ıılıılı cısco

Cisco Nexus 3000 Switch Architecture

Faraz Taifehesmatian, Technical Marketing Engineer CCIE R&S, DC

BRKDCN-3734

Cisco Webex Teams 📿

Questions?

Use Cisco Webex Teams (formerly Cisco Spark) to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install Webex Teams or go directly to the team space
- 4 Enter messages/questions in the team space

Webex Teams will be moderated by the speaker until June 18, 2018.

cs.co/ciscolivebot#BRKDCN-3734

Session Abstract

This session presents an in-depth study of the architecture of the latest generation of Nexus 3000 top-of-rack data center switches. Topics include merchant silicon architecture and capabilities (Broadcom Trident3, Tomahawk 2, Jericho+ and Barefoot Tofino), forwarding hardware, and other physical design elements, as well as a discussion of key hardware-enabled features and capabilities that combine to provide high-performance, low latency data center network services.

What This Session Covers

- Overview of Merchant Silicon with Cisco Nexus Switches
- Latest generation of Nexus 3000 switches
- System and hardware architecture, key forwarding functions, packet walks

#CLUS

Not covered:

- Nexus 9000 ASIC/platform architectures
- Nexus 9500 merchant-silicon based architectures
- Other Nexus platforms

Agenda

- Merchant Silicon Overview
- Nexus 3000 Portfolio
 - ASIC overview
 - Forwarding Pipeline
 - Platform Specific Details
- Key Takeaways

Merchant Silicon Overview

Merchant Silicon in Cisco DC switches

N3000

N3200, N3100V,9500-R

#CLUS

N3100Z,N3200E,N3400

Nexus 3000 Portfolio

Nexus 3000 Series Switch Portfolio

Nexus 3100

- ToR Leaf
- Full-featured DC access
- Broad switch portfolio
- Based on Trident ASIC family

Nexus 3200

- Fixed High Density
- High throughput & performance
- Flexible connectivity options
- · Based on Tomahawk ASIC family

Nexus 3400

- Programmable pipeline
- Support for P4-INT
- Enable custom use cases
- Based on Tofino ASIC

Nexus 3500

- Ultra Low Latency
- Financial/HFT workloads
- Based on Cisco Monticello ASICs

Nexus 3600

- Deep Buffer
- High route scale
- Video & Drop sensitive deployments
- Based on Jericho+ ASIC family

Nexus 3100

- Nexus 3100 Switch Family
- Trident 3 ASIC Architecture
- ASIC Single Pipeline Block
- N3K-C3132C-Z Switch Architecture
- N3K-C3132C-Z ASIC Portmap

Nexus 3100 Switch Family

Trident 3 ASIC Architecture

- BCM56870 from StrataXGS family
- 3.2Tbps Single Chip Ethernet Switch
- · 2 Pipes @1.6 Tbps
- · 32 MB of Buffer

Trident 3 ASIC Single Pipeline Block

Trident 3 Cut-Through Vs Store-and-Forward

- Trident 3 MMU supports both store-and-forward (SF) and cutthrough (CT) modes
- In SF mode, an entire incoming packet is written into the buffer first. The packet is held in the buffer until the scheduler selects that particular egress port's queue

- CT mode is used in latencysensitive applications
- In CT mode, the packet is scheduled through the cutthrough path and dequeued to the EP before it has been completely received from the ingress pipeline.
- In CT mode, After one or more packet cells are received by the MMU, the packet becomes eligible for dequeening

Trident 3 Cut-Through switching Matrix

		Destination port		
Min Ingress Speed	Max Egress Speed	Speed	_	10G ->10G
10G	50G	10G 🧲		25G -> 10G 40G -> 10G
 25G	50G	25G	_	50G -> 10G
40G	100G	40G		
 50G	100G	50G		
 100G	100G	100G		

Cisco

N3K-C3132C-Z

N3K-C3132C-Z Switch Architecture

N3K-C3132C-Z ASIC Port-map

Trident 3 FalconCores

C3132C-Z Front Panel Ports

Nexus 3000 Series Switch Portfolio

- Financial/HFT workloads
- Based on Cisco Monticello ASICs
- High route scale
- Video & Drop sensitive deployments
- Based on Jericho+ ASIC family

