CMPS 201
Algorithm Analysis
Induction Proofs

Let 
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 be a propositional function, i.e. P is a function whose domain is (some subset of) the set of integers and whose codomain is the set {True, False}.  Informally, this means 
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 is a sentence, statement, or assertion whose truth or falsity depends on the integer n.  Mathematical Induction is a proof technique which can be used to prove statements of the form 
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 (“for all n greater than or equal to 
[image: image4.wmf]0

n

, 
[image: image5.wmf])

(

n

P

is true”), where 
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 is a fixed integer.  A proof by Mathematical Induction contains two steps:

I.
Base Step:  Prove directly that the proposition 
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IIa.
Induction Step:  Prove  
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To do this pick an arbitrary 
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 is true.  Then show as a consequence that 
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 is true.  The statement 
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 is often called the induction hypothesis,  since it is what is assumed in the induction step.

When I and II are complete we conclude that 
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 is true for all 
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.  Induction is sometimes explained in terms of a domino analogy.  Consider an infinite set of dominos which are lined up and ready to fall.  Each domino is labeled by a positive integer, starting with 
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 be the assertion: “the nth domino falls”.  First prove 
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, i.e. “the first domino falls”, then prove 
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 which says “if any particular domino falls, then the next domino must also fall”.  When this is done we may conclude 
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, “all dominos fall”.  There are a number of variations on the induction step.  The first is just a reparametrization of IIa.

IIb.
Induction Step:  Prove  
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Let 
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 is true, then prove 
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 is true.

Forms IIa and IIb are said to be based on the first principle of mathematical induction.  The validity of this principle is proved in the appendix of this handout.  Another important variation is called the second principle of mathematical induction, or strong induction.

IIc.
Induction Step:  Prove  
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Let 
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 is true.  Then prove as a consequence that 
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 is true.  In this case the term induction hypothesis refers to the stronger assumption:
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The strong induction form is often reparametrized as in IIb: 

IId.
Induction Step:  Prove  
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Let 
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 is true, then prove as a consequence that 
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 is true.  In this case the induction hypothesis is 
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In terms of the Domino analogy, the strong induction form IId says we must show: (I) the first domino falls, and (II) for any n, if all dominos up to but not including the 
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 domino fall, then the  
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 domino falls.  From (I) and (II) we may conclude that all dominos fall.  Strong Induction is most often parameterized as in IId, and form IIc is uncommon.  We present here a number of examples of IIa, IIb, and IId.
Example 1    Prove that for all 
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Proof:

Let 
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 be the boxed equation above.  We begin the induction at 
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I.
Base step   Clearly  
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 , showing that 
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IIa.
Induction Step   Let 
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 is true.  That is, for this particular value of n, the
boxed equation holds.  Then
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    (by some algebra)

showing that 
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 is true.  

We conclude that 
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When writing an induction proof, always state the induction hypothesis explicitly.  Also make note of the point in the proof where the induction hypothesis is used.

Example 2    Let 
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Proof:

Here we will use form IIb.  Again let 
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I.
Base step   
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IIb.
Induction Step   Let 
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(by some algebra)
showing that 
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Steps I and II prove that 
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Exercise 1    Prove the following formulas using both forms II a and II b. 

(a) Show that for all 
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(b) Show that for all 
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Often the proposition to be proved is not a formula, but some other type of assertion, like an inequality, as in the following example.

Example 3  Define the function 
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Prove that for all 
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Proof:

Let 
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 be the boxed inequality above.

I.         Base Step

The inequality  
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IId.     Induction Step (Strong Induction)

Let 
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Exercise 2   Define 
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Prove that for all 
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There are many other variations on the induction technique.  Occasionally double induction is called for, which involves a modification of both the base and induction steps.  

Base Step:  Prove 
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Induction Step:  Prove  
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When these steps are complete, we conclude 
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.  In terms of our domino analogy, we prove:  (I) the first two dominos fall, and (II) if any two consecutive dominos fall, then the very next domino falls, and from (I) and (II) we deduce that all dominos fall.  The next example uses double induction and concerns the Fibonacci sequence 
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,  i.e. each term in the sequence is the sum of the preceding two.  Using this recurrence formula, the first few terms of the Fibonacci sequence are easily computed: 
[image: image115.wmf]0

0

=

F

, 
[image: image116.wmf]1

1

=

F

, 
[image: image117.wmf]1

2

=

F

, 
[image: image118.wmf]2

3

=

F

, 
[image: image119.wmf]3

4

=

F

, 
[image: image120.wmf]5

5

=

F

, etc.

