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Midterm 1 Review Problems 
 

1. Determine all solutions to the following linear systems of equations. 
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2. Find the reduced row echelon form (RREF) of each of the following matrices. 
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3. Determine all possible RREFs of a 33×  matrix.  Show the possible positions of all leading 1s, all 0s, 

and write ∗   for an arbitrary entry.  For instance one such RREF having rank 2 would be 
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4. Let A be an mn×  matrix, and let )(rankr A= .   

a. Explain why necessarily nr ≤  and mr ≤ . 

b. Explain why the system ( )bA
v

|  is inconsistent if and only if )(RREF A  contains the row ( )1|00L . 

c. Suppose mr < .  Explain why the system ( )bA
v

|  cannot have a unique solution. 

d. Suppose mr = .  Explain why the system ( )bA
v

|  must have at least one solution. 

 

5. A linear system ( )bA
v

|  has 60 rows and 91 columns, and we are told that 28)(rank =A .  How many 

free variables will the solution have? 

 



6. Let 
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7. Let X, Y, and Z be sets, and YXf →: , and ZYg →:  functions.  Show that if fg o  is injective, 

then f is also injective. 
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projection onto L.  Is this transformation invertible?  If so give its inverse, if not explain why not. 

 

10. Determine all real numbers α  such that the follwing are true: 
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11.  Find the inverses of the following matrices, if they exist, or explain why they don’t exist. 
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12. Let A, and B be nn×  matrices, let O denote the nn×  zero matrix (i.e. the nn×  matrix all of whose 

entries are zero), and let M be the )2()2( nn ×  partitioned matrix 
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Prove that M is invertible if and only if both A and B are invertible, and write a formula for 1−M  in 

terms of 1−A  and 1−B . 

 

 



13. Compute the following matrix products. 
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14. Find a 22×  matrix A such that 
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15. Let A be an pn×  matrix, B be a mp×  matrix, and let R∈α .  Prove that BAAB )()( αα = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


