
CMPS 201  
Spring 2010 
Homework Assignment 9         Review Only – Solutions Included 
 
1. Recall the coin changing problem discussed in class.  We present the dynamic programming 

solution below for reference.  Note that this algorithm assumes an unlimited supply of coins in 
each denomination ]1[d ,…, ][nd  are available. 
 

CoinChange(d, N)   
1. ][lengthdn←  
2. for 1←i  to n 
3.           0]0,[ ←iC  
4. for 1←i  to n 
5.           for 1←j  to N 
6.                     if 1=i  and ][idj <  
7.                               ∞←],1[ jC  
8.                     else if 1=i  
9.                                ]][,1[1],1[ idjCjC −+←  
10.                     else if ][idj <  
11.                                ],1[],[ jiCjiC −←  
12.                     else 
13.                                ( )]][,[1  ],,1[min],[ idjiCjiCjiC −+−←  
14. return ],[ NnC  

 
Write a recursive algorithm which given the filled table ]0 ;1[ NnC KK  generated by the above 
algorithm, prints out a sequence of ] ,[ NnC  coin values which disburse N monetary units.  In the 
case ∞=] ,[ NnC , print a message to the effect that no such disbursal is possible. 

 
Solution: 
Note that array d[1..n] is needed as input in order to navigate the table C. 

 
PrintCoins(C, d, i, j)  (Pre: C[1..n; 0…N] was filled by CoinChange(d, N)) 
1. if 0>j  
2.       if ∞=] ,[ jiC  
3.             print   "Cannot pay the amount "  j 
4.             return 
5.       if 1=i  
6.             print "Pay one coin of denomination "  ]1[d  
7.             PrintCoins(C, d, 1, ]1[dj − ) 
8.       else if ][idj <  
9.             PrintCoins(C, d, 1−i , j) 
10.       else   //   both 1>i  and ][idj ≥  
11.             if ] ,1[] ,[ jiCjiC −=  
12.                   PrintCoins(C, d, 1−i , j) 
13.             else   //   ]][,[1],[ idjiCjiC −+=    



14.                   print "Pay one coin of denomination "  ][id  
15.                   PrintCoins(C, d, i, ][idj − ) 

 
 
2. Recall the Discrete Knapsack Problem described in class.  A thief wishes to steal n objects having 

values 0>iv  and weights 0>iw  ( ni ≤≤1 ).  His knapsack, which will carry the stolen goods, 

holds at most a total weight W.  Let 1=ix  if object i is taken, and 0=ix  if object i is not taken 

( ni ≤≤1 ).  The thief’s goal is to maximize the total value ∑
=
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a. (10 Points) Write pseudo-code for a dynamic programming algorithm that solves this problem.  

Your algorithm should take as input the value and weight arrays v[1..n] and w[1..n], and the 
weight limit W.  It should generate a table V[1 .. n; 0 .. W] of intermediate results.  Each entry 

] ,[ jiV  will be the maximum value of the objects which can be stolen if the weight limit is j, 
and if we only include objects in the set },,1{ iK .  Your algorithm should return the maximum 
possible value of the goods which can be stolen from the full set of objects, i.e. the value 

] ,[ WnV .  (Alternatively you may write your algorithm to return the whole table.) 
 
Solution: 
Knapsack(v, w, W)  (Pre: v[1..n] and w[1..n] contain positive numbers) 
1. ][length vn←  
2. for 0←j  to W    //   fill in first row  
3.       if ]1[wj <  
4.             0] ,1[ ←jV  
5.       else 
6.             ]1[] ,1[ vjV ←  
7. for 2←i  to  n    //    fill remaining rows  
8.       for 0←j   to  W 
9.             if ][iwj <  
10.                   ] ,1[] ,[ jiVjiV −←  
11.             else 
12.                   ( )]][ ,1[][  ], ,1[max],[ iwjiVivjiVjiV −−+−←  
13. return ] ,[ WnV  

 
b. (10 Points) Write an algorithm that, given the filled table generated in part (a), prints out a list 

of exactly which objects are to be stolen. 
 
