

Performance SDN

Yatish Kumar CTO Corsa Technology

yatish@corsa.com

All you need is white box hardware and SDN to solve any networking problem!

It's a switch
It's a router
It's a load balancer
It's a scalable fabric
It's powered by Linux!

What would these guys do?
Keep packets or throw them away?

Just one more thing !!!

At 100 Gbits per second
According to Inder Monga we need 100 ms of buffering
Which means we need 10Gbits (Roughly 1 GigaByte) of buffering
Per 100G port!

WAN Buffers have to use DDR3

Each DDR3 roughly supports 50Gbits of read+write traffic So we need 2 per 100G port in order to have sustained bandwidth A 600 Gig WAN switch needs 12 DDR3 modules 12 Modules x 240 pins = 2880 Is a LOTTA PINS!

WAN Buffers have to use distributed processing

What about TCAMs?
ToR White Box switches support roughly 10k TCAM entries
WAN routers need 1M IPv4 routes
Now we need external TCAMs too!

WAN Lookups have to use distributed processing

ToR discards packets

small internal TCAM

Leading to Papers in Sigcomm 2015

Congestion Control for Large-Scale RDMA Deployments

Yibo Zhu^{1,3} Haggai Eran² Daniel Firestone¹ Chuanxiong Guo¹ Marina Lipshteyn¹ Yehonatan Liron² Jitendra Padhye¹ Shachar Raindel² Mohamad Haj Yahia² Ming Zhang¹ Hilliorscotti *Mellanox *1L C. Santa Barbara

Their solution signals back to the servers for congestion control. Unfortunately this doesn't work in the WAN!!

So taking ToR CLOS fabrics and building WAN routers doesn't work very well!

ABSTRACT

Modern datacenter applications demand high throughput (40Gbps) and ultra-low latency (< 10 μs per hop) from the network, with low CPU overhead. Standard TCP/IP stacks cannot meet these requirements, but Remote Direct Memory Access (RDMA) can. On IP-routed datacenter networks, RDMA is deployed using RoCEv2 protocol, which relies on Priority-based Flow Control (PFC) to enable a drop-free network. However, PFC can lead to poor application performance due to problems like head-of-line blocking and unfairness. To alleviates these problems, we introduce DC-QCN, an end-to-end congestion control scheme for RoCEv2.

Match Action Hardware Implications

Inside The Corsa Dataplane

Key Attributes to Shop For

Multiple match/action tables
Millions of flow entries
Large scale packet buffers
Metering and QoS
100-Gigabit ports with full OpenFlow 1.3
Extremely fast flow modifications per second 60k+ flow entries per second.

(as opposed to 100 flow mods / sec on white box ToR)

Key Bottlenecks To Understand

How big are the match tables?

How much search bandwidth?

What DoS Conditions Exist?

Too many packets?
Not enough control plane mips?
Tail drop under load?

Match Actio MIPS

How many Packets Pe Second ? Buffer Memory Size and Bandwidth

How many ms?
What is the read/write bandwidth?

How is QoS maintained in the fabric?

Thank You

Skip the cool aid. Get a stiff drink.

