CMPS 201
Algorithm Analysis
Asymptotic Growth of Functions

We introduce several types of asymptotic notation which are used to compare the relative performance and efficiency of algorithms.  As we shall see, the asymptotic run time of an algorithm gives a simple machine independent characterization of it’s complexity.
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We often abuse notation slightly by writing 
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In practice we will be concerned with integer valued functions of a (positive) integer n (
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We say 
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The reader may find our choice of  values for the constants 
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Exercise  Let a, b be real numbers with 
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These limit theorems and counter-examples can be summarized in the following diagram.  Here L denotes the limit 
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In spite of the above counter-examples, the preceding limit theorems are a very useful tool for establishing asymptotic comparisons between functions.  For instance recall the earlier exercise to show 
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There is an analogy between the asymptotic comparison of functions 
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If both f and g are polynomials of degrees x and y respectively, then the analogy is exact, as can be seen from parts (c) and (d) of the preceding exercise.  In general though, the analogy is not exact since there exist pairs of functions which are not comparable.
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