Solution: 
PrintObjects(V, w, i, j)  (Pre: V[1..n; 0..W] was filled by Knapsack(v, w, W)) 
1. if 1=i  
2.       if ]1[wj <  
3.             print "Do not include object " 1 
4.       else    



5.             print "Include object " 1 
6. else   //  1>i  
7.       if ] ,1[] ,[ jiVjiV −=  
8.             PrintObjects(V, w, 1−i , j) 
9.             print "Do not include object " i 
10.       else     //    both ][iwj ≥  and ]][ ,1[  ][] ,[ iwjiVivjiV −−+=     
11.             PrintObjects(V, w, 1−i , ][iwj − ) 
12.             print "Include object " i 

 
 
3. Canoe Rental Problem.   There are n trading posts numbered 1 to n as you travel downstream.  At 

any trading post i you can rent a canoe to be returned at any of the downstream trading posts j, 
where ij ≥ .  You are given an array ] ,[ jiR  defining the cost of a canoe which is picked up at post 
i and dropped off at post j,  for nji ≤≤≤1 .  Assume that 0] ,[ =iiR  and that you can’t take a 
canoe upriver (so perhaps ∞=],[ jiR  when ji > ).  Your problem is to determine a sequence of 
rentals which start at post 1 and end at post n, and which has a minimum total cost.  As usual there 
are really two problems:  determine the cost of a cheapest sequence, and determine the sequence 
itself.   
 
Design a dynamic programming algorithm for this problem.  First, define a 1-dimensional table 

]1[ nC L , where ][iC  is the cost of an optimal (i.e. cheapest) sequence of canoe rentals that starts at 
post 1 and ends at post i.  Show that this problem, with subproblems defined in this manner, 
satisfies the principle of optimality, i.e. state and prove a theorem that establishes the necessary 
optimal substructure.  Second, write a recurrence formula that characterizes ][iC  in terms of earlier 
table entries.  Third, write an iterative algorithm that fills in the above table.  Fourth, alter your 
algorithm slightly so as to build a parallel array ]1[ nP K  such that ][iP  is the trading post 
preceding i along an optimal sequence from 1 to i.  In other words, the last canoe to be rented in an 
optimal sequence from 1 to i was picked up at post ][iP .  Write a recursive algorithm that, given 
the filled table P, prints out the optimal sequence itself.  Determine the asymptotic runtimes of your 
algorithms. 
 
Solution: 
One way to solve this problem would be to construct a 2 dimensional table whose thi  row and thj  
column is the cost of an optimal sequence of canoe rentals which starts at post i and ends at post j.  
This approach works, but one soon discovers that a 2 dimensional table is not really necessary.  
The entries in each row depend only on other entries in the same row and since we are seeking an 
optimal sequence from 1 to n, only the first row is needed.  Accordingly we define a 1 dimensional 
table C[1…n] where ][iC  is the cost of an optimal sequence of canoe rentals that starts at post 1 
and ends at post i, for ni ≤≤1 .  When this table is filled, we simply return the value ][nC . 
 
Clearly 0]1[ =C  since one need not rent any canoes to get from 1 to 1.  Let 1>i  and suppose we 
have found an optimal sequence taking us from 1 to i.  In this sequence there is some post k at 
which the last canoe was rented, where ik <≤1 .  In other words our optimal sequence ends with a 
single canoe ride from post k to post i, whose cost is ],[ ikR .  Claim:   The subsequence of canoe 
rentals starting at 1 and ending at k is also optimal.  Proof:  We prove this by contradiction.  
Assume that the above mentioned subsequence is not optimal.  Then it must be possible to find a 
less costly sequence which takes us from 1 to k.  Following that sequence by a single canoe ride 



