CMPS 201
Spring 2010
Homework Assignment 9 Review Only — Solutionsi¢luded

1. Recall the coin changing problem discussed in class. Wsepr the dynamic programming
solution below for reference. Note that this algoritassumes an unlimited supply of coins in
each denominatiod[1],..., d[n] are available.

CoinChanget, N)
1. n«lengtHd]

2. fori«<1ton

3. Cli0]« O

4. fori<1ton

5 forj <« 1toN

6. fi=1landj<d]]

7. C[Lj]« >

8 else if=1

9. CLjl«<1+CLj-di[]]
10. elseif<di[ ]

11. Cli,j]«<C[i-1j ]

12. else

13. Cli, j] « min(C[i -1j], 1+CJi, | —o[i]])

14.returnC[n,N ]

Write a recursive algorithm which given the filléable C[1...n;0...N ] generated by the above
algorithm, prints out a sequence Gfn, N cq@in values which disburdé¢ monetary units. In the
caseC[n,N] =, print a message to the effect that no such dislhis possible.

Solution:
Note that arrag[1..n] is needed as input in order to navigate the t@ble

PrintCoinsC, d, i, ]) (Pre:C[1..n; 0...N] was filled by CoinChangé( N))

1. if j>0

2. if C[i, j]=o

3. print "Cannot pay the amount " |
4. return

5. ifi=1

6. print "Pay one coin of denominatiord{1]
7. PrintCoingg, d, 1, j—d[1])

8. elseifj<d[]

9. PrintCoingg, d, i -1, )

10. else // both>1andj>dj ]

11. ifC[i, j]=C[i-1]]

12. PrintCoin§), d, i -1, j)

13. else /IC[i,j]=1+C][i,j-di[ ]]



14. print "Pay one coin of denominati' di ]
15. PrintCoin§}, d, i, j—d[i])

2. Recall the Discrete Knapsack Problem describedassc A thief wishes to stealobjects having
valuesv, > Oand weightsw, > 0(1<i<n). His knapsack, which will carry the stolen goods

holds at most a total weigh¥. Let x = 1 if objecti is taken, andx = Gf objecti is not taken

(1<i<n). The thief's goal is to maximize the total vaIExivi of the goods stolen, subject to
i=1

n
the constrain® xw <W.

i=1

a. (10 Points) Write pseudo-code for a dynamic prognarg algorithm that solves this problem.
Your algorithm should take as input the value armedgit arraysv[1..n] andw{1..n], and the
weight limit W. It should generate a tabl§l .. n; O .. W] of intermediate results. Each entry
Vi, j] will be the maximum value of the objects which danstolen if the weight limit if
and if we only include objects in the géf...,i . }our algorithm should return the maximum

possible value of the goods which can be stolemftbe full set of objects, i.e. the value
V[n,W]. (Alternatively you may write your algorithm teturn the whole table.)

Solution:
Knapsack¢, w, W) (Pre:v[1..n] andw{1..n] contain positive numbers)
1. n«lengthv]

2. for j«~0toW // fillin first row

3. if j<w[l]

4, V[Ljl«< O

5. else

6. VIL jl<Vv[]

7. fori<-2ton // fillremaining rows

8. forj«~ 0to W

9. if j<wli]

10. V[i,jl<VI[i-1j ]

11. else

12, VIi, i1« max(V[i -1 j], il +V[i -1 j - wil])

13.returnV[n,W ]

b. (10 Points) Write an algorithm that, given theefilltable generated in part (a), prints out a list
of exactly which objects are to be stolen.

Solution:

PrintObjects{, w, i, j) (Pre:V[1..n; 0.W] was filled by Knapsack( w, W))
1. ifi=1

2. if j<w[l]

3. print "Do not include object " 1
4, else




print "Include object " 1

else //li>1
iV, j1=VIi-1 j]

PrintObject8( w, i -1, j)

print "Do not include object "
0. else /I both>wi[&ndV]i, j]=Mi]+V[i-1 j-w][ ]]
11. PrintObject8, w, i —1, j—wWi])
12. print "Include objecti”

RO NoO

3. Canoe Rental Problem. There aren trading posts numbered 1nas you travel downstream. At
any trading post you can rent a canoe to be returned at any ofitlvenstream trading posjs
where j >i. You are given an arralf[i, j defining the cost of a canoe which is picked upct
i and dropped off at pogt for 1<i< j<n. Assume thatRi,i]= 0and that you can’t take a
canoe upriver (so perha@i, j]=o wheni> j). Your problem is to determine a sequence of
rentals which start at post 1 and end at ppsind which has a minimum total cost. As usualghe
are really two problems: determine the cost oheapest sequence, and determine the sequence
itself.

