Pin Name

FM5000/FM6000 Datasheet—Mechanical Specification

334 331496-001

R23 VDD R24 VDD R25 VSS R26 VSS

R27 PX_RCK_N R28 ETH_RCK2N R29 AVDD R30 LED_CLK

R31 VFB2 R32 NC R33 VDDK R34 VSSK

R35 VSS R36 VSS R37 VSS R38 VSS

R39 VSS R40 VSS R41 VDD T1 VSS

T2 P24_TBP T3 P24_TBN T4 AVDD T5 P24_RBP

T6 P24_RBN T7 VSS T8 P18_TBP T9 P18_TBN

T10 AVDD T11 P18_RBP T12 P18_RBN T13 VSS

T14 VSS T15 VSS T16 VSS T17 VSS

T18 VDD T19 VDD T20 VSS T21 VSS

T22 VSS T23 VDD T24 VDD T25 VSS

T26 VSS T27 VSS T28 VSS T29 VSS

T30 LED_DATA0 T31 PAD_TRI_N T32 GPIO[7]
BOOT_MODE[0] T33 VDDSK

T34 VSSK2 T35 GPIO[5]
SPI_MOSI T36 GPIO[4]

SPI_CS_N T37 GPIO[3]
SPI_SCK

T38 GPIO[6]
SPI_MISO T39 Reserved T40 Reserved T41 VSS

U1 VDDS U2 VSS U3 AVDD U4 VDDS

U5 VDDS U6 VSS U7 VSS U8 VSS

U9 AVDD U10 VDDS U11 VDDS U12 VSS

U13 VDD U14 VSS U15 VDD U16 VDD

U17 VDD U18 VDD U19 VDD U20 VDD

U21 VDD U22 VDD U23 VDD U24 VDD

U25 VDD U26 VDD U27 VDD U28 PX_TAP

U29 PX_TAN U30 LED_DATA1 U31 NC U32 TESTMODE

U33 ADDR[2] U34 ADDR[3] U35 ADDR[4] U36 ADDR[5]

U37 ADDR[6] U38 ADDR[7] U39 ADDR[8] U40 ADDR[9]

U41 VSS V1 VSS V2 P24_TCP V3 P24_TCN

V4 AVDD V5 P24_RCP V6 P24_RCN V7 VSS

V8 P18_TCP V9 P18_TCN V10 AVDD V11 P18_RCP

V12 P18_RCN V13 VSS V14 VDD V15 VDD

V16 VDD V17 VDD V18 VDD V19 VDD

V20 VDD V21 VDD V22 VDD V23 VDD

V24 VDD V25 VDD V26 VDD V27 VDD

V28 PX_TBP V29 PX_TBN V30 LED_DATA2 V31 DTACK_N

V32 ADDR[10] V33 ADDR[11] V34 ADDR[12] V35 ADDR[13]

V36 ADDR[14] V37 ADDR[15] V38 ADDR[16] V39 ADDR[17]

V40 ADDR[18] V41 VSS W1 VDDS W2 VSS

Table 11-1 Pin List Ordered by Location (Continued)

Pin Name Pin Name Pin Name Pin Name

331496-001 335

Mechanical Specification—FM5000/FM6000 Datasheet

W3 AVDD W4 AVDD W5 AVDD W6 VSS

W7 VSS W8 VSS W9 AVDD W10 AVDD

W11 AVDD W12 VSS W13 VDD W14 VSS

W15 VSS W16 VSS W17 VSS W18 VSS

W19 VSS W20 VSS W21 VSS W22 VSS

W23 VSS W24 VSS W25 VSS W26 VSS

W27 VSS W28 PX_TCP W29 PX_TCN W30 LED_EN

W31 DERR_N W32 MDC W33 MDIO W34 ADDR[19]

W35 ADDR[20] W36 ADDR[21] W37 ADDR[22] W38 ADDR[23]

W39 VSS W40 VSS W41 VSS Y1 VSS

Y2 P24_TDP Y3 P24_TDN Y4 VSS Y5 P24_RDP

Y6 P24_RDN Y7 VDD Y8 P18_TDP Y9 P18_TDN

Y10 VSS Y11 P18_RDP Y12 P18_RDN Y13 VSS

Y14 VDD Y15 VSS Y16 VSS Y17 VSS

Y18 VSS Y19 VSS Y20 VSS Y21 VSS

Y22 VSS Y23 VSS Y24 VSS Y25 VSS

Y26 VDD25 Y27 VDD25 Y28 PX_TDP Y29 PX_TDN

Y30 VSS Y31 VSS Y32 VSS Y33 ETH_CLKOUT_A

Y34 GPIO[2]
IGN_PAR Y35 CS_N Y36 AS_N Y37 INTR_N

Y38 GPIO[9]
BOOT_MODE[2] Y39 VDD25 Y40 VDD25 Y41 VDD25

AA1 VDDS AA2 VSS AA3 VSS AA4 VSS

AA5 VDD AA6 VDD AA7 VDD AA8 VSS

AA9 VSS AA10 VSS AA11 VSS AA12 VSS

AA13 VDD AA14 VSS AA15 VDD AA16 VDD

AA17 VDD AA18 VDD AA19 VDD AA20 VSS

AA21 VSS AA22 VSS AA23 VDD AA24 VDD

AA25 VDD AA26 VDD25 AA27 VDD25 AA28 VSS

AA29 AVDD25 AA30 VSS AA31 AVDD25 AA32 VSS

AA33 NC AA34 RXRDY_N AA35 TXRDY_N AA36 RXEOT_N

AA37 RW_N AA38 CLK_EBI AA39 VDD25 AA40 VDD25

AA41 VDD25 AB1 VSS AB2 P23_TAP AB3 P23_TAN

AB4 VSS AB5 P23_RAP AB6 P23_RAN AB7 VDD

AB8 P17_TAP AB9 P17_TAN AB10 VSS AB11 P17_RAP

AB12 P17_RAN AB13 VSS AB14 VDD AB15 VSS

AB16 VSS AB17 VSS AB18 VSS AB19 VSS

AB20 VSS AB21 VSS AB22 VSS AB23 VSS

AB24 VSS AB25 VSS AB26 VDD25 AB27 VDD25

Table 11-1 Pin List Ordered by Location (Continued)

Pin Name Pin Name Pin Name Pin Name

FM5000/FM6000 Datasheet—Mechanical Specification

336 331496-001

AB28 PX_RAP AB29 PX_RAN AB30 VSS AB31 VSS

AB32 VSS AB33 ETH_CLKOUT_B AB34 GPIO[0]
DTACK_INV AB35 PAR[0]

AB36 PAR[1] AB37 PAR[2] AB38 PAR[3] AB39 VDD25

AB40 VDD25 AB41 VDD25 AC1 VDDS AC2 VSS

AC3 AVDD AC4 AVDD AC5 AVDD AC6 VSS

AC7 VSS AC8 VSS AC9 AVDD AC10 AVDD

AC11 AVDD AC12 VSS AC13 VDD AC14 VSS

AC15 VSS AC16 VSS AC17 VSS AC18 VSS

AC19 VSS AC20 VSS AC21 VSS AC22 VSS

AC23 VSS AC24 VSS AC25 VSS AC26 VSS

AC27 VSS AC28 PX_RBP AC29 PX_RBN AC30 VDDPLL

AC31 TDI AC32 I2C_SDA AC33 I2C_SCL AC34 DATA[0]

AC35 DATA[1] AC36 DATA[2] AC37 DATA[3] AC38 DATA[4]

AC39 VSS AC40 VSS AC41 VSS AD1 VSS

AD2 P23_TBP AD3 P23_TBN AD4 AVDD AD5 P23_RBP

AD6 P23_RBN AD7 VSS AD8 P17_TBP AD9 P17_TBN

AD10 AVDD AD11 P17_RBP AD12 P17_RBN AD13 VSS

AD14 VDD AD15 VDD AD16 VDD AD17 VDD

AD18 VDD AD19 VDD AD20 VDD AD21 VDD

AD22 VDD AD23 VDD AD24 VDD AD25 VDD

AD26 VDD AD27 VDD AD28 PX_RCP AD29 PX_RCN

AD30 GPIO[1]
RW_INV AD31 TCK AD32 DATA[5] AD33 DATA[6]

AD34 DATA[7] AD35 DATA[8] AD36 DATA[9] AD37 DATA[10]

AD38 DATA[11] AD39 DATA[12] AD40 DATA[13] AD41 VSS

AE1 VDDS AE2 VSS AE3 AVDD AE4 VDDS

AE5 VDDS AE6 VSS AE7 VSS AE8 VSS

AE9 AVDD AE10 VDDS AE11 VDDS AE12 VSS

AE13 VDD AE14 VSS AE15 VDD AE16 VDD

AE17 VDD AE18 VDD AE19 VDD AE20 VDD

AE21 VDD AE22 VDD AE23 VDD AE24 VDD

AE25 VDD AE26 VDD AE27 VDD AE28 PX_RDP

AE29 PX_RDN AE30 PLL_CLKOUT AE31 TRST_N AE32 DATA[14]

AE33 DATA[15] AE34 DATA[16] AE35 DATA[17] AE36 DATA[18]

AE37 DATA[19] AE38 DATA[20] AE39 DATA[21] AE40 DATA[22]

AE41 VSS AF1 VSS AF2 P23_TCP AF3 P23_TCN

AF4 AVDD AF5 P23_RCP AF6 P23_RCN AF7 VSS

AF8 P17_TCP AF9 P17_TCN AF10 AVDD AF11 P17_RCP

Table 11-1 Pin List Ordered by Location (Continued)

