

5

R

~

4

-

K

2444

Compute Project

Backpack: Facebook's 100G Modular Switch Deep Dive

Zhiping Yao NETWORK HARDWARE ENGINEER, FACEBOOK

Backpack System Introduction

Backpack

Backpack : an open modular switch

- Hardware architecture: Ethernet only, fully open
- Network topology: dual stage spine-leaf
- Switch Software: FBOSS and OpenBMC
- Manageability: operated like server from BMC
- Density: 128 x QSFP28 100G support
- Building block: SWE (Switch Element)
 - Data plane: Tomahawk Switch ASIC
 - Control Plane: COM-e BayTrail CPU Module
 - Management Plane: BMC AST1250

Backpack : FB Modular Switch Platform

Orthogonal Direct Architecture

Disaggregated data, control, and management plane design

Innovative Design

- Fully Disaggregated Architecture
 - 12 Switch Elements (SWE)
 - Separate SCM module for Control CPU

An Orthogonal Direct Chassis Architecture

- All major module cards are designed to be mated orthogonally
- Open up more air channel for a better thermal performance
- Reduce the PCB trace length for better signal integrity
- Support future 8x16 OD connector to double port and speed
- A sophisticated thermal design to support low cost 55C CWDM4 optics

Backpack System Components

- Line Cards (LC) → Fabric Card (FAB)

- → System Controller Module (SCM) Chassis Management Module (CMM) Horizontal Control Plane (HCP) → Vertical Control Plane (VCP-L, VCP-R) → Bus Bar Assembly (BBA) • Horizontal Bus Bar (HBAR)
- - Vertical Bus Bar (VBAR)
- Horizontal Power Distribution Board (HPD) Fan Control Board (FCB) Power Distribution Board (PDB)

Backpack Front View

Backpack Rear view

Front view without LC and FAB

PSU Slots

Line Card (LC)

- Two Tomahawk 3.2T ASIC
- → 32 QSFP28 100G Ports
- Four DMO Connector to FAB for data plane signals
- Two DMO Connector to VCP for control plane signals

Tomahawk Left

16-port from left Tomahawk

Interface of Line Card (LC)

Tomahawk right

16-port from right Tomahawk

Fabric Card (FAB)

- One Tomahawk 3.2T ASIC
- → Fan Control Board (FCB) is mezzanine card of FAB
- → Four 6 x 12 DMO Connector to Four LC for data plane signals
- One 6x8 DMO Connector to HCP for control plane signals

Components of Fabric Card (FAB)

Tomahawk ASIC

Fan Control Board is mounted on the bottom side of FAB

OOB 8-port GBE Switch BMC

LC-#1 LC-#2 LC-#3 LC-#4

Fan Control Board (FCB)

- Support 3 fan-tray
- via system I2C bus

FCB CPLD

FCB CPLD control fan speed, CMM can control FCB CPLD

mezzanine connector to FAB

Fabric Card (FAB) Assembly

FAB Main Board + FCB Mezzanine Board

Fan-tray plugged into FAB assembly and Mate to FCB

Chassis Management Module (CMM)

- → AS2540 BMC
- OOB 16 port Switch BCM5396
- Console UART MUX for all LC and FAB COM-e CPU and BMC CPU
- Chassis Management I2C bus

15396 all LC and FAB COM-e CPU

System Control Module (SCM)

- Two COM-e CPU Module Cards
- COM-e CPU Module has one to one mapping to SWE → 6x12 DMO connector to HCP
- SCM-LC has two COM-e mounted, SCM-FAB has only one COM-e mounted

System Control Module (SCM)

SCM-FAB: SCM for Fabric Card

Horizontal Control Plane (HCP)

Vertical Control Plane (VCP)

- → Two VCP: VCP-L and VCP-R
- Connect to four LC \rightarrow
- Form the control plane of Backpack system together with HCP

Power distribution system

→ PSU: PowerOne PFE3000-12

- → BBA (Power Bus Bar Assembly)
 - HBAR: Receive power output from PSU
 - HPD: Provide power for CMM, SCM, FAB
 - VBAR: Provide power for LC

Power control and monitor cable

- CMM as controller
- CMM ⇔ HCP ⇔ PDB Jumper cable
- HCP ⇔ SIM for System LED

Power Distribution Board (PDB)

- Four AC inlet: front access
- Output power is load sharing on HBAR
- CMM can access four PSU through PDB \rightarrow

Bus BAR Assembly

BBA(Bus Bar Assembly) consists of

- HBAR: Horizontal Bar
- HPD: Horizontal Power Distribution
- VBAR: Vertical Bar
- → HBAR Connect to PSU HPD for CMM, SCM and FAB VBAR for LC
- Sense wire to PDB \rightarrow

Typical Power Consumption

PWM	20%	30%	40%
Normal condition	2670	2697	2726
One fan failure condition	2550	2627	2703

Unit is Watt Measured with 3.5W eload

50%	60%	70%	80%	90%	100%
2800	2896	3124	3290	3550	3729
2768	2822	3056	3223	3428	3645

Thermal design

- → 12 fan-tray on the rear panel
- Multiple on-board temperature sensor to monitor thermal healthy status of the system

Thermal Improved LC front panel design for better QSFP28 cooling

Fan-tray

- Screw-less latch design for easy maintenance
- Powerful 80 x 80 mm CR fan
- Hot swappable
- LED on rear panel
- Each FAB carries 3 Fan-tray by FCB(Fan Control Board), total 12 fan-tray in galaxy chassis

Switch Element (SWE)

- Disaggregated architecture
- → Switch element consists of three components
 - Tomahawk switch ASIC
 - COM-e CPU module
 - BMC
- → 12 switch elements in Backpack
 - Each LC has 2 SWE
 - Each FAB has 1 SWE

Fabric Topology: CLOS

Two Stage Spine-leaf architecture Fully non-blocking 12 Switch Elements

Optic transceiver

Backpack support QSFP28 100G optic

- CWDM4
- Can support other MSA, such as SR4, LR4, CLR4, etc.

Backpack support QSFP+ 40G optic

- QSFP+ 40G SR4 optic (multi-mode fiber OM3/OM4)
- QSFP+ 40G LR4 optic (single mode fiber)
- , LR4, CLR4, etc. optic oer OM3/OM4)

5

R

~

4

-

K

2444

Compute Project

