
CMPS 201 
Spring 2010 
Homework Assignment 1   
 
1. (1 Point)  Prove that if ))(()( ngnf Θ= , then ))(()( 22 ngnf Θ= . 
 
2. (1 Point) Let )(nf  and )(ng  be asymptotically positive functions.  Prove that  
 

)))(),((max()()( ngnfngnf Θ=+  
 
3. (5 Points)  List the following functions from lowest to highest asymptotic order.  Indicate whether 

any two (or more) are of the same asymptotic order.  Justify your answers. 
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4. (2 Points)  Let )(nf  and )(ng  be positive functions.  Prove or disprove each of the following. 
 

a. (1 Point) If ))(()( ngnf Θ=  then )2(2 )()( ngnf
Θ= . 

 
b. (1 Point) If ))(()( ngnf Θ=  then )))((lg())(lg( ngnf Θ= .  Assume here that ∞=
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n
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5. (2 Points) Determine the asymptotic order of each of the following expressions, i.e. for each 

expression, find a simple function )(ng  such that the expression is in the class ))(( ngΘ .  Prove 
your answers. 
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   where 0>a  is a constant.  (Hint:  consider the cases 10 << a , 1=a , and 

1>a  separately.) 
 
 

6. (1 Point) Use induction to prove that 
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  for all 1≥n . 

 


