MATH 21

Linear Algebra
 Winter 2007

Midterm 2 Review Problems

1. Determine whether the following sets are linearly independent or linearly dependent. If linearly dependent, write a non trivial relation involving the vectors in the set.
a. $\left\{\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{l}5 \\ 8 \\ 9\end{array}\right)\right\}$
b. $\left\{\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 2 \\ 1 \\ 1\end{array}\right)\right\}$
c. $\left\{\left(\begin{array}{l}2 \\ 1 \\ 1 \\ 3 \\ 5\end{array}\right),\left(\begin{array}{r}1 \\ 0 \\ -1 \\ 4 \\ 0\end{array}\right),\left(\begin{array}{r}6 \\ 1 \\ 1 \\ 1 \\ -2\end{array}\right),\left(\begin{array}{r}10 \\ 2 \\ 0 \\ 12 \\ 3\end{array}\right)\right\}$
2. Determine the rank and nullity of each of the following matrices.
a. $\left(\begin{array}{ccc}1 & 2 & 4 \\ 2 & 5 & 7 \\ 4 & 8 & 12\end{array}\right)$
b. $\left(\begin{array}{rrrr}0 & 1 & 1 & 6 \\ 1 & 0 & 2 & 7 \\ 2 & 2 & 5 & -2\end{array}\right)$
c. $\left(\begin{array}{rrr}2 & 5 & -1 \\ 1 & 2 & -2 \\ 7 & 4 & 0 \\ 3 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$
3. Determine a basis for (i) the image, and (ii) the kernel of each of the matrices in the previous problem.
4. Let V be the set of vectors in \mathbf{R}^{3} which are perpendicular to $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
a. Show directly that V is a subspace of \mathbf{R}^{3}.
b. Determine a basis for V. (Hint: observe that $V=\operatorname{ker}\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$, and proceed as in problem (3).)
5. Let $\vec{x}, \vec{y} \in \mathbf{R}^{n}$. Answer the following two questions
I. Does there exist an invertible linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that $T(\bar{x})=\vec{y}$,
II. Does there exist a non-invertible linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that $T(\vec{x})=\vec{y}$, in the following four cases:
a. $\vec{x} \neq \overrightarrow{0}$ and $\vec{y} \neq \overrightarrow{0}$
b. $\vec{x} \neq \overrightarrow{0}$ and $\vec{y}=\overrightarrow{0}$
c. $\vec{x}=\overrightarrow{0}$ and $\vec{y} \neq \overrightarrow{0}$
d. $\vec{x}=\overrightarrow{0}$ and $\vec{y}=\overrightarrow{0}$
(i.e. eight questions altogether). If an answer is yes, give an example establishing the existence of such a linear map. If no, explain why no linear map with the given property can exist.
6. Let $T: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ be a linear transformation. Prove that T is injective if and only if $\operatorname{ker}(T)=\{\overline{\boldsymbol{0}}\}$.
7. Let $T: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ be a linear transformation. Prove that
a. $\quad \operatorname{im}(T)$ is a subspace of \mathbf{R}^{n}
b. $\operatorname{ker}(T)$ is a subspace of \mathbf{R}^{m}
8. Let $\mathfrak{B}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\}$, and $\vec{x}=\left(\begin{array}{r}3 \\ 5 \\ -1\end{array}\right)$.
a. Show that \mathfrak{B} is a basis for \mathbf{R}^{3}.
b. Determine $[\vec{x}]_{\mathfrak{B}}$, the coordinate vector of \vec{x} with respect to \mathfrak{B}.
9. Let $T(\vec{x})=A \bar{x}$, where $A=\left(\begin{array}{ll}4 & 1 \\ 3 & 7\end{array}\right)$. Determine the matrix B of T with respect to the basis $\mathfrak{B}=\left\{\binom{2}{1},\binom{-1}{0}\right\}$ of \mathbf{R}^{2}. Verify that $B[\vec{x}]_{\mathscr{S}}=[T(\vec{x})]_{\mathfrak{B}}$ for all $\vec{x} \in \mathbf{R}^{2}$.
10. Let $\mathfrak{B}=\left\{\overrightarrow{\mathrm{v}}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}\right\}$ be a basis for a subspace V of \mathbf{R}^{n}. Show that $[\vec{x}+\vec{y}]_{\mathscr{R}}=[\vec{x}]_{\mathscr{B}}+[\vec{y}]_{\mathscr{B}}$ for all $\vec{x}, \vec{y} \in \mathbf{R}^{n}$.
11. Let A and B be two square matrices, and suppose that A is similar to B. Prove the following.
a. If t is a non-negative integer, then A^{t} is similar to B^{t}
b. $\quad \operatorname{rank}(A)=\operatorname{rank}(B)$. (Hint: let $B=S^{-1} A S, r=\operatorname{rank}(B)$, and let $\left\{\vec{u}_{1}, \ldots, \vec{u}_{r}\right\}$ be a basis for $\operatorname{im}(B)$. Show that $\left\{S \vec{u}_{1}, \ldots, S \vec{u}_{r}\right\}$ is a basis for $\operatorname{im}(A)$, whence $\operatorname{rank}(A)=r$ also. Alternate hint: let $p=\operatorname{nullity}(B)$, and suppose $\left\{\vec{w}_{1}, \ldots, \vec{w}_{p}\right\}$ is a basis for $\operatorname{ker}(B)$. Show that $\left\{S \vec{w}_{1}, \ldots, S \vec{w}_{p}\right\}$ is a basis for $\operatorname{ker}(A)$, whence $\operatorname{nullity}(A)=p$ also, and hence $\operatorname{rank}(A)=\operatorname{rank}(B)$.
12. Fix an $n \times n$ matrix A, and let $V=\left\{B \in M_{n} \mid A B=B A\right\}$, i.e. V is the set of all matrices which commute with A. Show that V is a subspace of M_{n}.
13. Let $V=\{f \in F(\mathbf{R}, \mathbf{R}) \mid f(6)=0\}$. Show that V is a subspace of $F(\mathbf{R}, \mathbf{R})$.
14. Fix $A \in M_{n}$, and define $T: M_{n} \rightarrow M_{n}$ by $T(B)=A B$. Show
a. $\quad T$ is a linear transformation
b. $\operatorname{ker}(T)=\left\{B \in M_{n} \mid \operatorname{im}(B) \subseteq \operatorname{ker}(A)\right\}$
c. $\quad T$ is invertible if and only if A is invertible
