Stanford Guest Lecture

Seminar Course: Technologies in Finance April 08, 2019

Mohan Kalkunte, Ph.D. Vice President, Architecture & Technology Core Switching Group Broadcom Inc.

Design of a Switch Chip

© 2019 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Inc.

Before you decide to build a chip

- Business Case
 - Market Segments
 - Major Customers
 - Key features of chip
 - Risks
 - ROI

- Market Segment
 - Hyperscale Data Center
 - e.g., Facebook, Microsoft, Google, Amazon
 - Enterprise Data Center
 - e.g., Large Fortune 500 company

Where in the Network

- Top of Rack (ToR)
- Leaf/Spine
- Aggregator etc.

Facebook Datacenter Architecture

Source: https://code.fb.com/data-center-engineering/f16-minipack/

Switch Silicon Design: A Highly Constrained Problem

© 2019 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Inc.

Typical Data Center features

- High bandwidth
- Lower latency
- Large IP Routing
- Equal Cost Multi Path (ECMP)
- Hashing
- ACLs
- Monitoring
 - sFlow
 - Mirroring etc.

Constraint: Max Die Size limit

- Current hard-limit on silicon die size
 - 26mm x 33mm
 - dictated by reticle size
 - Practical size ~ 800sqmm
 - Tight margin for error

Constraint: Cost

- One time cost amortized over the product volume
 - Development cost
 - Mask costs
- Device cost
 - Die + package + test
 - Yield
 - Improves over time then flattens
 - Falls exponentially with size or complexity
 - Repair is a must for memories
- Memory is repairable
 - Row and column redundancy
 - Lower cost per sqmm for memory after repair

Source: www.ee.ryerson.ca/~courses/coe838/lectures/SoC-IC-Basics.pdf

Constraint: IO Speed (Serdes speed)

- Tomahawk3 256 x 50G 12.8Tbps
- Single device switch bandwidth keeping up with exponential increase
- Criteria
 - Reach
 - Copper Cables Higher signal loss per unit distance
 - Optics: lower signal loss per unit distance
 - Cost / area

Source: ethernetalliance.org roadmap

Constraint: Power Dissipation

Immersion cooling

Heatsink with heatpipes

No redundancy for fan failure - Fans have higher failure rate

Constraint: Process Geometry

Intel CPU performance in SpecIntCPU is rising at just three percent/year, said Patterson. Source: **Computer Architecture: A Quantitative** Approach, 2018.

Figure 5. Global Foundries' Transistor Manufacturing Cost at Recent Technology Nodes Source: McCann (2015).

Source: semiengineering.com/knowledge centers/manufacturing/lithography/impact-of-lithography-on-wafer-costs/

Choice of Buffer Architecture

• Many buffer architectures are possible

- Which is the best choice?
 - Depends

EFFICIENT BUFFER ARCHITECTURE

- High burst absorption
 - Unused packet buffer available for transient congestion
- Fairness under congestion
 - Fair access to all ports and queues under heavy traffic load
- Avoid Starvation
 - Congested port should not starve uncongested ports
- Low frame loss
 - High zero-loss throughput performance
- Traffic Independent Performance
 - Buffer management with minimal tuning
- Scalable across multiple generations

TOMAHAWK FAMILY

© 2019 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Inc.

Three High Performance Switch Architectures -Broadcom

Features

Scaling up the Network with Merchant 7nm **25.6Tbps** Silicon 50G or 100G PAM-4 16nm **12.8Tbps** 256x serdes 50G PAM-4 40X Bandwidth Increase per Switching Element ADX Bandwidth Increase per Switching Noore's Law 28nm 3.2Tbps 128x serdes 25G NRZ 40nm 1.28Tbps 128x serdes **10G NRZ** 40nm 0.64Tbps 64x serdes **10G NRZ** 2010 2012 2014 2018 2020 2016 © 2019 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Inc BROADCOM

Data Center Market

Source: Dell'Oro Oct 2017 Tables 650 Group 2017 Report

Accelerating 25/100GbE in the Data Center

- 100G has a Long Tail
- 25G will replace 10G in Server Access
- 40G continues to decline

© 2019,Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom. Inc. Source: https://www.max.ee/sites/default/files/dell_open_networking_vision_and_portfolio_.pdf

TOMAHAWK 3

© 2019 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Inc.

Tomahawk 3: By the numbers

- 12.8 Tb/s multilayer Layer3 switching
- Configurable as 32x 400GbE, 64 x 200GbE, or 128 x 100GbE
- 256 dual-mode 56G-PAM4 and 28G-NRZ
- 40% Power reduction per 100GbE port
- 75% lower cost per 100GbE port
- Integrated shared-buffer architecture
- Broadview Gen3 network instrumentation
- IP forwarding, ECMP
- Dynamic Load Balancing and Group Multipathing
- In-band Network Telemetry
- 16 nm process geometry
- In Production now

<u>Source: https://www.broadcom.com/blog/broadcom-s-tomahawk-3-ethernet-switch-chip-delivers-12-8-tbps-of-speed-in-a-single-16-nm-device</u>

Tomahawk 3 Architecture

Source: https://www.linleygroup.com/mpr/article.php?id=11908

Terminology

- VLAN Virtual LAN
 - Virtual LAN
- L2 Table
 - Table looked up with key = Destination MAC address
 - Determine the outgoing port
- L3 Table
 - Table looked up with key = Destination IP address
 - Determine the outgoing interface/port
- ACL Access Control List
 - Implements access control policies

Day in the life of a Packet

Example: ECMP Load Balancing

Packets steered based on Flow Hashing

- Distribute flows equally among links as much as possible
- $_{\circ}$ $\,$ Switch chip should have capability to provide
 - Sufficient depth of parsing
 - $_{\circ}$ Hashing
 - Ability to handle different types of flows

Tomahawk 3 enables Cost and Power Reduction

Source: Facebook, OCP

75% Reduction in System Power, 85% reduction in System Cost *

©*2Power=MetricIIneduales=OpticshCostn/NetricexCludes+Optics=Optics

Industry's Broadest Ecosystem

Key Takeaways

- Switch Silicon development is about 18 to 24 month process
- Requires investment of 50 100 million dollars
- Cooling techniques are challenging and expensive
- Process Geometry is not yielding cost and power advantage
- Monolithic dies may be replaced with multi-die in a package

thank you

© 2019 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Inc.

