MATH 21 Linear Algebra Winter 2007

Midterm 2 Review Problems

1. Determine whether the following sets are linearly independent or linearly dependent. If linearly dependent, write a non trivial relation involving the vectors in the set.

a.
$$\begin{cases} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 5 \\ 8 \\ 9 \end{pmatrix} \end{cases}$$

b.
$$\begin{cases} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

c.
$$\begin{cases} \begin{pmatrix} 2 \\ 1 \\ 1 \\ 3 \\ 5 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \\ 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 6 \\ 1 \\ 1 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 10 \\ 2 \\ 0 \\ 12 \\ 3 \end{pmatrix} \end{cases}$$

- 2. Determine the rank and nullity of each of the following matrices.
 - a. $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 5 & 7 \\ 4 & 8 & 12 \end{pmatrix}$ b. $\begin{pmatrix} 0 & 1 & 1 & 6 \\ 1 & 0 & 2 & 7 \\ 2 & 2 & 5 & -2 \end{pmatrix}$ c. $\begin{pmatrix} 2 & 5 & -1 \\ 1 & 2 & -2 \\ 7 & 4 & 0 \\ 3 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$
- 3. Determine a basis for (i) the image, and (ii) the kernel of each of the matrices in the previous problem.
- 4. Let *V* be the set of vectors in \mathbf{R}^3 which are perpendicular to $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$.
 - a. Show directly that V is a subspace of \mathbf{R}^3 .
 - b. Determine a basis for V. (Hint: observe that $V = \text{ker}(1 \ 1 \ 1)$, and proceed as in problem (3).)

- 5. Let $\vec{x}, \vec{y} \in \mathbf{R}^n$. Answer the following two questions
 - I. Does there exist an *invertible* linear transformation $T : \mathbf{R}^n \to \mathbf{R}^n$ such that $T(\vec{x}) = \vec{y}$,
 - II. Does there exist a *non-invertible* linear transformation $T : \mathbf{R}^n \to \mathbf{R}^n$ such that $T(\vec{x}) = \vec{y}$,

in the following four cases:

- a. $\vec{x} \neq \vec{0}$ and $\vec{y} \neq \vec{0}$
- b. $\vec{x} \neq \vec{0}$ and $\vec{y} = \vec{0}$
- c. $\vec{x} = \vec{0}$ and $\vec{y} \neq \vec{0}$
- d. $\vec{x} = \vec{0}$ and $\vec{y} = \vec{0}$

(i.e. eight questions altogether). If an answer is yes, give an example establishing the existence of such a linear map. If no, explain why no linear map with the given property can exist.

- 6. Let $T : \mathbf{R}^m \to \mathbf{R}^n$ be a linear transformation. Prove that *T* is injective if and only if ker(*T*) = $\{\mathbf{\bar{0}}\}$.
- 7. Let $T : \mathbf{R}^m \to \mathbf{R}^n$ be a linear transformation. Prove that
 - a. im(T) is a subspace of \mathbf{R}^n
 - b. ker(T) is a subspace of \mathbf{R}^m

8. Let
$$\mathfrak{B} = \left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\}$$
, and $\vec{x} = \begin{pmatrix} 3\\5\\-1 \end{pmatrix}$.

- a. Show that \mathfrak{B} is a basis for \mathbb{R}^3 .
- b. Determine $[\bar{x}]_{\Re}$, the coordinate vector of \bar{x} with respect to \Re .
- 9. Let $T(\bar{x}) = A\bar{x}$, where $A = \begin{pmatrix} 4 & 1 \\ 3 & 7 \end{pmatrix}$. Determine the matrix *B* of *T* with respect to the basis $\mathfrak{B} = \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right\}$ of \mathbf{R}^2 . Verify that $B[\bar{x}]_{\mathfrak{B}} = [T(\bar{x})]_{\mathfrak{B}}$ for all $\bar{x} \in \mathbf{R}^2$.
- 10. Let $\mathfrak{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m\}$ be a basis for a subspace V of \mathbf{R}^n . Show that $[\vec{x} + \vec{y}]_{\mathfrak{B}} = [\vec{x}]_{\mathfrak{B}} + [\vec{y}]_{\mathfrak{B}}$ for all $\vec{x}, \vec{y} \in \mathbf{R}^n$.
- 11. Let A and B be two square matrices, and suppose that A is similar to B. Prove the following.
 - a. If t is a non-negative integer, then A^t is similar to B^t
 - b. rank(A) = rank(B). (Hint: let $B = S^{-1}AS$, r = rank(B), and let $\{\vec{u}_1, \dots, \vec{u}_r\}$ be a basis for im(B). Show that $\{S\vec{u}_1, \dots, S\vec{u}_r\}$ is a basis for im(A), whence rank(A) = r also. Alternate hint: let p = nullity(B), and suppose $\{\vec{w}_1, \dots, \vec{w}_p\}$ is a basis for ker(B). Show that $\{S\vec{w}_1, \dots, S\vec{w}_p\}$ is a basis for ker(A), whence nullity(A) = p also, and hence rank(A) = rank(B).)

- 12. Fix an $n \times n$ matrix A, and let $V = \{B \in M_n \mid AB = BA\}$, i.e. V is the set of all matrices which commute with A. Show that V is a subspace of M_n .
- 13. Let $V = \{ f \in F(\mathbf{R}, \mathbf{R}) \mid f(6) = 0 \}$. Show that V is a subspace of $F(\mathbf{R}, \mathbf{R})$.
- 14. Fix $A \in M_n$, and define $T: M_n \to M_n$ by T(B) = AB. Show
 - a. *T* is a linear transformation
 - b. $\ker(T) = \{B \in M_n \mid \operatorname{im}(B) \subseteq \ker(A)\}$
 - c. *T* is invertible if and only if *A* is invertible