Pin Name Pin Name Pin Name Pin Name

331496-001 337

Mechanical Specification—FM5000/FM6000 Datasheet

AF12 P17_RCN AF13 VSS AF14 VSS AF15 VSS

AF16 VSS AF17 VSS AF18 VDD AF19 VDD

AF20 VSS AF21 VSS AF22 VSS AF23 VDD

AF24 VDD AF25 VSS AF26 VSS AF27 VSS

AF28 VSS AF29 VSS AF30 NC AF31 TMS

AF32 DATA[23] AF33 DATA[24] AF34 DATA[25] AF35 DATA[26]

AF36 DATA[27] AF37 DATA[28] AF38 DATA[29] AF39 DATA[30]

AF40 DATA[31] AF41 VSS AG1 VDDS AG2 VSS

AG3 AVDD AG4 AVDD AG5 AVDD AG6 VSS

AG7 VDD AG8 VSS AG9 AVDD AG10 AVDD

AG11 AVDD AG12 VSS AG13 AVDD AG14 ETH_RCK3P

AG15 Reserved AG16 VSS AG17 VSS AG18 VDD

AG19 VDD AG20 VSS AG21 VSS AG22 VSS

AG23 VDD AG24 VDD AG25 VSS AG26 VSS

AG27 TEST_CLK_P AG28 ETH_RCK1P AG29 AVDD AG30 GPIO[10]
PARITY_EVEN

AG31 TDO AG32 GPIO[8]
BOOT_MODE[1] AG33 NC AG34 GPIO[11]

I2C_ADDR[0]

AG35 VSS AG36 VSS AG37 VSS AG38 VSS

AG39 VSS AG40 VSS AG41 VDD AH1 VSS

AH2 P23_TDP AH3 P23_TDN AH4 VSS AH5 P23_RDP

AH6 P23_RDN AH7 VDD AH8 P17_TDP AH9 P17_TDN

AH10 VSS AH11 P17_RDP AH12 P17_RDN AH13 AVDD

AH14 ETH_RCK3N AH15 Reserved AH16 VSS AH17 VSS

AH18 VDD AH19 VSS AH20 VDD AH21 VSS

AH22 VDD AH23 VSS AH24 VDD AH25 VSS

AH26 VSS AH27 TEST_CLK_N AH28 ETH_RCK1N AH29 AVDD

AH30 VSS AH31 GPIO[12]
I2C_ADDR[1] AH32 GPIO[13]

I2C_ADDR[2] AH33
GPIO[14]

DATA_HOLD
SPI_IO3

AH34 GPIO[15]
SPI_IO2 AH35 VSS AH36 P01_RDN AH37 P01_RDP

AH38 VSS AH39 P01_TDN AH40 P01_TDP AH41 VSS

AJ1 VDDS AJ2 VSS AJ3 VSS AJ4 VSS

AJ5 VDD AJ6 VDD AJ7 VDD AJ8 VDD

AJ9 VDD AJ10 VDD AJ11 VDD AJ12 VDD

AJ13 VSS AJ14 VSS AJ15 VSS AJ16 VSS

AJ17 VDD AJ18 VSS AJ19 VDD AJ20 VSS

AJ21 VDD AJ22 VSS AJ23 VDD AJ24 VSS

AJ25 VDD AJ26 VSS AJ27 VSS AJ28 VSS

Table 11-1 Pin List Ordered by Location (Continued)

Pin Name Pin Name Pin Name Pin Name

FM5000/FM6000 Datasheet—Mechanical Specification

338 331496-001

AJ29 VSS AJ30 VSS AJ31 VSS AJ32 VSS

AJ33 VSS AJ34 DIODE_IN AJ35 VSS AJ36 VSS

AJ37 AVDD AJ38 AVDD AJ39 AVDD AJ40 VSS

AJ41 VDDS AK1 VSS AK2 P21_RAN AK3 VSS

AK4 P21_RBN AK5 VSS AK6 P21_RCN AK7 VSS

AK8 P21_RDN AK9 VDD AK10 P15_RAN AK11 VSS

AK12 P15_RBN AK13 VSS AK14 P15_RCN AK15 VSS

AK16 P15_RDN AK17 VDD AK18 P09_RAN AK19 VSS

AK20 P09_RBN AK21 VSS AK22 P09_RCN AK23 VSS

AK24 P09_RDN AK25 VDD AK26 P05_RAN AK27 VSS

AK28 P05_RBN AK29 VSS AK30 P05_RCN AK31 VSS

AK32 P05_RDN AK33 VDD AK34 DIODE_OUT AK35 VDD

AK36 P01_RCN AK37 P01_RCP AK38 AVDD AK39 P01_TCN

AK40 P01_TCP AK41 VSS AL1 VSS AL2 P21_RAP

AL3 AVDD AL4 P21_RBP AL5 VDDS AL6 P21_RCP

AL7 AVDD AL8 P21_RDP AL9 VDD AL10 P15_RAP

AL11 AVDD AL12 P15_RBP AL13 VDDS AL14 P15_RCP

AL15 AVDD AL16 P15_RDP AL17 VDD AL18 P09_RAP

AL19 AVDD AL20 P09_RBP AL21 VDDS AL22 P09_RCP

AL23 AVDD AL24 P09_RDP AL25 VDD AL26 P05_RAP

AL27 AVDD AL28 P05_RBP AL29 VDDS AL30 P05_RCP

AL31 AVDD AL32 P05_RDP AL33 VDD AL34 VSS

AL35 VDD AL36 VSS AL37 VDDS AL38 VDDS

AL39 AVDD AL40 VSS AL41 VDDS AM1 VDD

AM2 VSS AM3 AVDD AM4 AVDD AM5 VDDS

AM6 AVDD AM7 AVDD AM8 VSS AM9 VSS

AM10 VSS AM11 AVDD AM12 AVDD AM13 VDDS

AM14 AVDD AM15 AVDD AM16 VSS AM17 VSS

AM18 VSS AM19 AVDD AM20 AVDD AM21 VDDS

AM22 AVDD AM23 AVDD AM24 VSS AM25 VSS

AM26 VSS AM27 AVDD AM28 AVDD AM29 VDDS

AM30 AVDD AM31 AVDD AM32 VSS AM33 VSS

AM34 VSS AM35 VDD AM36 P01_RBN AM37 P01_RBP

AM38 AVDD AM39 P01_TBN AM40 P01_TBP AM41 VSS

AN1 VSS AN2 P21_TAN AN3 AVDD AN4 P21_TBN

AN5 AVDD AN6 P21_TCN AN7 AVDD AN8 P21_TDN

AN9 VSS AN10 P15_TAN AN11 AVDD AN12 P15_TBN

AN13 AVDD AN14 P15_TCN AN15 AVDD AN16 P15_TDN

Table 11-1 Pin List Ordered by Location (Continued)

Pin Name Pin Name Pin Name Pin Name

331496-001 339

Mechanical Specification—FM5000/FM6000 Datasheet

AN17 VSS AN18 P09_TAN AN19 AVDD AN20 P09_TBN

AN21 AVDD AN22 P09_TCN AN23 AVDD AN24 P09_TDN

AN25 VSS AN26 P05_TAN AN27 AVDD AN28 P05_TBN

AN29 AVDD AN30 P05_TCN AN31 AVDD AN32 P05_TDN

AN33 VSS AN34 VSS AN35 VDD AN36 VSS

AN37 AVDD AN38 AVDD AN39 AVDD AN40 VSS

AN41 VDDS AP1 VSS AP2 P21_TAP AP3 VSS

AP4 P21_TBP AP5 VSS AP6 P21_TCP AP7 VSS

AP8 P21_TDP AP9 VSS AP10 P15_TAP AP11 VSS

AP12 P15_TBP AP13 VSS AP14 P15_TCP AP15 VSS

AP16 P15_TDP AP17 VSS AP18 P09_TAP AP19 VSS

AP20 P09_TBP AP21 VSS AP22 P09_TCP AP23 VSS

AP24 P09_TDP AP25 VSS AP26 P05_TAP AP27 VSS

AP28 P05_TBP AP29 VSS AP30 P05_TCP AP31 VSS

AP32 P05_TDP AP33 VSS AP34 VSS AP35 VDD

AP36 P01_RAN AP37 P01_RAP AP38 VSS AP39 P01_TAN

AP40 P01_TAP AP41 VSS AR1 VDD AR2 VSS

AR3 VSS AR4 VSS AR5 VDD AR6 VDD

AR7 VDD AR8 VDD AR9 VDD AR10 VDD

AR11 VSS AR12 VSS AR13 VSS AR14 VSS

AR15 VSS AR16 VDD AR17 VDD AR18 VDD

AR19 VSS AR20 VSS AR21 VSS AR22 VSS

AR23 VSS AR24 VDD AR25 VDD AR26 VDD

AR27 VSS AR28 VSS AR29 VSS AR30 VSS

AR31 VSS AR32 VDD AR33 VDD AR34 VDD

AR35 VDD AR36 VDD AR37 VDD AR38 VSS

AR39 VSS AR40 VSS AR41 VDD AT1 VSS

AT2 P19_RAN AT3 VSS AT4 P19_RBN AT5 VSS

AT6 P19_RCN AT7 VSS AT8 P19_RDN AT9 VDD

AT10 P13_RAN AT11 VSS AT12 P13_RBN AT13 VSS

AT14 P13_RCN AT15 VSS AT16 P13_RDN AT17 VDD

AT18 P11_RAN AT19 VSS AT20 P11_RBN AT21 VSS

AT22 P11_RCN AT23 VSS AT24 P11_RDN AT25 VDD

AT26 P07_RAN AT27 VSS AT28 P07_RBN AT29 VSS

AT30 P07_RCN AT31 VSS AT32 P07_RDN AT33 VDD

AT34 P03_RAN AT35 VSS AT36 P03_RBN AT37 VSS

AT38 P03_RCN AT39 VSS AT40 P03_RDN AT41 VSS

AU1 VSS AU2 P19_RAP AU3 AVDD AU4 P19_RBP

Table 11-1 Pin List Ordered by Location (Continued)