Design a dynamic programming algorithm for thiskpeon. First, define a 1-dimensional table
C[L---n], whereC [ ]is the cost of an optimal (i.e. cheapest) sequehcanoe rentals that starts at
post 1 and ends at poist Show that this problem, with subproblems defimedhis manner,
satisfies the principle of optimality, i.e. statedaprove a theorem that establishes the necessary
optimal substructure. Second, write a recurrenceatila that characterizeéS i [if terms of earlier
table entries. Third, write an iterative algorithihat fills in the above table. Fourth, alter your
algorithm slightly so as to build a parallel arr&fl...n] such thatP i ]is the trading post
preceding along an optimal sequence from 1i.tdn other words, the last canoe to be rentedin a
optimal sequence from 1 fowas picked up at pod® i [ ]Write a recursive algorithm that, given
the filled tableP, prints out the optimal sequence itself. Deteentlmre asymptotic runtimes of your
algorithms.

Solution:

One way to solve this problem would be to consteu2tdimensional table whos€ row and j™
column is the cost of an optimal sequence of caeotls which starts at pasand ends at pogt
This approach works, but one soon discovers thatdanensional table is not really necessary.
The entries in each row depend only on other entnehe same row and since we are seeking an
optimal sequence from 1 tg only the first row is needed. Accordingly weidefa 1 dimensional
table C[1...n] where C| ] is the cost of an optimal sequence of canoe retibak starts at post 1

and ends at postfor 1<i <n. When this table is filled, we simply return tredue C[n ]

Clearly C[1] = 0 since one need not rent any canoes to get froonll tLeti >1 and suppose we
have found an optimal sequence taking us from il ttn this sequence there is some gdost
which the last canoe was rented, whesek <i. In other words our optimal sequence ends with a
single canoe ride from poktto posti, whose cost ik i,.] Claim: The subsequence of canoe
rentals starting at 1 and ending lkais also optimal. Proof: We prove this by contradiction.
Assume that the above mentioned subsequence @ptiotal. Then it must be possible to find a
less costly sequence which takes us from k. td-ollowing that sequence by a single canoe ride



fromktoi, again of costRk i, ] yields a sequence taking us from 1 tehich costs less than our

original optimal one, a contradiction. Therefohe tsubsequence of canoe rides from Xkto
obtained by deleting the final canoe ride in ouiiropl sequence from 1 gis itself optimal. ///

optimal: CJi]
*—o —0o——————— *-——————- *——————- °
1 2 3 k i n
optimal: C[k] RIk,i]

The above argument shows that this problem exhib&sequired optimal substructure necessary
for a dynamic programming solution. It also shdwsv to defineC [ ]in terms of earlier table

entries. Indeed its clear th@fi]=C[k]+ Rk i ., Bince we do not know the pdsbeforehand, we
take the minimum of this expression overkal the rangel<k <i. Define

(o =1
il = min(C[k]+ Rtk.i]) 1<i<n

With this formula, the algorithm for filling in thi@ble is straightforward.

CanoeCosR)

1. n<#rowgR]

2. C[1]«0

3. fori«2ton

4 min < R[Li]

5. fork<«—2 toi-1

6. if C[k]+ Rk,i]< min

7 min < C[K]+ Rk i, ]
8 Cli] « min

9. returnC[n]

There are two equally valid approaches to detenypitine actual sequence of canoe rentals which
minimizes cost. One approach is to alter the C@onet) algorithm so as to construct the optimal
sequence while the tabf1...n] is being filled. In the following algorithm we amtain an array

P[1...n] where P| ]is defined to be the poktat which the last canoe is rented in an optimal

sequence from 1 to Note that the definition olP [1§an be arbitrary since it is never used. Array
P is then used to recursively print out the sequence

CanoeSequende]
1. n<#rowgR]

2. C[1]«0, P[]« 0
3. fori«2ton

4. min < R[Li]

5 Hil« 1




6 fork<—2toi-1

7 if C[k]+ Rk,i]< min
8. min <~ C[k]+ RK i, ]
9. Fi] <k

10.  (i] « min

11.return P

PrintSequencé, i) (Pre:1<i<lengtHP )

1. ifi>1
2. PrintSequende( P[i])
3. print "Rent a canoe at postP'i [ Jand drop it off at post i"

Both CanoeCost() and CanoeSequence() run in @mé , singe the inner for loop perfornis- 2
(n-)(n-2)
2

to PrintSequenc®( n) has a cost that is the depth of the recursiomgiwis in turn, the number of
canoes rented in the optimal sequence from postpbs$tn. Thus in worst case, PrintSequence()
runs in time®(n ). 111

comparisons in order to determidei ,[gnd Z(i -2)= =0(n?). The top level call
i=2

. Moving on a checkerboard (This is problem 15-6 on page 368.) Supposeybatare given an
nxn checkerboard and a single checker. You must rtiwezehecker from the bottom®jlrow of
the board to the top {) row of the board according to the following rulét each step you may
move the checker to one of three squares:

e the square immediately above,

e the square one up and one to the left (unlesshibeker is already in the leftmost column),

e the square one up and one right (unless the checkéready in the rightmost column).
Each time you move from squaxdo squarey, you receivep(x,y )dollars. The valuep(x,y )
are known for all pair{x,y Yor which a move fronx toy is legal. Note thatp(x,y )may be

negative for soméx,y .)

