Math 11B Final Review Problems

Note: these problems represent *some* of the topics that were covered since Midterm 2. Bear in mind that the final will be comprehensive, with a slight emphasis on the most recent topics. See earlier review problems and solutions to Midterms 1 and 2 for review of earlier topics.

- 1. Use Integration by parts to prove the following formula: $\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} \frac{n}{a} \int x^{n-1} e^{ax} dx$.
- 2. Find the linear approximation to $f(x) = e^x$ for x near 2.
- 3. Find the n^{th} degree taylor polynomial of the following functions f(x) for x near a.
 - a. $f(x) = e^x$, n = 5, a = 0b. $f(x) = e^x$, n = 5, a = 1c. $f(x) = e^{-x^2}$, n = 10, a = 0 (Hint: substitue into your answer to part b) d. $f(x) = \sin x$, n = 7, a = 0e. $f(x) = \sqrt{1+x}$, n = 4, a = 0f. $f(x) = \ln x$, n = 4, a = 1

1

- 4. Use your answer to problem 3*c* above to estimate the value of the definite integral $\int_{0}^{1} e^{-x^{2}} dx$. (Note you cannot calculate this definite integral directly by the FTC, so don't try.)
- 5. Use the remainder term $R_{n+1}(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$ for the n^{th} degree taylor polynomial to determine the smallest value of *n* which would guarantee that in estimating $f(x) = e^x$ for $x \in (-2, 2)$, the error would not exceed 10^{-4} .
- 6. Solve the following initial value problems.

a.
$$\frac{dy}{dx} = -2xy$$
, $y(1) = 2$
b. $\frac{dP}{dt} = Pe^{-t}$, $P(0) = 1$
c. $\frac{dP}{dt} = e^{-t}$, $P(0) = 1$
d. $\frac{dN}{dt} = (1 + N^2)\cos(t)$, $N(0) = 0$
e. $\frac{dN}{dt} = 1 + N^2$, $N(0) = \sqrt{3}$
f. $\frac{dy}{dx} = y(y - 1)$, $y(0) = y_0$

- 7. Consider the autonomous differential equation $\frac{dy}{dx} = y^4 y^2$
 - a. Determine the equilibrium solutions
 - b. Compute the eigenvalues of the equation
 - c. Classify each of the equilibria as either stable, unstable, or semi-stable