Pin Name Pin Name Pin Name Pin Name

FM5000/FM6000 Datasheet—Mechanical Specification

340 331496-001

AU5 VDDS AU6 P19_RCP AU7 AVDD AU8 P19_RDP

AU9 VDD AU10 P13_RAP AU11 AVDD AU12 P13_RBP

AU13 VDDS AU14 P13_RCP AU15 AVDD AU16 P13_RDP

AU17 VDD AU18 P11_RAP AU19 AVDD AU20 P11_RBP

AU21 VDDS AU22 P11_RCP AU23 AVDD AU24 P11_RDP

AU25 VDD AU26 P07_RAP AU27 AVDD AU28 P07_RBP

AU29 VDDS AU30 P07_RCP AU31 AVDD AU32 P07_RDP

AU33 VDD AU34 P03_RAP AU35 AVDD AU36 P03_RBP

AU37 VDDS AU38 P03_RCP AU39 AVDD AU40 P03_RDP

AU41 VSS AV1 VDD AV2 VSS AV3 AVDD

AV4 AVDD AV5 VDDS AV6 AVDD AV7 AVDD

AV8 VSS AV9 VSS AV10 VSS AV11 AVDD

AV12 AVDD AV13 VDDS AV14 AVDD AV15 AVDD

AV16 VSS AV17 VSS AV18 VSS AV19 AVDD

AV20 AVDD AV21 VDDS AV22 AVDD AV23 AVDD

AV24 VSS AV25 VSS AV26 VSS AV27 AVDD

AV28 AVDD AV29 VDDS AV30 AVDD AV31 AVDD

AV32 VSS AV33 VSS AV34 VSS AV35 AVDD

AV36 AVDD AV37 VDDS AV38 AVDD AV39 AVDD

AV40 VSS AV41 VDD AW1 VSS AW2 P19_TAN

AW3 AVDD AW4 P19_TBN AW5 AVDD AW6 P19_TCN

AW7 AVDD AW8 P19_TDN AW9 VSS AW10 P13_TAN

AW11 AVDD AW12 P13_TBN AW13 AVDD AW14 P13_TCN

AW15 AVDD AW16 P13_TDN AW17 VSS AW18 P11_TAN

AW19 AVDD AW20 P11_TBN AW21 AVDD AW22 P11_TCN

AW23 AVDD AW24 P11_TDN AW25 VSS AW26 P07_TAN

AW27 AVDD AW28 P07_TBN AW29 AVDD AW30 P07_TCN

AW31 AVDD AW32 P07_TDN AW33 VSS AW34 P03_TAN

AW35 AVDD AW36 P03_TBN AW37 AVDD AW38 P03_TCN

AW39 AVDD AW40 P03_TDN AW41 VSS AY1 VSS

AY2 P19_TAP AY3 VSS AY4 P19_TBP AY5 VSS

AY6 P19_TCP AY7 VSS AY8 P19_TDP AY9 VSS

AY10 P13_TAP AY11 VSS AY12 P13_TBP AY13 VSS

AY14 P13_TCP AY15 VSS AY16 P13_TDP AY17 VSS

AY18 P11_TAP AY19 VSS AY20 P11_TBP AY21 VSS

AY22 P11_TCP AY23 VSS AY24 P11_TDP AY25 VSS

AY26 P07_TAP AY27 VSS AY28 P07_TBP AY29 VSS

AY30 P07_TCP AY31 VSS AY32 P07_TDP AY33 VSS

Table 11-1 Pin List Ordered by Location (Continued)

Pin Name Pin Name Pin Name Pin Name

331496-001 341

Mechanical Specification—FM5000/FM6000 Datasheet

11.4 Pin List Ordered by Name

AY34 P03_TAP AY35 VSS AY36 P03_TBP AY37 VSS

AY38 P03_TCP AY39 VSS AY40 P03_TDP AY41 VSS

BA1 NoBall BA2 VSS BA3 VDDS BA4 VSS

BA5 VDDS BA6 VSS BA7 VDDS BA8 VSS

BA9 VDD BA10 VSS BA11 VDDS BA12 VSS

BA13 VDDS BA14 VSS BA15 VDDS BA16 VSS

BA17 VDD BA18 VSS BA19 VDDS BA20 VSS

BA21 VDDS BA22 VSS BA23 VDDS BA24 VSS

BA25 VDD BA26 VSS BA27 VDDS BA28 VSS

BA29 VDDS BA30 VSS BA31 VDDS BA32 VSS

BA33 VDD BA34 VSS BA35 VDDS BA36 VSS

BA37 VDDS BA38 VSS BA39 VDDS BA40 VSS

BA41 NoBall

Table 11-2 Pin List Ordered by Name

Name Pin Name Pin Name Pin Name Pin

ADDR[2] U33 ADDR[3] U34 ADDR[4] U35 ADDR[5] U36

ADDR[6] U37 ADDR[7] U38 ADDR[8] U39 ADDR[9] U40

ADDR[10] V32 ADDR[11] V33 ADDR[12] V34 ADDR[13] V35

ADDR[14] V36 ADDR[15] V37 ADDR[16] V38 ADDR[17] V39

ADDR[18] V40 ADDR[19] W34 ADDR[20] W35 ADDR[21] W36

ADDR[22] W37 ADDR[23] W38 AS_N Y36 AVDD C3

AVDD C5 AVDD C7 AVDD C11 AVDD C13

AVDD C15 AVDD C19 AVDD C21 AVDD C23

AVDD C27 AVDD C29 AVDD C31 AVDD C35

AVDD C37 AVDD C39 AVDD D3 AVDD D4

AVDD D6 AVDD D7 AVDD D11 AVDD D12

AVDD D14 AVDD D15 AVDD D19 AVDD D20

AVDD D22 AVDD D23 AVDD D27 AVDD D28

AVDD D30 AVDD D31 AVDD D35 AVDD D36

AVDD D38 AVDD D39 AVDD E3 AVDD E7

AVDD E11 AVDD E15 AVDD E19 AVDD E23

AVDD E27 AVDD E31 AVDD E35 AVDD E39

AVDD J3 AVDD J5 AVDD J7 AVDD J11

Table 11-1 Pin List Ordered by Location (Continued)

Pin Name Pin Name Pin Name Pin Name

FM5000/FM6000 Datasheet—Mechanical Specification

342 331496-001

AVDD J13 AVDD J15 AVDD J19 AVDD J21

AVDD J23 AVDD J27 AVDD J29 AVDD J31

AVDD J37 AVDD J38 AVDD J39 AVDD K3

AVDD K4 AVDD K6 AVDD K7 AVDD K11

AVDD K12 AVDD K14 AVDD K15 AVDD K19

AVDD K20 AVDD K22 AVDD K23 AVDD K27

AVDD K28 AVDD K30 AVDD K31 AVDD K38

AVDD L3 AVDD L7 AVDD L11 AVDD L15

AVDD L19 AVDD L23 AVDD L27 AVDD L31

AVDD L39 AVDD M38 AVDD N37 AVDD N38

AVDD N39 AVDD P13 AVDD P29 AVDD R3

AVDD R4 AVDD R5 AVDD R9 AVDD R10

AVDD R11 AVDD R13 AVDD R29 AVDD T4

AVDD T10 AVDD U3 AVDD U9 AVDD V4

AVDD V10 AVDD W3 AVDD W4 AVDD W5

AVDD W9 AVDD W10 AVDD W11 AVDD AC3

AVDD AC4 AVDD AC5 AVDD AC9 AVDD AC10

AVDD AC11 AVDD AD4 AVDD AD10 AVDD AE3

AVDD AE9 AVDD AF4 AVDD AF10 AVDD AG3

AVDD AG4 AVDD AG5 AVDD AG9 AVDD AG10

AVDD AG11 AVDD AG13 AVDD AG29 AVDD AH13

AVDD AH29 AVDD AJ37 AVDD AJ38 AVDD AJ39

AVDD AK38 AVDD AL3 AVDD AL7 AVDD AL11

AVDD AL15 AVDD AL19 AVDD AL23 AVDD AL27

AVDD AL31 AVDD AL39 AVDD AM3 AVDD AM4

AVDD AM6 AVDD AM7 AVDD AM11 AVDD AM12

AVDD AM14 AVDD AM15 AVDD AM19 AVDD AM20

AVDD AM22 AVDD AM23 AVDD AM27 AVDD AM28

AVDD AM30 AVDD AM31 AVDD AM38 AVDD AN3

AVDD AN5 AVDD AN7 AVDD AN11 AVDD AN13

AVDD AN15 AVDD AN19 AVDD AN21 AVDD AN23

AVDD AN27 AVDD AN29 AVDD AN31 AVDD AN37

AVDD AN38 AVDD AN39 AVDD AU3 AVDD AU7

AVDD AU11 AVDD AU15 AVDD AU19 AVDD AU23

AVDD AU27 AVDD AU31 AVDD AU35 AVDD AU39

AVDD AV3 AVDD AV4 AVDD AV6 AVDD AV7

AVDD AV11 AVDD AV12 AVDD AV14 AVDD AV15

AVDD AV19 AVDD AV20 AVDD AV22 AVDD AV23

Table 11-2 Pin List Ordered by Name (Continued)