Example 4   Let 
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Proof:   

Let 
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 denote the boxed equation above.
I.
Base Step  Observe that 
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II.
Induction Step   Let 
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for this n that
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The induction hypothesis yields 
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One checks that a and b are roots of the quadratic equation 
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showing that 
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Together (I) and (II) imply that 
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Exercise 3   Let 
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A Short Introduction to Graphs 
Often the propositional function 
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 is some assertion concerning other types of mathematical structures, such as graphs, or trees.  A graph G is a pair of sets 
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 are called vertices, and the elements of E are called edges.  Each edge joins two distinct vertices, called it’s ends, and no two edges have the same ends.  Abstractly, an edge is an unordered pair of vertices, i.e. a 2-element subset of V.  Two vertices that are joined by an edge are said to be adjacent, and an edge is said to be incident with it’s two end vertices.  Two edges are said to be adjacent if they are incident with a common end vertex.  Thus in the example below: vertex 1 is adjacent to vertex 4, vertex 2 is incident with edge 26, and edge 45 is adjacent to edge 53.
                                                           1                  2                  3

                                                           4                  5                  6

                               V
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{12, 14, 23, 24, 25, 26, 35, 36, 45, 56}
Let 
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.  An x-y path in G is a sequence of vertices starting with x and ending with y, in which each consecutive pair of vertices are adjacent.  We require that all vertices other than x and y be distinct, and that each edge in the sequence be traversed at most once.  We call x the initial vertex and y the terminal vertex.  If 
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, then the path is called a cycle.  The length of a path is the number of edges traversed by the sequence.  In the above example we have:
A 1-6 path of length 5:   1, 2, 4, 5, 3, 6

A 1-6 path of length 3:   1, 4, 5, 6

Another 1-6 path of length 3:   1, 2, 3, 6

A cycle of length 6:   1, 2, 6, 3, 5, 4, 1

A cycle of length 3:   6, 2, 5, 6

A graph is said to be connected if it contains an x-y path for every 
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, otherwise it is called disconnected.  The example above is clearly connected, while the following example is disconnected.
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A subgraph of a graph G is a graph H in which 
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.  In the above example ({1, 2, 5}, {12, 15, 25}) is a connected subgraph, while ({2, 3, 6, 7}, {26, 37}) is a disconnected subgraph.  A subgraph H is called a connected component of G if it is (i) connected, and (ii) maximal with respect to property (i), i.e. any other subgraph of G that contains H is disconnected.  The above example clearly has three connected components:  ({1, 2, 5, 6}, {12, 15, 25, 26, 56}), ({3, 7, 8}, {37, 38, 78}), and ({4, 9}, {49}).  Obviously a graph is connected if and only if it has exactly one connected component.
A graph G is called acyclic if it contains no cycles.  A tree is a graph that is both connected and acyclic.  The connected components of an acyclic graph are obviously trees.  For this reason an acyclic graph is sometimes called a forest.  The following graph is a forest with three connected components.  

Observe that the number of edges in each tree of this forest is one less than the number of vertices.  This is true for all trees, as we now show.

Example 5    For all 
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Proof:

Let 
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be the boxed statement above.  We begin at 
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I.
Base step

If T has just one vertex, then it can have no edges, since in the definition of a graph, each edge must have distinct end vertices.  Therefore 
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IId.
Induction Step 
Let 
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 is true, i.e. for any such k, all trees on k vertices contain 
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 edges.  Now let T be a tree on n vertices, pick any edge e in T, and remove it.  The removal of e splits T into two subtrees, each having fewer than n vertices.  (This follows from some elementary facts about graphs which we omit for the sake of brevity.)  Suppose for the sake of definiteness that the two subtrees have 
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 edges, respectively.  Upon replacing the edge e, we see that the number of edges originally in T must have been 
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By the second principle of mathematical induction, all trees on n vertices have 
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 edges.                 ///
Induction Fallacies

The next three examples illustrate some pitfalls to be avoided when constructing induction proofs.  The result in Example A was proved correctly in Example 5.  Here we give an invalid proof of the same fact that illustrates an argument which some authors have called “the induction trap”.

Example A   For all 
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, if T is a tree on n vertices then T has 
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 edges.

Proof:  (Invalid)

Base Step:  If 
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 then T has no edges, since each edge must have distinct end vertices.

