CMPS 201
Algorithms and Abstract Data Types
Recurrence Relations
Iteration Method  
Recall the following example from the induction handout.
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We begin by illustrating a solution technique called iteration, which consists of repeatedly substituting the recurrence into itself until a pattern emerges.
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This process must terminate when the recursion depth k is at its maximum, i.e. when 
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.  To solve this equation for k in terms of n, we use the inequality definition of the floor function.
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Thus for the recursion depth 
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, and hence the solution to the above recurrence is 
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Exercise 
Check directly that 
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 is the solution to the above recurrence relation, i.e. check that 
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Exercise 
Use this same technique to show that the recurrence
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has solution 
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Comparing the solutions to the preceding examples, we see that replacing floor 
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Exercise   Use the iteration method to determine the exact solution to this recurrence when 
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Often it is difficult or impossible to determine an exact solution via the iteration method, while it is possible to obtain an asymptotic solution.  Consider
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Upon iterating this recurrence we find 
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(since 
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(from a well known summation formula)
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(since 
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The Master Method
This is a method for finding (asymptotic) solutions to recurrences of the form 
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where 
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Master Theorem
Let 
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Remarks  In each case we compare 
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.  Notice also that there is no mention of initial terms.  It is part of the content of the master theorem that the initial values of the recurrence do not effect it’s asymptotic solution.
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Note that in applying the Master Theorem, we can always replace 
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, the analysis would be in no way different, and the recurrence would have the very same asymptotic solution.  (Of course the exact solution to the recurrence would be very different.)

Observe also that in the three preceding examples, 
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In spite of the name “Master Theorem” the three cases do not cover all possibilities.  There is a gap between cases (1) and (2) when 
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Proof of the Master Theorem
We sketch here the proof of part (1) of the Master Theorem.  Basically the proof is the iteration method applied with full generality.  We will simplify matters by ignoring all floors and ceilings in the argument.  Upon iteration we obtain
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The recurrence terminates when 
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We emphasize that the above argument was only a “sketch” and not a complete proof, owing to the fact that we ignored floors and ceilings.  The reader should fill in those details as an exercise.  Also as an exercise, one should prove cases (2) and (3).
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