Name Pin Name Pin Name Pin Name Pin

331496-001 343

Mechanical Specification—FM5000/FM6000 Datasheet

AVDD AV27 AVDD AV28 AVDD AV30 AVDD AV31

AVDD AV35 AVDD AV36 AVDD AV38 AVDD AV39

AVDD AW3 AVDD AW5 AVDD AW7 AVDD AW11

AVDD AW13 AVDD AW15 AVDD AW19 AVDD AW21

AVDD AW23 AVDD AW27 AVDD AW29 AVDD AW31

AVDD AW35 AVDD AW37 AVDD AW39 AVDD25 AA29

AVDD25 AA31 CHIP_RESET_N P34 CLK_EBI AA38 CS_N Y35

DATA[0] AC34 DATA[1] AC35 DATA[2] AC36 DATA[3] AC37

DATA[4] AC38 DATA[5] AD32 DATA[6] AD33 DATA[7] AD34

DATA[8] AD35 DATA[9] AD36 DATA[10] AD37 DATA[11] AD38

DATA[12] AD39 DATA[13] AD40 DATA[14] AE32 DATA[15] AE33

DATA[16] AE34 DATA[17] AE35 DATA[18] AE36 DATA[19] AE37

DATA[20] AE38 DATA[21] AE39 DATA[22] AE40 DATA[23] AF32

DATA[24] AF33 DATA[25] AF34 DATA[26] AF35 DATA[27] AF36

DATA[28] AF37 DATA[29] AF38 DATA[30] AF39 DATA[31] AF40

DERR_N W31 DIODE2_IN T39 DIODE2_OUT T40 DIODE_IN AJ34

DIODE_OUT AK34 DTACK_N V31 ETH_CLKOUT_A Y33 ETH_CLKOUT_B AB33

ETH_RCK1N AH28 ETH_RCK1P AG28 ETH_RCK2N R28 ETH_RCK2P P28

ETH_RCK3N AH14 ETH_RCK3P AG14 ETH_RCK4N R14 ETH_RCK4P P14

GPIO[0]
DTACK_INV AB34 GPIO[1]

RW_INV AD30 GPIO[2]
IGN_PAR Y34 GPIO[3]

SPI_SCK T37

GPIO[4]
SPI_CS_N T36 GPIO[5]

SPI_MOSI T35 GPIO[6]
SPI_MISO T38 GPIO[7]

BOOT_MODE[0] T32

GPIO[8]
BOOT_MODE[1] AG32 GPIO[9]

BOOT_MODE[2] Y38 GPIO[10]
PARITY_EVEN AG30 GPIO[11]

I2C_ADDR[0] AG34

GPIO[12]
I2C_ADDR[1] AH31 GPIO[13]

I2C_ADDR[2] AH32
GPIO[14]

DATA_HOLD
SPI_IO3

AH33 GPIO[15]
SPI_IO2 AH34

I2C_SCL AC33 I2C_SDA AC32 INTR_N Y37 LED_CLK R30

LED_DATA0 T30 LED_DATA1 U30 LED_DATA2 V30 LED_EN W30

MDC W32 MDIO W33 NC P32 NC R32

NC U31 NC AA33 NC AF30 NC AG33

NoBalL A1 NoBall A41 NoBall BA1 NoBall BA41

P01_RAN AP36 P01_RAP AP37 P01_RBN AM36 P01_RBP AM37

P01_RCN AK36 P01_RCP AK37 P01_RDN AH36 P01_RDP AH37

P01_TAN AP39 P01_TAP AP40 P01_TBN AM39 P01_TBP AM40

P01_TCN AK39 P01_TCP AK40 P01_TDN AH39 P01_TDP AH40

P02_RAN P36 P02_RAP P37 P02_RBN M36 P02_RBP M37

P02_RCN K36 P02_RCP K37 P02_RDN H36 P02_RDP H37

P02_TAN P39 P02_TAP P40 P02_TBN M39 P02_TBP M40

Table 11-2 Pin List Ordered by Name (Continued)

Name Pin Name Pin Name Pin Name Pin

FM5000/FM6000 Datasheet—Mechanical Specification

344 331496-001

P02_TCN K39 P02_TCP K40 P02_TDN H39 P02_TDP H40

P03_RAN AT34 P03_RAP AU34 P03_RBN AT36 P03_RBP AU36

P03_RCN AT38 P03_RCP AU38 P03_RDN AT40 P03_RDP AU40

P03_TAN AW34 P03_TAP AY34 P03_TBN AW36 P03_TBP AY36

P03_TCN AW38 P03_TCP AY38 P03_TDN AW40 P03_TDP AY40

P04_RAN F40 P04_RAP E40 P04_RBN F38 P04_RBP E38

P04_RCN F36 P04_RCP E36 P04_RDN F34 P04_RDP E34

P04_TAN C40 P04_TAP B40 P04_TBN C38 P04_TBP B38

P04_TCN C36 P04_TCP B36 P04_TDN C34 P04_TDP B34

P05_RAN AK26 P05_RAP AL26 P05_RBN AK28 P05_RBP AL28

P05_RCN AK30 P05_RCP AL30 P05_RDN AK32 P05_RDP AL32

P05_TAN AN26 P05_TAP AP26 P05_TBN AN28 P05_TBP AP28

P05_TCN AN30 P05_TCP AP30 P05_TDN AN32 P05_TDP AP32

P06_RAN M32 P06_RAP L32 P06_RBN M30 P06_RBP L30

P06_RCN M28 P06_RCP L28 P06_RDN M26 P06_RDP L26

P06_TAN J32 P06_TAP H32 P06_TBN J30 P06_TBP H30

P06_TCN J28 P06_TCP H28 P06_TDN J26 P06_TDP H26

P07_RAN AT26 P07_RAP AU26 P07_RBN AT28 P07_RBP AU28

P07_RCN AT30 P07_RCP AU30 P07_RDN AT32 P07_RDP AU32

P07_TAN AW26 P07_TAP AY26 P07_TBN AW28 P07_TBP AY28

P07_TCN AW30 P07_TCP AY30 P07_TDN AW32 P07_TDP AY32

P08_RAN F32 P08_RAP E32 P08_RBN F30 P08_RBP E30

P08_RCN F28 P08_RCP E28 P08_RDN F26 P08_RDP E26

P08_TAN C32 P08_TAP B32 P08_TBN C30 P08_TBP B30

P08_TCN C28 P08_TCP B28 P08_TDN C26 P08_TDP B26

P09_RAN AK18 P09_RAP AL18 P09_RBN AK20 P09_RBP AL20

P09_RCN AK22 P09_RCP AL22 P09_RDN AK24 P09_RDP AL24

P09_TAN AN18 P09_TAP AP18 P09_TBN AN20 P09_TBP AP20

P09_TCN AN22 P09_TCP AP22 P09_TDN AN24 P09_TDP AP24

P10_RAN M24 P10_RAP L24 P10_RBN M22 P10_RBP L22

P10_RCN M20 P10_RCP L20 P10_RDN M18 P10_RDP L18

P10_TAN J24 P10_TAP H24 P10_TBN J22 P10_TBP H22

P10_TCN J20 P10_TCP H20 P10_TDN J18 P10_TDP H18

P11_RAN AT18 P11_RAP AU18 P11_RBN AT20 P11_RBP AU20

P11_RCN AT22 P11_RCP AU22 P11_RDN AT24 P11_RDP AU24

P11_TAN AW18 P11_TAP AY18 P11_TBN AW20 P11_TBP AY20

P11_TCN AW22 P11_TCP AY22 P11_TDN AW24 P11_TDP AY24

P12_RAN F24 P12_RAP E24 P12_RBN F22 P12_RBP E22

Table 11-2 Pin List Ordered by Name (Continued)

