MATH 21

Linear Algebra

Winter 2007

Midterm 1 Review Problems

1. Determine all solutions to the following linear systems of equations.
a. $\left\{\begin{array}{l}4 x+3 y=2 \\ 7 x+5 y=3\end{array}\right.$
b. $\left(\begin{array}{lll|l}1 & 2 & 3 & 1 \\ 1 & 3 & 4 & 3 \\ 1 & 4 & 5 & 4\end{array}\right)$
c. $\left\{\begin{array}{rr}x_{1}+2 x_{2} \quad+2 x_{4}+3 x_{5} & =0 \\ x_{3}+3 x_{4}+2 x_{5} & =0 \\ x_{3}+4 x_{4}-x_{5} & =0 \\ x_{5} & =0\end{array}\right.$
2. Find the reduced row echelon form (RREF) of each of the following matrices.
a. $\left(\begin{array}{ccc}1 & 2 & 4 \\ 2 & 5 & 7 \\ 4 & 8 & 12\end{array}\right)$
b. $\left(\begin{array}{cccc}0 & 1 & 1 & 6 \\ 1 & 0 & 2 & 7 \\ 2 & 2 & 5 & -2\end{array}\right)$
3. Determine all possible RREFs of a 3×3 matrix. Show the possible positions of all leading 1 s , all 0 s , and write $*$ for an arbitrary entry. For instance one such RREF having rank 2 would be

$$
\left(\begin{array}{lll}
1 & 0 & * \\
0 & 1 & * \\
0 & 0 & 0
\end{array}\right)
$$

4. Let A be an $n \times m$ matrix, and let $\mathrm{r}=\operatorname{rank}(A)$.
a. Explain why necessarily $r \leq n$ and $r \leq m$.
b. Explain why the system $(A \mid \vec{b})$ is inconsistent if and only if $\operatorname{RREF}(A)$ contains the row $(0 \cdots 0 \mid 1)$.
c. Suppose $r<m$. Explain why the system $(A \mid \vec{b})$ cannot have a unique solution.
d. Suppose $r=m$. Explain why the system $(A \mid \vec{b})$ must have at least one solution.
5. A linear system $(A \mid \vec{b})$ has 60 rows and 91 columns, and we are told that $\operatorname{rank}(A)=28$. How many free variables will the solution have?
6. Let $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ for some $\theta \in \mathbf{R}$. Show that $(A \vec{u}) \bullet(A \stackrel{\rightharpoonup}{v})=\vec{u} \bullet \stackrel{\rightharpoonup}{v}$ for any $\vec{u}, \vec{v} \in \mathbf{R}^{2}$.
7. Let X, Y, and Z be sets, and $f: X \rightarrow Y$, and $g: Y \rightarrow Z$ functions. Show that if $g \circ f$ is injective, then f is also injective.
8. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \vec{u}=\binom{u_{1}}{u_{2}}$, and $\vec{v}=\binom{v_{1}}{v_{2}}$. Show directly that $A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}$.
9. Let $\vec{v}=\binom{1}{2}$. Find a unit vector \vec{u} in the direction \vec{v}. Let L be the line through the origin $\binom{0}{0}$ with direction \vec{v}. Write the matrix for the linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ given by orthogonal projection onto L. Is this transformation invertible? If so give its inverse, if not explain why not.
10. Determine all real numbers α such that the follwing are true:
a. $\left(\begin{array}{cc}2 & 3 \\ 5 & \alpha\end{array}\right)$ is invertible.
b. $\left(\begin{array}{cc}\alpha & 3 \\ 12 & \alpha\end{array}\right)$ is not invertible.
c. $\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & \alpha \\ 1 & 4 & \alpha^{2}\end{array}\right)$ is not invertible.
11. Find the inverses of the following matrices, if they exist, or explain why they don't exist.
a. $\left(\begin{array}{rr}3 & 1 \\ 7 & -1\end{array}\right)$
b. $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6\end{array}\right)$
c. $\left(\begin{array}{rrrr}2 & 1 & 5 & -12 \\ 14 & 11 & 3 & -1 \\ 6 & 0 & -6 & 5\end{array}\right)$
12. Let A, and B be $n \times n$ matrices, let O denote the $n \times n$ zero matrix (i.e. the $n \times n$ matrix all of whose entries are zero), and let M be the $(2 n) \times(2 n)$ partitioned matrix

$$
M=\left(\begin{array}{ll}
A & O \\
O & B
\end{array}\right)
$$

Prove that M is invertible if and only if both A and B are invertible, and write a formula for M^{-1} in terms of A^{-1} and B^{-1}.
13. Compute the following matrix products.
a. $\left(\begin{array}{rrr}1 & -2 & -5 \\ -2 & 5 & 11\end{array}\right)\left(\begin{array}{rrrr}2 & 2 & 3 & 4 \\ 0 & -1 & 5 & 0 \\ 6 & 4 & 2 & 1\end{array}\right)$
b. $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)$
c. $\quad\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$
14. Find a 2×2 matrix A such that $A\left(\begin{array}{ll}1 & 2 \\ 4 & 9\end{array}\right)=\left(\begin{array}{rr}2 & 1 \\ 0 & -10\end{array}\right)$.
15. Let A be an $n \times p$ matrix, B be a $p \times m$ matrix, and let $\alpha \in \mathbf{R}$. Prove that $\alpha(A B)=(\alpha A) B$.

