CMPS 201

Spring 2010

Homework Assignment 1

1. (1 Point) Prove that if $f(n)=\Theta(g(n))$, then $f(n)^{2}=\Theta\left(g(n)^{2}\right)$.
2. (1 Point) Let $f(n)$ and $g(n)$ be asymptotically positive functions. Prove that

$$
f(n)+g(n)=\Theta(\max (f(n), g(n)))
$$

3. (5 Points) List the following functions from lowest to highest asymptotic order. Indicate whether any two (or more) are of the same asymptotic order. Justify your answers.

$$
\begin{array}{llllllllll}
2^{\lg (n)} & (\lg n)^{\lg n} & n^{1 / \lg n} & \ln (\ln (n)) & 4^{\lg n} & \sqrt{2} & n & \sqrt{2 n} & 1 \\
n^{2} & n! & (3 / 2)^{n} & n^{3} & (\lg n)^{2} & 2^{2^{n}} & n 2^{n} & n^{\lg (\lg n)} & \ln (n) & e^{n} \\
2^{\sqrt{2 \lg (n)}} & 2^{n} & n \lg (n) & 2^{2^{2+1}} & \lg (n!) & \sqrt{\lg (n)} & 2^{(\lg n)^{2}} & (n+1)!
\end{array}
$$

4. (2 Points) Let $f(n)$ and $g(n)$ be positive functions. Prove or disprove each of the following.
a. (1 Point) If $f(n)=\Theta(g(n))$ then $2^{f(n)}=\Theta\left(2^{g(n)}\right)$.
b. (1 Point) If $f(n)=\Theta(g(n))$ then $\lg (f(n))=\Theta(\lg (g(n)))$. Assume here that $\lim _{n \rightarrow \infty} g(n)=\infty$.
5. (2 Points) Determine the asymptotic order of each of the following expressions, i.e. for each expression, find a simple function $g(n)$ such that the expression is in the class $\Theta(g(n))$. Prove your answers.
a. (1 Point) $\sum_{i=1}^{n} \log (i)$
b. (1 Point) $\sum_{i=1}^{n} a^{i}$ where $a>0$ is a constant. (Hint: consider the cases $0<a<1, a=1$, and $a>1$ separately.)
6. (1 Point) Use induction to prove that $\sum_{k=1}^{n} k^{4}=\frac{n(n+1)\left(6 n^{3}+9 n^{2}+n-1\right)}{30}$ for all $n \geq 1$.