from k to i, again of cost ],[ ikR , yields a sequence taking us from 1 to i which costs less than our 
original optimal one, a contradiction.  Therefore the subsequence of canoe rides from 1 to k, 
obtained by deleting the final canoe ride in our optimal sequence from 1 to i, is itself optimal.   ///  
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The above argument shows that this problem exhibits the required optimal substructure necessary 
for a dynamic programming solution.  It also shows how to define ][iC  in terms of earlier table 
entries.  Indeed its clear that ],[][][ ikRkCiC += .  Since we do not know the post k beforehand, we 
take the minimum of this expression over all k in the range ik <≤1 .  Define 
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With this formula, the algorithm for filling in the table is straightforward. 
 
CanoeCost(R)  
1. ][rows# Rn←  
2. 0]1[ ←C  
3. for 2←i  to n 
4.       ],1[min iR←  
5.       for 2←k  to 1−i  
6.             if  min],[][ <+ ikRkC  
7.                   ],[][min ikRkC +←  
8.       min][ ←iC  
9. return ][nC  
 
There are two equally valid approaches to determining the actual sequence of canoe rentals which 
minimizes cost.  One approach is to alter the CanoeCost() algorithm so as to construct the optimal 
sequence while the table C[1…n] is being filled.  In the following algorithm we maintain an array 
P[1…n]  where ][iP  is defined to be the post k at which the last canoe is rented in an optimal 
sequence from 1 to i.  Note that the definition of ]1[P  can be arbitrary since it is never used.  Array 
P is then used to recursively print out the sequence. 
 
CanoeSequence(R)  
1. ][rows# Rn←  
2. 0]1[ ←C , 0]1[ ←P  
3. for 2←i  to n 
4.       ],1[min iR←  
5.       1][ ←iP  



6.       for 2←k  to 1−i  
7.             if  min],[][ <+ ikRkC  
8.                   ],[][min ikRkC +←  
9.                   kiP ←][  
10.       min][ ←iC  
11. return  P 

 
PrintSequence(P, i)   (Pre: ][length1 Pi ≤≤ ) 
1. if 1>i  
2.           PrintSequence(P, ][iP ) 
3.           print "Rent a canoe at post  " ][iP  "  and drop it off at post  " i 
 
Both CanoeCost() and CanoeSequence() run in time )( 2nΘ , since the inner for loop performs 2−i  

comparisons in order to determine ][iC , and )(
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.  The top level call 

to PrintSequence(P, n) has a cost that is the depth of the recursion, which is in turn, the number of 
canoes rented in the optimal sequence from post 1 to post n.  Thus in worst case, PrintSequence() 
runs in time )(nΘ  .                                                                                                                       ///   

 
 
4. Moving on a checkerboard  (This is problem 15-6 on page 368.)  Suppose that you are given an 

nn×  checkerboard and a single checker.  You must move the checker from the bottom (1st) row of 
the board to the top (nth) row of the board according to the following rule.  At each step you may 
move the checker to one of three squares: 

• the square immediately above, 
• the square one up and one to the left (unless the checker is already in the leftmost column), 
• the square one up and one right (unless the checker is already in the rightmost column). 

Each time you move from square x to square y, you receive ),( yxp  dollars.  The values ),( yxp  
are known for all pairs ),( yx  for which a move from x to y is legal.  Note that ),( yxp  may be 
negative for some ),( yx .   
 
Give an algorithm that determines a set of moves starting at the bottom row, and ending at the top 
row, and which gathers as many dollars as possible.  Your algorithm is free to pick any square 
along the bottom row as a starting point, and any square along the top row as a destination in order 
to maximize the amount of money collected.  Determine the runtime of your algorithm. 

 
Solution:   
Define ],[ jiC  to be the maximum amount of money that can be collected in this process by 
moving a checker from any square in the first row, to the square at row i column j.  Obviously 

0],1[ =jC  for all j  ( nj ≤≤1 ), since at least one move must be made to collect any money.  Once 
],[ jiC  is known for all i and j ( ni ≤≤1 , nj ≤≤1 ), the maximum amount of money that can be 

collected by moving from row 1 to row n is easily computed as ],[max
1

jnC
nj≤≤

.   