Nexus 3200

- Nexus 3200 Switch Family
- Tomahawk2 ASIC Architecture
- ASIC Forwarding Pipeline
- N3K-C3264C-E Switch Architecture
- N3K-C3264C-E ASIC Portmap

Nexus 3200 Switch Family

Tomahawk2 ASIC Architecture

- BCM56970 from StrataXGS family
- 6.4Tbps Single Chip Ethernet Switch
- · 4 Pipes @1.6 Tbps
- · 42MB (4x10.5MB) of Buffer
- Ingress & Egress Packet Time Stamping

Tomahawk2 ASIC Single Pipeline Block

Tomahawk2 Cut-Through switching Matrix

					$\mathbf{O}\mathbf{O}$
Ν	Min Ingress Speed	Max Egress Speed	Destination port Speed	_	10G ->10G
	10G	50G	10G 🗲		25G -> 10G 40G -> 10G
	25G	50G	25G	_	50G -> 10G
	40G	100G	40G	_	
	50G	100G	50G	_	
	100G	100G	100G	_	

Cisco

N3K-C3264C-E

#CLUS

Ciscolive,

N3K-C3264C-E Switch Architecture

N3K-C3264C-E ASIC Port-map

Tomahawk2 FalconCores

C3264C-E Front Panel Ports

N3K-C3264C-E Breakout Port-mode

Following Port-modes are supported:

CLI commands for Port-mode change: Profile CLI : "hardware profile portmode <config>" <config> is "96x50g+16x100g" or "96x25g+32x100g" or "128x25g" Dynamic breakout CLI: "interface breakout module 1 port <front_port_num> map <config>" <config> is "50g-2x" or "25g-4x" or "10g-4x"

Ciscolive!

N3K-C3264C-E 96x50g+16x100g

- All ports are operational and first 48 front ports will support 2x50G dynamic breakout.
- 64x100G, 64x50G + 32x100G, 96x50G + 16x100G will be met with this h/w profile
- 49-64 MACSEC Ports will support 100G and 40G operational modes
- SLIC adaptor is not supported in this h/w profile

N3K-C3264C-E 96x25g+32x100g

- Front port 1-24, 29-32, 37-64 will be operational
- 1-24 front ports will support 2x50G, 4x25G, 4x10G dynamic breakout
- 29-32, 37-48, 49-64 MACSEC Ports will support 100G and 40G operational modes
- SLIC adaptor is supported on 1-24 Front port

Breakout Capable port
No Breakout
Disabled

N3K-C3264C-E 128x25g

- Front port 1-28, 33-36 will be operational
- 1-28, 33-36 front ports will support 2x50G, 4x25G, 4x10G dynamic breakout
- SLIC adaptor is supported on 1-24 Front port

Nexus 3000 Series Switch Portfolio

• ToR Leaf

- Broad switch portfolio

• Full-featured DC access

Based on Trident ASIC family

Nexus 3200

- Fixed High Density
- High throughput & performance
- Flexible connectivity options
- Based on Tomahawk ASIC family

#CLUS

Nexus 3400

- Programmable pipeline
- Support for P4-INT
- Enable custom use cases
- Based on Tofino ASIC

Nexus 3500

- Ultra Low Latency
- Financial/HFT workloads
- Based on Cisco Monticello ASICs

Nexus 3600

- Deep Buffer
- High route scale
- Video & Drop sensitive deployments
- Based on Jericho+ ASIC family

Nexus 3400

- Barefoot Tofino ASIC Architecture
- Tofino Simplified Block Diagram
- Programmable Switch Approach
- Match-Action Packet Processing
- Match-Action Unit
- Hardware Telemetry
- Nexus 34180YC Switch Architecture
- Nexus 34180YC ASIC Port-map

Barefoot Tofino ASIC Architecture

- BFN-T10-018D from Tofino family
- 1.8Tbps Single Chip Ethernet Switch
- · 2 Pipes @0.9 Tbps
- · P4-programmable pipeline
- Single 20 MB Unified Packet Buffer
- Inband Network Telemetry (INT)

Tofino Simplified Block Diagram

#CLUS

Ciscolive,
Tofino Programmable Switch Approach

Bottom-up Network element design

Fixed-function Switch

Ciscolive,

Top-down Network element design

What Is P4?

