Math 11B

Final Review Problems

Note: these problems represent some of the topics that were covered since Midterm 2. Bear in mind that the final will be comprehensive, with a slight emphasis on the most recent topics. See earlier review problems and solutions to Midterms 1 and 2 for review of earlier topics.

1. Use Integration by parts to prove the following formula: $\int x^{n} e^{a x} d x=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} \int x^{n-1} e^{a x} d x$.
2. Find the linear approximation to $f(x)=e^{x}$ for x near 2 .
3. Find the $n^{\text {th }}$ degree taylor polynomial of the following functions $f(x)$ for x near a.
a. $f(x)=e^{x}, n=5, a=0$
b. $f(x)=e^{x}, n=5, a=1$
c. $f(x)=e^{-x^{2}}, n=10, a=0$ (Hint: substitue into your answer to part b)
d. $f(x)=\sin x, n=7, a=0$
e. $f(x)=\sqrt{1+x}, n=4, a=0$
f. $f(x)=\ln x, n=4, a=1$
4. Use your answer to problem $3 c$ above to estimate the value of the definite integral $\int_{0}^{1} e^{-x^{2}} d x$. (Note you cannot calculate this definite integral directly by the FTC, so don't try.)
5. Use the remainder term $R_{n+1}(x)=\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$ for the $n^{\text {th }}$ degree taylor polynomial to determine the smallest value of n which would guarantee that in estimating $f(x)=e^{x}$ for $x \in(-2,2)$, the error would not exceed 10^{-4}.
6. Solve the following initial value problems.
a. $\frac{d y}{d x}=-2 x y, \quad y(1)=2$
b. $\frac{d P}{d t}=P e^{-t}, \quad P(0)=1$
c. $\frac{d P}{d t}=e^{-t}, P(0)=1$
d. $\frac{d N}{d t}=\left(1+N^{2}\right) \cos (t), \quad N(0)=1$
e. $\frac{d N}{d t}=1+N^{2}, \quad N(0)=\sqrt{3}$
f. $\frac{d y}{d x}=y(y-1), y(0)=y_{0}$
7. Consider the autonomous differential equation $\frac{d y}{d x}=y^{4}-y^{2}$
a. Determine the equilibrium solutions
b. Compute the eigenvalues of the equation
c. Classify each of the equilibria as either stable, unstable, or semi-stable