Name Pin Name Pin Name Pin Name Pin

331496-001 345

Mechanical Specification—FM5000/FM6000 Datasheet

P12_RCN F20 P12_RCP E20 P12_RDN F18 P12_RDP E18

P12_TAN C24 P12_TAP B24 P12_TBN C22 P12_TBP B22

P12_TCN C20 P12_TCP B20 P12_TDN C18 P12_TDP B18

P13_RAN AT10 P13_RAP AU10 P13_RBN AT12 P13_RBP AU12

P13_RCN AT14 P13_RCP AU14 P13_RDN AT16 P13_RDP AU16

P13_TAN AW10 P13_TAP AY10 P13_TBN AW12 P13_TBP AY12

P13_TCN AW14 P13_TCP AY14 P13_TDN AW16 P13_TDP AY16

P14_RAN F16 P14_RAP E16 P14_RBN F14 P14_RBP E14

P14_RCN F12 P14_RCP E12 P14_RDN F10 P14_RDP E10

P14_TAN C16 P14_TAP B16 P14_TBN C14 P14_TBP B14

P14_TCN C12 P14_TCP B12 P14_TDN C10 P14_TDP B10

P15_RAN AK10 P15_RAP AL10 P15_RBN AK12 P15_RBP AL12

P15_RCN AK14 P15_RCP AL14 P15_RDN AK16 P15_RDP AL16

P15_TAN AN10 P15_TAP AP10 P15_TBN AN12 P15_TBP AP12

P15_TCN AN14 P15_TCP AP14 P15_TDN AN16 P15_TDP AP16

P16_RAN M16 P16_RAP L16 P16_RBN M14 P16_RBP L14

 P16_RCN M12 P16_RCP L12 P16_RDN M10 P16_RDP L10

P16_TAN J16 P16_TAP H16 P16_TBN J14 P16_TBP H14

P16_TCN J12 P16_TCP H12 P16_TDN J10 P16_TDP H10

P17_RAN AB12 P17_RAP AB11 P17_RBN AD12 P17_RBP AD11

P17_RCN AF12 P17_RCP AF11 P17_RDN AH12 P17_RDP AH11

P17_TAN AB9 P17_TAP AB8 P17_TBN AD9 P17_TBP AD8

P17_TCN AF9 P17_TCP AF8 P17_TDN AH9 P17_TDP AH8

P18_RAN P12 P18_RAP P11 P18_RBN T12 P18_RBP T11

P18_RCN V12 P18_RCP V11 P18_RDN Y12 P18_RDP Y11

P18_TAN P9 P18_TAP P8 P18_TBN T9 P18_TBP T8

P18_TCN V9 P18_TCP V8 P18_TDN Y9 P18_TDP Y8

P19_RAN AT2 P19_RAP AU2 P19_RBN AT4 P19_RBP AU4

P19_RCN AT6 P19_RCP AU6 P19_RDN AT8 P19_RDP AU8

P19_TAN AW2 P19_TAP AY2 P19_TBN AW4 P19_TBP AY4

P19_TCN AW6 P19_TCP AY6 P19_TDN AW8 P19_TDP AY8

P20_RAN F8 P20_RAP E8 P20_RBN F6 P20_RBP E6

P20_RCN F4 P20_RCP E4 P20_RDN F2 P20_RDP E2

P20_TAN C8 P20_TAP B8 P20_TBN C6 P20_TBP B6

P20_TCN C4 P20_TCP B4 P20_TDN C2 P20_TDP B2

P21_RAN AK2 P21_RAP AL2 P21_RBN AK4 P21_RBP AL4

P21_RCN AK6 P21_RCP AL6 P21_RDN AK8 P21_RDP AL8

P21_TAN AN2 P21_TAP AP2 P21_TBN AN4 P21_TBP AP4

Table 11-2 Pin List Ordered by Name (Continued)

Name Pin Name Pin Name Pin Name Pin

FM5000/FM6000 Datasheet—Mechanical Specification

346 331496-001

P21_TCN AN6 P21_TCP AP6 P21_TDN AN8 P21_TDP AP8

P22_RAN M8 P22_RAP L8 P22_RBN M6 P22_RBP L6

P22_RCN M4 P22_RCP L4 P22_RDN M2 P22_RDP L2

P22_TAN J8 P22_TAP H8 P22_TBN J6 P22_TBP H6

P22_TCN J4 P22_TCP H4 P22_TDN J2 P22_TDP H2

P23_RAN AB6 P23_RAP AB5 P23_RBN AD6 P23_RBP AD5

P23_RCN AF6 P23_RCP AF5 P23_RDN AH6 P23_RDP AH5

P23_TAN AB3 P23_TAP AB2 P23_TBN AD3 P23_TBP AD2

P23_TCN AF3 P23_TCP AF2 P23_TDN AH3 P23_TDP AH2

P24_RAN P6 P24_RAP P5 P24_RBN T6 P24_RBP T5

P24_RCN V6 P24_RCP V5 P24_RDN Y6 P24_RDP Y5

P24_TAN P3 P24_TAP P2 P24_TBN T3 P24_TBP T2

P24_TCN V3 P24_TCP V2 P24_TDN Y3 P24_TDP Y2

PAD_TRI_N T31 PAR[0] AB35 PAR[1] AB36 PAR[2] AB37

PAR[3] AB38 PLL_CLKOUT AE30 PX_RAN AB29 PX_RAP AB28

PX_RBN AC29 PX_RBP AC28 PX_RCK_N R27 PX_RCK_P P27

PX_RCN AD29 PX_RCP AD28 PX_RDN AE29 PX_RDP AE28

PX_TAN U29 PX_TAP U28 PX_TBN V29 PX_TBP V28

PX_TCN W29 PX_TCP W28 PX_TDN Y29 PX_TDP Y28

RW_N AA37 RXEOT_N AA36 RXRDY_N AA34 Reserved P15

Reserved R15 Reserved AG15 Reserved AH15 TCK AD31

TDI AC31 TDO AG31 TESTMODE U32 TEST_CLK_N AH27

TEST_CLK_P AG27 TMS AF31 TRST_N AE31 TXRDY_N AA35

VDD A9 VDD A17 VDD A25 VDD A33

VDD D1 VDD D41 VDD E9 VDD E17

VDD E25 VDD E33 VDD F9 VDD F17

VDD F25 VDD F33 VDD G1 VDD G5

VDD G6 VDD G7 VDD G8 VDD G9

VDD G10 VDD G16 VDD G17 VDD G18

VDD G24 VDD G25 VDD G26 VDD G32

VDD G33 VDD G34 VDD G35 VDD G36

VDD G37 VDD G41 VDD H35 VDD J35

VDD K1 VDD K35 VDD L9 VDD L17

VDD L25 VDD L33 VDD L35 VDD M9

VDD M17 VDD M25 VDD M33 VDD M35

VDD N5 VDD N6 VDD N7 VDD N8

VDD N9 VDD N10 VDD N11 VDD N12

VDD N17 VDD N19 VDD N21 VDD N23

Table 11-2 Pin List Ordered by Name (Continued)

Name Pin Name Pin Name Pin Name Pin

331496-001 347

Mechanical Specification—FM5000/FM6000 Datasheet

VDD N25 VDD P7 VDD P18 VDD P20

VDD P22 VDD P24 VDD R7 VDD R18

VDD R19 VDD R23 VDD R24 VDD R41

VDD T18 VDD T19 VDD T23 VDD T24

VDD U13 VDD U15 VDD U16 VDD U17

VDD U18 VDD U19 VDD U20 VDD U21

VDD U22 VDD U23 VDD U24 VDD U25

VDD U26 VDD U27 VDD V14 VDD V15

VDD V16 VDD V17 VDD V18 VDD V19

VDD V20 VDD V21 VDD V22 VDD V23

VDD V24 VDD V25 VDD V26 VDD V27

VDD W13 VDD Y7 VDD Y14 VDD AA5

VDD AA6 VDD AA7 VDD AA13 VDD AA15

VDD AA16 VDD AA17 VDD AA18 VDD AA19

VDD AA23 VDD AA24 VDD AA25 VDD AB7

VDD AB14 VDD AC13 VDD AD14 VDD AD15

VDD AD16 VDD AD17 VDD AD18 VDD AD19

VDD AD20 VDD AD21 VDD AD22 VDD AD23

VDD AD24 VDD AD25 VDD AD26 VDD AD27

VDD AE13 VDD AE15 VDD AE16 VDD AE17

VDD AE18 VDD AE19 VDD AE20 VDD AE21

VDD AE22 VDD AE23 VDD AE24 VDD AE25

VDD AE26 VDD AE27 VDD AF18 VDD AF19

VDD AF23 VDD AF24 VDD AG7 VDD AG18

VDD AG19 VDD AG23 VDD AG24 VDD AG41

VDD AH7 VDD AH18 VDD AH20 VDD AH22

VDD AH24 VDD AJ5 VDD AJ6 VDD AJ7

VDD AJ8 VDD AJ9 VDD AJ10 VDD AJ11

VDD AJ12 VDD AJ17 VDD AJ19 VDD AJ21

VDD AJ23 VDD AJ25 VDD AK9 VDD AK17

VDD AK25 VDD AK33 VDD AK35 VDD AL9

VDD AL17 VDD AL25 VDD AL33 VDD AL35

VDD AM1 VDD AM35 VDD AN35 VDD AP35

VDD AR1 VDD AR5 VDD AR6 VDD AR7

VDD AR8 VDD AR9 VDD AR10 VDD AR16

VDD AR17 VDD AR18 VDD AR24 VDD AR25

VDD AR26 VDD AR32 VDD AR33 VDD AR34

VDD AR35 VDD AR36 VDD AR37 VDD AR41

Table 11-2 Pin List Ordered by Name (Continued)