- · P4 Programming Protocol-Independent Packet Processors
- · Programming language designed to allow the definition of data planes
- · Open-source, permissively-licensed language
- Designed to be protocol-independent, implementation-independent
- Protocol independence and the abstract language model allow for reconfigurability, target-independence

Tofino Match-Action Packet Processing

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

39

BRKDCN-3734

PISA: Protocol Independent Switch Architecture

#CLUS

Multiple simultaneous lookups and actions can be supported

Match + Action Stage (Unit)

PISA: Match and Action are Separate Phases

#CLUS

Sequential Execution (Match dependency)

Total Latency = 3

PISA: Match and Action are Separate Phases

#CLUS

Staggered Execution (Action Dependency)

Total Latency = 2

PISA: Match and Action are Separate Phases

#CLUS

Parallel Execution (No Dependencies)

Total Latency = 1.1

Tofino Ingress Processing

- · All packets processed by the ingress buffer & parser
 - Parser splits packet header into separate PHV filed, TPHV files and packet body
 - PHV files traverse through Ingress Match-Action Pipeline for table lookup and manipulation
 - \cdot Deparser reassembles packets based on files in PHV

Tofino Programmable Parser

- Will receive the packet data from the Ethernet MACs and then it would parse the packet stream according to the pre-computed parse graph
- Next, the fields from the parsed protocol headers are extracted into the corresponding PHVs
- Once the Parser has assembled a PHV it can then insert that PHV into the Match-Action Pipeline

A single Parser unit can process packets a about 100Gb/s, it connects to either: 4 x10/25Gb/s MACs, or 2 x40/50Gb/s MACs, or 1 x100Gb/s MAC

Tofino Egress Pipeline

- Egress parser extracts metadata from ingress and packet header from the packet
- Egress Match-Action Pipeline performs additional processing
- Egress deparser assembles outgoing packet

Tofino Egress Match-Action Pipeline

Additional lookups for packet header modifications (i.e. tunnel encap, multicast replicated packets)

- Perform calculations (such as WRED) based on intrinsic metadata from TM
- Additional stats and policing as specified by P4 program

Tofino Egress Deparser

- PHV data is reassembled with packet payload
- Unnecessary fields are omitted from reassembled packet
- Final outgoing packet length fed back to TM for scheduling and shaping feedback
- Optionally send copy of packet to mirror buffer for egress mirroring
- Optionally capture PHV data into digest buffer for coalescing

Eth(L2)	Vlan	IPv4	TCP	UDP	
E	Eth(L2)	IPv4	UDP		
All fields with holes removed					

Tofino Combined Ingress/Egress Pipeline

BRKDCN-3734 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 49

Telemetry Modes

Postcard Mode	Inband Network Telemetry (INT)
 In the postcard mode, each network device generates its own telemetry reports 	 Metadata is embedded in between the original headers of data packets as they traverse the network
 The collector will receive reports from different network devices, each describing the telemetry metadata 	 This is done by INT data plane specifications

Postcard Mode vs INT Mode

Inband Network Telemetry (INT)

- First Record (INT instruction +metadata) will be inserted in data packet at INT Source node
- Second Record (INT metadata) will be appended to same data packet at INT Transit node
- Third Record (INT metadata) will be appended to INT stack at INT Sink.
- **INT Sink** will remove INT record and forward to **INT Collector** while original packet will be forwarded to server facing port

INT Per-switch information captured

Flow Watch List (zoom-in view per 5- tuple of flow + DSCP bits) - 1K	Flow Drop List (Drop due to various drop reasons) - 256	
Switch ID	Switch ID	
Hop latency	Ingress Port ID	
Queue ID + Queue occupancy	Egress Port ID	
Ingress timestamp	Queue ID	
Egress timestamp	Drop Reason	

- Node-to-Node: Reserved DSCP bit will be inserted temporarily in data packets to indicate that packets also carry INT data
- Node-to-Collector: A UDP encapsulation is used to pack collected INT stack at INT Sink and send to collector. Flow-affinity is maintained to send same flow-record to same collector for easy processing