 
Observe that if one knows an optimal (i.e. highest value) sequence of moves leading to square (i, j), 
where 1>i , then the last move in that sequence must originate in one of the three squares in row 



1−i  and in either column 1−j  (provided 1>j ), or column j, or column 1+j  (provided nj < ).  
Denote that preceding square by x, and let ),( jiy = .  Claim:   The subsequence of moves leading 
to square x is itself an optimal sequence of moves from row 1 to square x.  Proof:  Suppose there 
exists a more valuable sequence from row 1 to square x.  Then by following that sequence with a 
single move from x to y we obtain a more valuable sequence from row 1 to square y than our 
original optimal one, a contradiction.  Therefore any optimal sequence ending at ),( jiy =  consists 
of an optimal sequence to the predecessor x, of y, followed by a single move from x to y.  ///  
 
This argument shows that this problem exhibits the required optimal substructure for a dynamic 
programming solution.  Furthermore, using the same notation as above, it is evident that 

),(][][],[ yxpxCyCjiC +== .  Since the predecessor x is not known in advance, we have 
 

( )),(][max][],[ yxpxCyCjiC
x

+== , 

 
where the maximum is taken over all of the (at most 3) possible predecessors of y.  It is now a 
simple matter to write an iterative algorithm to fill in the table C.  Since we also wish to print out 
an optimal sequence of moves, it is worthwhile to keep track of the predecessors as we fill in the 
table.  Define ],[ jiP  to be the predecessor of square (i, j) along an optimal sequence of moves 
starting in row 1, and ending at square (i, j), for ni ≤≤2  and nj ≤≤1 .   
 
OptimalSequence(p, n)  (Pre: =),( yxp  the value of a transition from square x to square y) 
1.   )00(]1 ,1[ LL ←nC  
2.   for 2←i  to n     
3.         for  1←j  to n 
4.               ) ,( jiy ←  

5.               ) ,1(0 jix −←  

6.               
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8.               ) ,(][][ 11 yxpxCyC −− +←  

9.               1][ −← xyP  

10.             if  ][    ) ,(][ 00 yCyxpxC >+  

11.                   ) ,(][][ 00 yxpxCyC +←  

12.                   0][ xyP ←  

13.             if  ][    ) ,(][ 11 yCyxpxC >+  

14.                   ) ,(][][ 11 yxpxCyC +←  

15.                   1][ xyP ←  
16. 1←k  
17. for 2←j  to n 
18.       if  ] ,[] ,[ knCjnC >  
19.             jk ←  
20. return ] ,[ knC , k, and P  



 
Lines 4-7 initialize the square y, and its three possible predecessors 101  , , xxx− , which reduce to two 

when 1=j  or nj = .  Lines 8-16 determines the larger of ) ,(][ 11 yxpxC −− + , ) ,(][ 00 yxpxC + , and 

) ,(][ 11 yxpxC + , and sets the value of ][ yC  and ][ yP  accordingly.  Lines 16-19 determine the 
maximum value in the nth row of table C, which is the value of an optimal sequence of moves.  
That value, the column k where it is found, and the table of predecessors P are returned on line 20.  
The following recursive algorithm determines the optimal sequence itself. 
 
 PrintSequence(P, (i, j))  (Pre: P was returned by OptimalSequence()) 
1. if  2≥i   
2.       PrintSequence(P, ] ,[ jiP ) 
3.       print  “move to square ”  (i, j) 
4. else 
5.       print “start at square ”  (i, j) 
 
This algorithm prints out an optimal sequence ending at square (i, j).  To print an optimal sequence 
starting at row 1 and ending at row n, call PrintSequence(P, (n, k)), where P and k were returned by 
OptimalSequence().                                                                                                                      ///   
 

 