Name Pin Name Pin Name Pin Name Pin

FM5000/FM6000 Datasheet—Mechanical Specification

348 331496-001

VDD AT9 VDD AT17 VDD AT25 VDD AT33

VDD AU9 VDD AU17 VDD AU25 VDD AU33

VDD AV1 VDD AV41 VDD BA9 VDD BA17

VDD BA25 VDD BA33 VDD25 Y26 VDD25 Y27

VDD25 Y39 VDD25 Y40 VDD25 Y41 VDD25 AA26

VDD25 AA27 VDD25 AA39 VDD25 AA40 VDD25 AA41

VDD25 AB26 VDD25 AB27 VDD25 AB39 VDD25 AB40

VDD25 AB41 VDDK R33 VDDPLL AC30 VDDS A3

VDDS A5 VDDS A7 VDDS A11 VDDS A13

VDDS A15 VDDS A19 VDDS A21 VDDS A23

VDDS A27 VDDS A29 VDDS A31 VDDS A35

VDDS A37 VDDS A39 VDDS D5 VDDS D13

VDDS D21 VDDS D29 VDDS D37 VDDS E5

VDDS E13 VDDS E21 VDDS E29 VDDS E37

VDDS J41 VDDS K5 VDDS K13 VDDS K21

VDDS K29 VDDS L5 VDDS L13 VDDS L21

VDDS L29 VDDS L37 VDDS L38 VDDS L41

VDDS N1 VDDS N41 VDDS R1 VDDS U1

VDDS U4 VDDS U5 VDDS U10 VDDS U11

VDDS W1 VDDS AA1 VDDS AC1 VDDS AE1

VDDS AE4 VDDS AE5 VDDS AE10 VDDS AE11

VDDS AG1 VDDS AJ1 VDDS AJ41 VDDS AL5

VDDS AL13 VDDS AL21 VDDS AL29 VDDS AL37

VDDS AL38 VDDS AL41 VDDS AM5 VDDS AM13

VDDS AM21 VDDS AM29 VDDS AN41 VDDS AU5

VDDS AU13 VDDS AU21 VDDS AU29 VDDS AU37

VDDS AV5 VDDS AV13 VDDS AV21 VDDS AV29

VDDS AV37 VDDS BA3 VDDS BA5 VDDS BA7

VDDS BA11 VDDS BA13 VDDS BA15 VDDS BA19

VDDS BA21 VDDS BA23 VDDS BA27 VDDS BA29

VDDS BA31 VDDS BA35 VDDS BA37 VDDS BA39

VDDSK T33 VFB1 P31 VFB2 R31 VSS A2

VSS A4 VSS A6 VSS A8 VSS A10

VSS A12 VSS A14 VSS A16 VSS A18

VSS A20 VSS A22 VSS A24 VSS A26

VSS A28 VSS A30 VSS A32 VSS A34

VSS A36 VSS A38 VSS A40 VSS B1

VSS B3 VSS B5 VSS B7 VSS B9

Table 11-2 Pin List Ordered by Name (Continued)

Name Pin Name Pin Name Pin Name Pin

331496-001 349

Mechanical Specification—FM5000/FM6000 Datasheet

VSS B11 VSS B13 VSS B15 VSS B17

VSS B19 VSS B21 VSS B23 VSS B25

 VSS B27 VSS B29 VSS B31 VSS B33

VSS B35 VSS B37 VSS B39 VSS B41

VSS C1 VSS C9 VSS C17 VSS C25

VSS C33 VSS C41 VSS D2 VSS D8

VSS D9 VSS D10 VSS D16 VSS D17

VSS D18 VSS D24 VSS D25 VSS D26

VSS D32 VSS D33 VSS D34 VSS D40

VSS E1 VSS E41 VSS F1 VSS F3

VSS F5 VSS F7 VSS F11 VSS F13

VSS F15 VSS F19 VSS F21 VSS F23

VSS F27 VSS F29 VSS F31 VSS F35

VSS F37 VSS F39 VSS F41 VSS G2

VSS G3 VSS G4 VSS G11 VSS G12

VSS G13 VSS G14 VSS G15 VSS G19

VSS G20 VSS G21 VSS G22 VSS G23

VSS G27 VSS G28 VSS G29 VSS G30

VSS G31 VSS G38 VSS G39 VSS G40

VSS H1 VSS H3 VSS H5 VSS H7

VSS H9 VSS H11 VSS H13 VSS H15

 VSS H17 VSS H19 VSS H21 VSS H23

VSS H25 VSS H27 VSS H29 VSS H31

VSS H33 VSS H34 VSS H38 VSS H41

VSS J1 VSS J9 VSS J17 VSS J25

VSS J33 VSS J34 VSS J36 VSS J40

VSS K2 VSS K8 VSS K9 VSS K10

VSS K16 VSS K17 VSS K18 VSS K24

VSS K25 VSS K26 VSS K32 VSS K33

VSS K34 VSS K41 VSS L1 VSS L34

VSS L36 VSS L40 VSS M1 VSS M3

VSS M5 VSS M7 VSS M11 VSS M13

VSS M15 VSS M19 VSS M21 VSS M23

VSS M27 VSS M29 VSS M31 VSS M34

VSS M41 VSS N2 VSS N3 VSS N4

VSS N13 VSS N14 VSS N15 VSS N16

VSS N18 VSS N20 VSS N22 VSS N24

VSS N26 VSS N27 VSS N28 VSS N29

Table 11-2 Pin List Ordered by Name (Continued)

Name Pin Name Pin Name Pin Name Pin

FM5000/FM6000 Datasheet—Mechanical Specification

350 331496-001

VSS N30 VSS N31 VSS N32 VSS N33

VSS N34 VSS N35 VSS N36 VSS N40

VSS P1 VSS P4 VSS P10 VSS P16

VSS P17 VSS P19 VSS P21 VSS P23

VSS P25 VSS P26 VSS P30 VSS P33

VSS P35 VSS P38 VSS P41 VSS R2

VSS R6 VSS R8 VSS R12 VSS R16

VSS R17 VSS R20 VSS R21 VSS R22

VSS R25 VSS R26 VSS R35 VSS R36

VSS R37 VSS R38 VSS R39 VSS R40

VSS T1 VSS T7 VSS T13 VSS T14

VSS T15 VSS T16 VSS T17 VSS T20

VSS T21 VSS T22 VSS T25 VSS T26

VSS T27 VSS T28 VSS T29 VSS T41

VSS U2 VSS U6 VSS U7 VSS U8

VSS U12 VSS U14 VSS U41 VSS V1

VSS V7 VSS V13 VSS V41 VSS W2

VSS W6 VSS W7 VSS W8 VSS W12

VSS W14 VSS W15 VSS W16 VSS W17

VSS W18 VSS W19 VSS W20 VSS W21

VSS W22 VSS W23 VSS W24 VSS W25

VSS W26 VSS W27 VSS W39 VSS W40

VSS W41 VSS Y1 VSS Y4 VSS Y10

VSS Y13 VSS Y15 VSS Y16 VSS Y17

 VSS Y18 VSS Y19 VSS Y20 VSS Y21

VSS Y22 VSS Y23 VSS Y24 VSS Y25

VSS Y30 VSS Y31 VSS Y32 VSS AA2

VSS AA3 VSS AA4 VSS AA8 VSS AA9

VSS AA10 VSS AA11 VSS AA12 VSS AA14

VSS AA20 VSS AA21 VSS AA22 VSS AA28

VSS AA30 VSS AA32 VSS AB1 VSS AB4

VSS AB10 VSS AB13 VSS AB15 VSS AB16

VSS AB17 VSS AB18 VSS AB19 VSS AB20

VSS AB21 VSS AB22 VSS AB23 VSS AB24

VSS AB25 VSS AB30 VSS AB31 VSS AB32

VSS AC2 VSS AC6 VSS AC7 VSS AC8

VSS AC12 VSS AC14 VSS AC15 VSS AC16

VSS AC17 VSS AC18 VSS AC19 VSS AC20

Table 11-2 Pin List Ordered by Name (Continued)

Name Pin Name Pin Name Pin Name Pin

331496-001 351

Mechanical Specification—FM5000/FM6000 Datasheet

VSS AC21 VSS AC22 VSS AC23 VSS AC24

VSS AC25 VSS AC26 VSS AC27 VSS AC39

VSS AC40 VSS AC41 VSS AD1 VSS AD7

VSS AD13 VSS AD41 VSS AE2 VSS AE6

VSS AE7 VSS AE8 VSS AE12 VSS AE14

VSS AE41 VSS AF1 VSS AF7 VSS AF13

VSS AF14 VSS AF15 VSS AF16 VSS AF17

VSS AF20 VSS AF21 VSS AF22 VSS AF25

VSS AF26 VSS AF27 VSS AF28 VSS AF29

VSS AF41 VSS AG2 VSS AG6 VSS AG8

VSS AG12 VSS AG16 VSS AG17 VSS AG20

VSS AG21 VSS AG22 VSS AG25 VSS AG26

VSS AG35 VSS AG36 VSS AG37 VSS AG38

VSS AG39 VSS AG40 VSS AH1 VSS AH4

VSS AH10 VSS AH16 VSS AH17 VSS AH19

VSS AH21 VSS AH23 VSS AH25 VSS AH26

VSS AH30 VSS AH35 VSS AH38 VSS AH41

VSS AJ2 VSS AJ3 VSS AJ4 VSS AJ13

VSS AJ14 VSS AJ15 VSS AJ16 VSS AJ18

VSS AJ20 VSS AJ22 VSS AJ24 VSS AJ26

VSS AJ27 VSS AJ28 VSS AJ29 VSS AJ30

VSS AJ31 VSS AJ32 VSS AJ33 VSS AJ35

VSS AJ36 VSS AJ40 VSS AK1 VSS AK3

VSS AK5 VSS AK7 VSS AK11 VSS AK13

VSS AK15 VSS AK19 VSS AK21 VSS AK23

VSS AK27 VSS AK29 VSS AK31 VSS AK41

VSS AL1 VSS AL34 VSS AL36 VSS AL40

VSS AM2 VSS AM8 VSS AM9 VSS AM10

VSS AM16 VSS AM17 VSS AM18 VSS AM24

VSS AM25 VSS AM26 VSS AM32 VSS AM33

VSS AM34 VSS AM41 VSS AN1 VSS AN9

VSS AN17 VSS AN25 VSS AN33 VSS AN34

VSS AN36 VSS AN40 VSS AP1 VSS AP3

VSS AP5 VSS AP7 VSS AP9 VSS AP11

VSS AP13 VSS AP15 VSS AP17 VSS AP19

VSS AP21 VSS AP23 VSS AP25 VSS AP27

VSS AP29 VSS AP31 VSS AP33 VSS AP34

VSS AP38 VSS AP41 VSS AR2 VSS AR3

Table 11-2 Pin List Ordered by Name (Continued)