NX-OS INT Configuration Model

#CLUS

Ciscolive

Enable IN

NX-OS INT Configuration Example

#CLUS

feature hw_telemetry

inband-telemetry exporter E1
destination 10.200.20.2
source Ethernet1/10

inband-telemetry record R1
collect switch-id
collect port-id
collect queue-occupancy
collect ingress-timestamp
collect egress-timestamp

inband-telemetry watchlist ip WL1
10 permit ip 1.1.1.1/24 10.10.10.10/24
20 deny ip 2.2.2.2/24 4.4.4.4/24

inband-telemetry monitor M1
record R1
exporter E1
watchlist WL1

inband-telemetry queue-profile QP1
 depth 1000
 latency 1000

inband-telemetry flow-profile FP1
 dscp 1
 age 5
 latency quantization 10

inband-telemetry system monitor M1

N3K-C34180YC

Ciscol

Nexus 34180YC Switch Architecture

Nexus 34180YC ASIC Port-map

Tofino ETH ports

34180YC Front panel ports

Nexus 34180YC Generic Profile

0

48x25G, 6x100G (Breakout 100/25, 40/10)

L2

- Interfaces (access, Trunk, Q-in-Q, Port-Channels (128))
- 4k VLAN, STP, Storm Control
- Unicast Bridging (32k MAC), Multicast forwarding/ IGMP snooping
- Peer-link less VPC
- LACP/UDLD

ACL, QoS

- Ingress ACL (MACL, VACL, RACL) (7k)
- Egress Policing
- Ingress QOS (Classification, Policing, Marking, Shaping, scheduling)
- CoPP, Custom CoPP
- PFC, LLFC, ECN

L3

- Interfaces (L3, SVI (2k), L3 port-channels)
- L3 Routing v4/v6 (v4 Host 32k and v4 LPM 4k, v6 hosts 16k, v6 LPM 4k, Next hops 48k (shared))

0

0

#CLUS

- ECMP (32-way, 1k groups)
 - BGP, OSPF, BFD
 - HSRP, VRRP
- Multicast Routing, PIM-SM, SSM (SG 8k/2k, *.G 4k/1k.

Data plane Telemetry

- In-band Telemetry (Flow reports, Queue reports, Drop reports) -1k Flow watchlist, 256 Drop watchlist
 - SPAN/E Data plane Telemetry RSPAN/Mirroring (64 sessions)
 - Object Models
 - PTP (Boundary mode)
 - DHCP v4/v6 Relay

N3K-C34180YC L3-Heavy Profile

0

48x25G, 6x100G (Breakout 100/25, 40/10)

L2

- Interfaces (access, Trunk, Port-Channels (128))
- 4k VLAN, STP, Storm Control
- Unicast Bridging (2k MAC)
- Peer-link less VPC (FCS-only)
- LACP/UDLD

ACL, QoS

- Ingress ACL (RACL) (1k), (+ Minimum Ingress ACL support for System ACL)
- Egress Shaping
- QOS (Classification, Policing, Marking, Shaping, scheduling)
- CoPP, Custom CoPP
- ECN

L3

• Interfaces (L3, SVI (2k), L3 port-channels)

• L3 Routing v4 (Host 64K and LPM 64K, next hops 64K)

O

Ο

#CLUS

• ECMP (32-way, 1k groups)

• BGP, OSPF, BFD

• HSRP, VRRP

Data plane Telemetry

In-band Telemetry (Flow reports, Queue reports, Drop reports) –
 1k Flow watchlist, 256 Drop watchlist

SPAN/ERSPAN/Mirroring (64 sessions)

Object Models

• PTP (Boundary mode)

DHCP v4 Relay

Nexus 3000 Series Switch Portfolio

- Ultra Low Latency
- Financial/HFT workloads
- Based on Cisco Monticello ASICs.

Nexus 3400

- Programmable pipeline
- Support for P4-INT
- Enable custom use cases
- Based on Tofino ASIC

Nexus 3600

- Deep Buffer
- High route scale
- Video & Drop sensitive deployments
- Based on Jericho+ ASIC family

Nexus 3500

- Monticello Architecture
- ASIC Block Diagram
- ASIC Forwarding Paths
- ASIC Forwarding Pipeline
 - Normal Mode
 - Warp Mode
- Monticello Warp Span
- N3K-C3548P-XL Switch Architecture
- N3K-C3548P-XL ASIC Port-map

Monticello ASIC Architecture

- · 480 Gbps Single Chip Ethernet Switch
- ·720 MPPS @ 64 Bytes
- 18 MB of Buffer (3 x 6MB)
- · UUL 250ns (~200ns in Warp Mode)

