CMPS 201

Spring 2010

Homework Assignment 3

1. (1 Point) Define $T(n)$ for $n \in \mathbf{Z}^{+}$by the recurrence

$$
T(n)= \begin{cases}9 & \text { if } 1 \leq n<15 \\ T(\lfloor n / 2\rfloor)+6 & \text { if } n \geq 15\end{cases}
$$

Use the iteration method to find the exact solution to this recurrence, then find an asymptotic solution.
2. (1 Point) Define $T(n)$ for $n \in \mathbf{Z}^{+}$by the recurrence

$$
T(n)= \begin{cases}4 & \text { if } n=1,2 \\ T(\lfloor n / 3\rfloor)+n & \text { if } n \geq 3\end{cases}
$$

Use the iteration method to find an asymptotic solution to this recurrence.
3. (3 Points) Consider the function $T(n)$ defined by the recurrence formula

$$
T(n)= \begin{cases}6 & 1 \leq n<3 \\ 2 T(\lfloor n / 3\rfloor)+n & n \geq 3\end{cases}
$$

a. (1 Point) Use the iteration method to write a summation formula for $T(n)$.
b. (1 Point) Use the summation in (a) to show that $T(n)=O(n)$
c. (1 Point) Use the Master Theorem to show that $T(n)=\Theta(n)$
4. (5 Points) Use the Master Theorem to find tight asymptotic bounds on the following recurrences.
a. (1 Point) $T(n)=3 T(2 n / 3)+n^{3}$
b. (1 Point) $T(n)=2 T(n / 3)+\sqrt{n}$
c. (1 Point) $T(n)=5 T(n / 4)+n^{\lg \sqrt{5}}$
d. $(1$ Point) $T(n)=3 T(2 n / 5)+n \lg (n)$
e. (1 Point) $S(n)=a S(n / 4)+n^{2}$ (Note: your answer will depend on the parameter a.)
5. (2 Points) Consider the following algorithm:

WasteTime(n) (Precondition: n is a positive integer)

1. if $n \geq 2$
2. count $\leftarrow 0$
3. for $i \leftarrow 1$ to 7
4. $\quad \operatorname{WasteTime}(\lfloor n / 2\rfloor)$
5. for $i \leftarrow 1$ to n^{3}
6. count \leftarrow count +1

Determine how much time WasteTime (n) wastes. For purposes of analysis, define line 6 to be a basic operation, and let $T(n)$ be the number of basic operations performed on the input $n \in Z^{+}$, i.e. $T(n)$ is the total number of times line 6 is executed.
a. (1 Point) Write a recurrence for $T(n)$.
b. (1 Point) Find a tight asymptotic bound on $T(n)$ by any method.