Induction Step:  Let 
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 and let T be a tree on n vertices.  Assume that T has 
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 edges.  Add a new vertex and join it to T with a new edge.  To be precise, the new edge has the new vertex at one end, and the other end can be any existing vertex in T.  The resulting graph has 
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 vertices and n edges, and is clearly a tree since connectedness is maintained and no cycles were created.  By the principle of mathematical induction, all trees on n vertices have 
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First note that the base step is identical to that in Example 5, and is correct.  For the induction step, the argument attempts to follow IIa, but fails to do so.  In this example 
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 is the statement “T is a tree on n vertices”, and 
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 edges”.  The induction step should therefore be to prove, for all 
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To prove this, we should assume 
[image: image190.wmf])

(

)

(

n

B

n

A

®

, then assume 
[image: image191.wmf])

1

(

+

n

A

, then show as a consequence that 
[image: image192.wmf])

1

(

+

n

B

is true.  In other words we should:

· Assume all trees on n vertices have 
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 edges

· Assume T has 
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 vertices

· Show as a consequence that T has n edges

The argument did not follow this format however.  Instead it does the following.

· Assume T has n vertices

· Assume T has 
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 edges

· Construct a new tree from T having 
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 vertices and n edges
Therefore the argument was not a proof by induction.  Some students would nevertheless hold that the argument is still valid, even though it is not a true induction proof.  The next example shows convincingly that it cannot be valid.  

Example B   For all 
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, if G is a connected graph on n vertices, then G has 
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 edges. (False!)
We notice right away that the above statement is false, since the graph below provides an elementary counter-example.  But consider the following “proof” in light of Example A.


Proof:  (Invalid)

Base Step:  If 
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 then G has no edges, since each edge must have distinct end vertices.

Induction Step:  Let 
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 and let G be a connected graph on n vertices.  Assume that G has 
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 edges.  Add a new vertex and join it to G with a new edge.  The resulting graph has 
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 vertices and n edges, and is clearly connected.  By the principle of mathematical induction, all connected graphs on n vertices have 
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 edges.

Observe that Example B follows the format of Example A exactly.  Thus if A is valid, so must B be valid.  But the assertion “proved” in B is false!  Therefore B cannot be a valid argument, and so neither is A.  
Example C   All horses are of the same color.

Proof: (Invalid)

We prove that for all 
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:  if S is a set of n horses, then all horses in S have the same color.   The result follows on letting S be the set of all horses.  Let 
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 be the boxed statement, and proceed by induction on n.

Base Step:  Let 
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.  Obviously if S is a set consisting of just one horse, then all horses in S must have the same color.  Thus 
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Induction Step:  Let 
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each contain exactly n horses, and so by the induction hypothesis all horses in 
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 are of one color, and likewise for 
[image: image214.wmf]S

¢

¢

.  Observe that 
[image: image215.wmf]S

S

h

¢

¢

Ç

¢

Î

3

 and that 
[image: image216.wmf]3

h

 can have only one color.  Therefore the color of the horses in 
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Obviously the proposition being proved is false, so there is something wrong with the proof, but what?  The base step is certainly correct, and the induction step, as stated, is also correct.  The problem is that the induction step was not quantified properly.  We should have proved 
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.  In terms of the domino analogy, it is as if the first domino falls; and if any domino indexed 2 or above were to fall, then the next domino would fall; but the first domino is not sufficient to topple the second domino, and hence no domino other than the first actually falls.

Justification of the Induction Principles
Here we prove the validity of the first and second principles of mathematical induction.  Both proofs are based on the well ordering property of the positive integers 
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, which says:  Any non-empty set of positive integers contains a least element.  We assume this property without proof.

Theorem 1 (weak induction form IIb)
For any propositional function 
[image: image231.wmf])

(

n

P

 defined on the positive integers, the following sentence is true: 
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Proof:

Assume that 
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Theorem 2 (strong induction form IId) 

For any propositional function 
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 defined on the positive integers, the following sentence is true:
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Proof:
Assume 
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Although we proved both theorems independently, it is possible to show that each implies the other, i.e. theorems 1 and 2 are logically equivalent (exercise).  In fact both theorems are equivalent to the well ordering property of the positive integers (exercise.)  The terms “strong” and “weak” induction are therefore in some sense misnomers, since neither theorem is really stronger than the other.  The term “strong induction” refers instead to the stronger assumption being made in the induction step: 
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