Monticello ASIC Block Diagram

Ciscolive,

Monticello ASIC Forwarding Paths

Monticello ASIC Forwarding Pipeline

Monticello ASIC Forwarding Pipeline WARP Mode

Normal vs. Warp Mode Forwarding

Feature	Normal	Warp
Latency	250ns	190ns
NAT	Yes	Yes
Ingress RACL/VACL	Yes	Yes
Egress RACL/VACL	Yes	No
Unicast Route	24K	4K
Multicast Route	8K	8K
L3 ECMP	Yes	No

#CLUS

Ciscolive!

Monticello Warp Span

- WARP SPAN can be enabled both in normal and WARP mode
- · Latency ~50 ns
- WARP SPAN source has to be port 1/36
- Destination ports would be group of 4 ports

N3K-C3548P-XL

N3K-C3548P-XL Switch Architecture

N3K-C3548P-XL ASIC Port-map

MonticelloCR OB Ports

48 SPF+ 10Gig

Nexus 3000 Series Switch Portfolio

• ToR Leaf

- Broad switch portfolio

• Full-featured DC access

Based on Trident ASIC family

Nexus 3200

- Fixed High Density
- High throughput & performance
- Flexible connectivity options
- · Based on Tomahawk ASIC family

#CLUS

Nexus 3400

- Programmable pipeline
- Support for P4-INT
- Enable custom use cases
- Based on Tofino ASIC

Nexus 3500

- Ultra Low Latency
- Financial/HFT workloads
- Based on Cisco Monticello ASICs

Nexus 3600

- Deep Buffer
- High route scale
- Video & Drop sensitive deployments
- Based on Jericho+ ASIC family

Nexus 3600

- Nexus 3600 Switch Family
- Jericho+ ASIC Architecture
- ASIC Packet Forwarding
- N3K-C3636C-R Switch Architecture
- N3K-C3636C-R ASIC Portmap

Nexus 3600 Switch Family

Jericho+ ASIC Architecture

- BCM88680 from StrataDNX family
- 900Gbps, 835Mpps
- Integrated Forwarding and Fabric interface
- Two packet processing cores (PP)
- 96K Virtual Output Queues

Jericho+ High-Level Forwarding Architecture

On-chip resources

- 16MB Internal Buffer &TCAM
- Forwarding Tables

Expansion via off-chip resources

- Deep GDDR5 external packet buffers Ingress/Egress Traffic Managers
 - 96k Virtual Output Queues
 - WRED, Distributed Arbitration

Jericho+ Buffering

- Nexus N3600-R switches use traditional VoQ architecture
- Big buffer on Ingress side dedicated to VoQ buffer
- · 4GB GDDR5 DRAM-based buffering per port-group used for VoQ buffer
- VOQ buffer has dedicated portion per port and shard buffer among ports in the same port group

#CLUS

16MB of On-chip buffer used for egress buffer

N3K-C3636C-R

N3K-C3636C-R Switch Architecture

N3K-C3636C-R ASIC Port-map

Jericho+ Ports

C3636C-R Front Panel Ports

Cisco

Nexus 3000 Series Switch Portfolio

• ToR Leaf

- Broad switch portfolio

Full-featured DC access

Based on Trident ASIC family

Nexus 3200

- Fixed High Density
- High throughput & performance
- Flexible connectivity options
- · Based on Tomahawk ASIC family

#CLUS

Nexus 3400

- Programmable pipeline
- Support for P4-INT
- Enable custom use cases
- Based on Tofino ASIC

Nexus 3500

- Ultra Low Latency
- Financial/HFT workloads
- Based on Cisco Monticello ASICs

Nexus 3600

- Deep Buffer
- High route scale
- Video & Drop sensitive deployments
- Based on Jericho+ ASIC family

Key Takeaways

Key Takeaways

Complete your online session evaluation

#CLUS

Give us your feedback to be entered into a Daily Survey Drawing.

Complete your session surveys through the Cisco Live mobile app or on <u>www.CiscoLive.com/us</u>.

Don't forget: Cisco Live sessions will be available for viewing on demand after the event at <u>www.CiscoLive.com/Online</u>.

Continue your education

Thank you

ıılıılıı cısco