Name Pin Name Pin Name Pin Name Pin

FM5000/FM6000 Datasheet—Mechanical Specification

352 331496-001

VSS AR4 VSS AR11 VSS AR12 VSS AR13

VSS AR14 VSS AR15 VSS AR19 VSS AR20

VSS AR21 VSS AR22 VSS AR23 VSS AR27

VSS AR28 VSS AR29 VSS AR30 VSS AR31

VSS AR38 VSS AR39 VSS AR40 VSS AT1

VSS AT3 VSS AT5 VSS AT7 VSS AT11

VSS AT13 VSS AT15 VSS AT19 VSS AT21

VSS AT23 VSS AT27 VSS AT29 VSS AT31

VSS AT35 VSS AT37 VSS AT39 VSS AT41

VSS AU1 VSS AU41 VSS AV2 VSS AV8

VSS AV9 VSS AV10 VSS AV16 VSS AV17

VSS AV18 VSS AV24 VSS AV25 VSS AV26

VSS AV32 VSS AV33 VSS AV34 VSS AV40

VSS AW1 VSS AW9 VSS AW17 VSS AW25

VSS AW33 VSS AW41 VSS AY1 VSS AY3

VSS AY5 VSS AY7 VSS AY9 VSS AY11

VSS AY13 VSS AY15 VSS AY17 VSS AY19

VSS AY21 VSS AY23 VSS AY25 VSS AY27

VSS AY29 VSS AY31 VSS AY33 VSS AY35

VSS AY37 VSS AY39 VSS AY41 VSS BA2

VSS BA4 VSS BA6 VSS BA8 VSS BA10

VSS BA12 VSS BA14 VSS BA16 VSS BA18

VSS BA20 VSS BA22 VSS BA24 VSS BA26

VSS BA28 VSS BA30 VSS BA32 VSS BA34

VSS BA36 VSS BA38 VSS BA40 VSSK R34

VSSK2 T34

Table 11-2 Pin List Ordered by Name (Continued)

Name Pin Name Pin Name Pin Name Pin

331496-001 353

Mechanical Specification—FM5000/FM6000 Datasheet

11.5 EPL Blocks

The FM5000/FM6000 are limited by port bandwidth, but the board designer has the freedom to choose
which ports to use. For example, the FM6324 allows up to 240 GbE of core bandwidth. In this case the
board designer can chose any 24 10 GbE or 6 40 GbE port locations from the pin list described in the
sections that follow.

The FM5224 has fixed locations for the high speed 10 GbE /40 GbE interfaces. There are two choices
available. EPL 23 and 24 (port 68..71 or port 72..76 in the port map) can used to provide up to eight 10
GbE SerDes output lanes or two XAUI or two 40 GbE interfaces. An alternate choice is to use EPL1/2
and EPL3/4 (ports 5..7 and ports 8::11 in the port map), which are paired EPLs that can be individually
selected by software through an internal MUX. For example, EPL1 could be configured as four SFP+
ports and EPL2 could be configured as a QSFP+ port. In this case, a simple API command can select
which port types are active and connected internally to the switch core. Keep in mind that the FM5224
is limited to a maximum of eight 10 GbE or two XAUI or two 40 GbE ports. For additional information
about the paired EPL structure, see Section 6.0, “Ethernet Port Logic (EPL)”.

11.5.1 FM5224 10 GbE EPL Location Flexibility

The FM5224 is 240 GbE sku of the FM5000/FM6000 series. When all EPLs remain fixed at 1/2.5 GbE
operation, there's a maximum of x8 channels to the internal Ethernet ports that can be used at 10 GbE
speed.

EPL1..4 (paired EPL1 and EPL2; EPL3 and EPL4) or EPL23/EPL24 can be selected as a dedicated 10 GbE
or 40 GbE uplink for SFP+/QSFP dual-design purposes as long as any combination of these EPLs
(1>>4, 23/24) don't exceed the x8 10 GbE channel links to the internal switch fabric.

Paired EPL (EPL8) offers more SerDes lane outputs than an independent EPL (EPL4) for SFP+/QSFP
dual-design uses, as long as this muxing results without violating the maximum 8 x 10 GbE or 2 x 40
GbE bandwidth capability.

Figure 11-4 FM5224 EPL Blocks

FM5000/FM6000 Datasheet—Mechanical Specification

354 331496-001

Figure 11-5 FM5000/FM6000 1677 Package EPLs (Bottom View)

	Intel® Ethernet Switch FM5000/ FM6000
	LEGAL
	Revision History
	Contents
	1.0 Introduction
	1.1 Part Numbering
	1.2 Definitions

	2.0 Architecture Overview
	2.1 Overview
	2.1.1 EPL
	2.1.2 Ingress Crossbar
	2.1.3 Packet Memory
	2.1.4 Frame Handler
	2.1.5 Scheduler
	2.1.6 Egress Crossbar
	2.1.7 Egress Modifier
	2.1.8 MSB
	2.1.9 PCIe
	2.1.10 Management
	2.1.11 Global Resource Tag (GloRT) Definition
	2.1.12 Multi-chip and Intel® Tags

	3.0 Pin Descriptions
	3.1 Pin Overview
	3.2 Signal Name Convention
	3.3 Detailed Pin Descriptions
	3.3.1 Ethernet Port Pins
	3.3.2 PCIe Pins
	3.3.3 Power Pins
	3.3.4 External Bus Interface Pins
	3.3.5 DMA Interface Pins
	3.3.6 GPIOs and Strapping Pins
	3.3.7 I2C Pins
	3.3.8 MDIO Pins
	3.3.9 LED Pins
	3.3.10 JTAG Pins
	3.3.11 Miscellaneous Pins

	3.4 Boot Mode Selection

	4.0 Power Up, Reset and Interrupts
	4.1 Power
	4.2 Reset
	4.3 Serial Boot ROM Format
	4.4 Interrupt Controller
	4.4.1 Normal Interrupts
	4.4.2 Fatal Interrupts

	5.0 Frame Processing
	5.1 FM5000/FM6000 Capabilities
	5.2 Application
	5.3 Frame Processor
	5.3.1 Frame Processing Pipeline
	5.3.2 Frame Tail
	5.3.3 Coloring

	5.4 Chip Management Logic
	5.4.1 I2C/CRM Block
	5.4.2 EBI Block
	5.4.3 PCIe Block
	5.4.4 MSB Block
	5.4.5 SPICO JTAG Block
	5.4.6 EPL Manager
	5.4.7 Frame Handler Manager
	5.4.8 L2 Sweeper Manager
	5.4.9 Congestion Management Monitor
	5.4.10 Scheduler Manager

	5.5 Parsing and Association
	5.5.1 Parser
	5.5.2 Channel Initialization
	5.5.3 Parser Slice
	5.5.4 Parser Byte Ordering
	5.5.5 Action Encoding
	5.5.6 Header Flags
	5.5.7 Association Named Channels
	5.5.8 QoS Handling
	5.5.9 Action Flags

	5.6 Mapper
	5.6.1 SRC_PORT_TABLE
	5.6.2 VID Tables
	5.6.3 L2 CAM/RAM Mapping
	5.6.4 L3 CAM/RAM Mapping
	5.6.5 L3_LENGTH_COMPARE
	5.6.6 L4 Port Mapping
	5.6.7 FFU Initialization
	5.6.8 SCENARIO_FLAGS
	5.6.9 FFU Action Data
	5.6.10 QoS Mapping
	5.6.11 Mapper Outputs

	5.7 Frame Filtering and Forwarding Unit (FFU)
	5.7.1 Overview
	5.7.2 Keys
	5.7.3 Scenario Key
	5.7.4 Action Channels
	5.7.5 Action Precedence
	5.7.6 CAM Slice Chaining
	5.7.7 CAM Slice Exclusion Sets
	5.7.8 Action Chains
	5.7.9 Egress Actions
	5.7.10 Remap Stage
	5.7.11 Action SRAM
	5.7.11.1 Route Action
	5.7.11.2 Switch Action
	5.7.11.3 All Other Actions

	5.7.12 BST Key Generation and Matching
	5.7.13 Atomic Modifications
	5.7.14 FFU Output

	5.8 Frame Hashing
	5.8.1 L2 and L3 Frame Hashing Overview
	5.8.2 Hash Rotations
	5.8.3 Random Hashing
	5.8.4 L3 Key Generation
	5.8.5 L2 Key Generation
	5.8.6 Symmetrization
	5.8.7 Outputs

	5.9 Next Hop Table
	5.9.1 Overview
	5.9.2 Input Interface
	5.9.3 Index Calculation and Lookup
	5.9.4 Narrow Entry Formats
	5.9.5 Wide Entry Format
	5.9.6 Outputs

	5.10 L3 Action Resolution
	5.10.1 Overview
	5.10.2 Keys
	5.10.3 Actions
	5.10.4 Outputs
	5.10.5 SetFlags
	5.10.6 TrapHeader
	5.10.7 MuxOutput
	5.10.7.1 GloRTs
	5.10.7.2 Action Data W8{A..D}
	5.10.7.3 Action Data W8{E,F}
	5.10.7.4 Action Data W16{A..C}
	5.10.7.5 L2 Lookup Channels
	5.10.7.6 Layer 2 Hash Rotation
	5.10.7.7 ALU Operands
	5.10.7.8 Policer Indices
	5.10.7.9 QoS