Give an algorithm that determines a set of movagisg at the bottom row, and ending at the top
row, and which gathers as many dollars as possilleur algorithm is free to pick any square
along the bottom row as a starting point, and @uaee along the top row as a destination in order
to maximize the amount of money collected. Deteenthe runtime of your algorithm.

Solution:
Define CJi, ] ] to be the maximum amount of money that can besct@t in this process by

moving a checker from any square in the first reavthe square at rowcolumnj. Obviously
C[4j]=0 forallj (1<j<n), since at least one move must be made to calecimoney. Once

Cl[i, j] is known for alli andj (1<i<n,1<j<n), the maximum amount of money that can be
collected by moving from row 1 to rowis easily computed aPaXC[n, i1-
<j<n

Observe that if one knows an optimal (i.e. higlvasie) sequence of moves leading to squayg (
wherei >1, then the last move in that sequence must origimabne of the three squares in row



i—1 and in either columnj— Z{provided j > 3, or columnj, or column j+ 1(provided j <n).
Denote that preceding squareXyyand lety=(i,j ) Claim: The subsequence of moves leading

to squarex is itself an optimal sequence of moves from rote squarex. Proof: Suppose there
exists a more valuable sequence from row 1 to sguaiThen by following that sequence with a
single move fronx to y we obtain a more valuable sequence from row 1gt@arey than our
original optimal one, a contradiction. Thereforny @ptimal sequence ending gt (i, ] cdnsists

of an optimal sequence to the predecegsofy, followed by a single move fromtoy. ///

This argument shows that this problem exhibits réguired optimal substructure for a dynamic
programming solution. Furthermore, using the samogation as above, it is evident that
Cli, j]1=Cly]=C[x]+ p(x,y) . Since the predecessois not known in advance, we have

Cli, j] = Cly] = max(C[X] + p(x,Y)),

where the maximum is taken over all of the (at n®)spossible predecessorsyof It is now a
simple matter to write an iterative algorithm ti ifa the tableC. Since we also wish to print out
an optimal sequence of moves, it is worthwhile ¢egktrack of the predecessors as we fill in the
table. DefinePJi, | ]to be the predecessor of squarg)(along an optimal sequence of moves

starting in row 1, and ending at squarg)( for 2<i<n and1< j<n.

OptimalSequence(n) (Pre: p(x,y) = the value of a transition from squaré squarey)
1. C[L1--n]« (0---0)
2. fori<2ton

3. for j « 1ton

4. y<(@,j)

5 Xp«(0-17])

6. xle{%o . !f J.=1
i-34j-1) if j>1
X, if j=n

5 Xl(_{(i—lj+1) it j<n

8. Clyl <~ CIx ]+ p(x4, Y )

9. Ply] < x

10. if C[X,]1+ p(%y,Y) > Cly |

11. ClLy] < CIx ]+ p(%. Y )

12. PLy] < X%,

13. if C[x]+ p(x,y) > Cly ]

14. Clyl < CIx ]+ p(x,y )

15. Ply] <%

16. k<1

17.for j« 2ton

18. if C[n, j]>C[n,k]
19. K<« ]

20. returnC[n, k ] k, andP



Lines 4-7 initialize the squase and its three possible predecessorsx,, x,, which reduce to two
when j = 1lor j=n. Lines 8-16 determines the larger@fx ,]+ p(x,,y , Q%]+ p(X,,Y), and

CIx ]+ p(x,,y), and sets the value @[y 4gnd P[y ] accordingly. Lines 16-19 determine the

maximum value in th&™ row of tableC, which is the value of an optimal sequence of reove
That value, the columkwhere it is found, and the table of predecesBaee returned on line 20.
The following recursive algorithm determines théimpl sequence itself.

PrintSequenc®_ (i, j)) (Pre:P was returned by OptimalSequence())

1. if i>2

2. PrintSequencB( PIi, j])

3. print “move to square "i,()
4. else

5. print “start at square "i, ()

This algorithm prints out an optimal sequence egdinsquarei(j). To print an optimal sequence
starting at row 1 and ending at roycall PrintSequencB( (n, k)), whereP andk were returned by
OptimalSequence(). 111