	5.11 L2 Lookup
	5.11.1 Basic Architecture
	5.11.2 FID Mapping
	5.11.3 Performance Versus Capacity
	5.11.4 Key Precedence
	5.11.5 Source Lookup Writeback
	5.11.6 Output Handling
	5.11.7 Command and Result Encodings
	5.11.8 Direct Management Access
	5.11.9 Table Sweepers
	5.11.10 Table Access Arbitration

	5.12 ALU
	5.12.1 Overview
	5.12.2 Inputs
	5.12.3 Command Encoding
	5.12.4 Outputs

	5.13 Policers
	5.13.1 Overview
	5.13.2 Evaluation, Reporting, and Crediting
	5.13.3 Entry Formats
	5.13.4 Token Bucket Dynamics
	5.13.5 Sweeper Configuration
	5.13.6 QoS Mark-Down Mapping
	5.13.7 Outputs

	5.14 GloRT Lookup
	5.14.1 Overview
	5.14.2 GloRT CAM and Table
	5.14.3 LAG Pruning
	5.14.4 LAG Filtering
	5.14.4.1 Rev A: LAG_PORT_TABLE
	5.14.4.2 Rev B+: LAG_FILTERING_CAM

	5.14.5 Outputs

	5.15 Destination Mask Generation
	5.15.1 Overview
	5.15.2 DMASK Transformer
	5.15.3 L2 Filtering Tables
	5.15.4 EACLs
	5.15.5 LAG Filtering
	5.15.6 LBS Filtering
	5.15.7 Outputs to L2AR

	5.16 Egress ACLs
	5.16.1 Functional Description
	5.16.2 Registers

	5.17 L2 Action Resolution
	5.17.1 Overview
	5.17.2 Keys
	5.17.3 EACL Extended Actions
	5.17.4 Actions
	5.17.5 Action Flags
	5.17.6 TransformDestMask
	5.17.7 Output Flags
	5.17.8 SetMirror
	5.17.9 MuxOutput
	5.17.9.1 MOD_DATA Outputs
	5.17.9.2 Named Forward Channel Outputs
	5.17.9.3 QoS
	5.17.9.4 MAC Table Write-Back
	5.17.9.5 Statistics Index Channels

	5.18 Congestion Management
	5.18.1 Linkage to the Frame Processing Pipeline
	5.18.2 Memory Management
	5.18.3 Watermarks
	5.18.4 Rx Watermark Evaluation
	5.18.5 Tx Watermark Evaluation
	5.18.6 Update Mirror Commands
	5.18.7 Pause Frame Reception
	5.18.8 Pause Frame Generation
	5.18.9 Pause Pacing
	5.18.10 Congestion Notification Frame Sampling
	5.18.11 Interrupt Notification

	5.19 Packet Replication
	5.19.1 Frame Replication
	5.19.2 Frame VLAN Replication

	5.20 Scheduler
	5.20.1 Group Eligibility
	5.20.2 Class Selection
	5.20.3 Algorithm Notes
	5.20.4 Deficit Round-Robin
	5.20.5 Bandwidth Shaping
	5.20.6 Frame Timeout
	5.20.7 Configuration Registers
	5.20.8 Definition of Terms

	5.21 Egress Modification
	5.21.1 Basic Properties
	5.21.2 Top Level Organization
	5.21.2.1 Data from Scheduler
	5.21.2.2 PAUSE Generation

	5.21.3 Modify Mapper
	5.21.4 Modify Slices
	5.21.4.1 TCAM Key
	5.21.4.2 Modify Command Slices
	5.21.4.3 Modify Value Slices
	5.21.4.4 Transmit Disposition Flags
	5.21.4.5 Statistics Interface

	5.21.5 Serial Modify

	5.22 Statistics
	5.22.1 Overview
	5.22.2 Action Resolution Structure
	5.22.3 Per-Port Counters
	5.22.4 Discrete Counters
	5.22.5 Counter Performance
	5.22.6 Port Mapping
	5.22.7 Input Keys
	5.22.8 Flags Mapping
	5.22.9 Index Mapping
	5.22.10 Length Correction and Binning
	5.22.11 Counter Bank Control
	5.22.12 Counter Index Generation
	5.22.13 Bank Index Muxing
	5.22.13.1 CounterNum Channel Sources
	5.22.13.2 Per-Index Channel Sources

	5.22.14 Atomicity
	5.22.15 Clearing Counters

	6.0 Ethernet Port Logic (EPL)
	6.1 Overview
	6.2 Port Mapping
	6.2.1 Port Numbering
	6.2.2 Port Mapping Using the Channel
	6.2.3 Default Lane Reversal and Polarity Inversion Inside the Package
	6.2.4 EPL Port Pairing

	6.3 Mode of Operation
	6.4 Reference Clock
	6.5 SerDes Characteristics
	6.5.1 DFE Tuning and Emphasis
	6.5.2 Pattern Generator/Comparator
	6.5.3 Loopbacks
	6.5.4 Eye Measurement

	6.6 Recovered Clocks
	6.7 Auto-Negotiation
	6.7.1 Clause 73
	6.7.2 Clause 37
	6.7.3 SGMII

	6.8 Physical Coding Sub-layer (PCS)
	6.8.1 40GBASE-R4
	6.8.2 20GBASE-R2
	6.8.3 10GBASE-R
	6.8.4 10GBASE-X
	6.8.5 1000BASE-X Frame Format
	6.8.6 Link Status
	6.8.7 FSIG
	6.8.8 IFGs
	6.8.9 Changing PCS Mode

	6.9 MAC
	6.9.1 Preamble and CRC Optional Processing
	6.9.2 Packet Generation
	6.9.3 Reception Errors
	6.9.4 Counters
	6.9.5 Time Stamping for IEEE1588

	6.10 Status and Interrupts
	6.11 Link State and Fault Conditions

	7.0 PCIe Interface
	7.1 Overview
	7.2 Power Up
	7.3 Access to SerDes
	7.4 Reference Clock
	7.5 In-Band Reset and Link Down Events
	7.6 Interrupts
	7.7 Power Management
	7.8 Byte Swapping
	7.9 32-bit/64-bit Addressing
	7.10 Registers
	7.10.1 PCIe Configuration Space
	7.10.2 PCIe Control Registers
	7.10.2.1 Command Register
	7.10.2.2 Status Register
	7.10.2.3 Descriptor List Boundaries
	7.10.2.3.1 Receive Descriptor Table Base Address
	7.10.2.3.2 Receive Descriptor Table End Address
	7.10.2.3.3 Transmit Descriptor Table Base Address
	7.10.2.3.4 Transmit Descriptor Table End Address

	7.10.2.4 Interrupt Status Register
	7.10.2.4.1 Interrupt Mask Register
	7.10.2.4.2 Coalescing

	7.11 Packet DMA Engine
	7.11.1 Buffer Descriptors
	7.11.1.1 Status
	7.11.1.2 Buffer Length
	7.11.1.3 Buffer Address
	7.11.1.4 F64 Tag

	7.11.2 Packet Processing Overview
	7.11.3 Fabric Congestion Management
	7.11.3.1 PAUSE Detection
	7.11.3.2 PAUSE Reaction

	8.0 External Bus Interface (EBI)
	8.1 Overview
	8.2 Bus Timing
	8.2.1 Using DATA_HOLD

	8.3 Atomic Accesses
	8.4 Little and Big Endian Support
	8.5 CPU Frame Transfer
	8.5.1 Packet Transmission via EBI
	8.5.2 Packet Reception via EBI
	8.5.3 Packet Transfer
	8.5.3.1 Little Endian Packet Transfer
	8.5.3.2 Big Endian Packet Transfer

	8.6 Packet Transfer DMA Timing

	9.0 Peripherals
	9.1 Overview
	9.2 Clocking
	9.3 Counter Rate Monitor
	9.4 SerDes Management
	9.4.1 SPICO Micro-controller
	9.4.2 SerDes Registers
	9.4.3 Device Address to Serdes Map

	9.5 I2C Controller
	9.6 MDIO Controller
	9.7 General Purpose IO (GPIO) Controller
	9.8 SPI Interface
	9.8.1 Overview
	9.8.2 Boot
	9.8.3 Management

	9.9 LED Controller
	9.10 JTAG Interface
	9.10.1 Tap Controller

	10.0 Electrical Specification
	10.1 Absolute Maximum Ratings
	10.2 Recommended Operating Conditions
	10.2.1 Voltage Scaling
	10.2.2 Maximum Peak Current
	10.2.3 Maximum Sustained Power

	10.3 Thermal Characteristics
	10.4 Power Supply Sequencing
	10.5 REFCLK Specification
	10.6 DC Characteristics of LVCMOS PADs
	10.7 Ethernet Output Specifications
	10.8 Ethernet Input Specifications
	10.9 PCIe Output Specifications
	10.10 PCIe Input Specifications
	10.11 EBI Interface, General Timing Requirements
	10.12 JTAG Interface

	11.0 Mechanical Specification
	11.1 1677-Ball Package Dimensions
	11.2 1677-Ball Package
	11.3 Pin List Ordered by Location
	11.4 Pin List Ordered by Name
	11.5 EPL Blocks
	11.5.1 FM5224 10 GbE EPL Location Flexibility

