
 1

Some Adversary Arguments

Theorem At least

2

n
 adjacency questions are necessary (in worst case) to determine whether a

graph G on n vertices is connected. (Recall by “adjacency” question we mean a question of the form:
“is vertex u adjacent to vertex v”.)

Proof: Consider any algorithm for this problem, and start it on an unspecified input graph G with n
vertices. The Daemon’s strategy is to answer no to any edge probe, unless that answer would prove
that G is disconnected. More precisely, the Daemon maintains two edge sets X and Y, where initially Y

is empty and X contains all

2

n
 edges in nK , the complete graph on n vertices. The Daemon then

performs the following algorithm when an edge e is probed:

Probe(e)
1. if eX − is connected
2. eXX −←
3. answer No
4. else
5. eYY +←
6. answer Yes

Here we abuse notation slightly and identify the edge set X with the subgraph of nK consisting of the

edges in X together with all vertices in nK (and similarly for Y.) Observe that at all times XY ⊆ and

the set YX − consists of precisely those edges of nK which have not yet been probed. Furthermore

both X and Y are consistent with the Daemon’s entire sequence of answers since whenever the answer
yes is given, that edge is added to Y and remains in X, while if no is given the corresponding edge is
removed from X and is not added to Y. The following invariants are maintained over any sequence of
edge probes.

(a) The subgraph X is always connected. This is obvious from the construction.
(b) If X contains a cycle, then none of it’s edges belong to Y. Proof: Deleting an edge from that cycle

would leave X connected, and so that edge could not have been added to Y.
(c) It follows from (b) that Y is acyclic.
(d) If XY ≠ then Y is disconnected. Proof: Assume, to get a contradiction, that Y is connected. Then

being acyclic Y is a tree. Since XY ≠ , there exists an edge Xe∈ with Ye∉ . If e were added to
Y it would form a cycle with some of the other edges in Y. (This is a well known and obvious
property of trees: joining vertices by a new edge creates a unique cycle.) Since XY ⊆ , that cycle
is also contained in X. In other words X contains a cycle consisting of e together with some edges
in Y. This contradicts remark (b) above. The only way to avoid this contradiction is to conclude
that Y is disconnected.

Now suppose the algorithm halts and returns a verdict (connected/disconnected) after probing fewer

than

2

n
 edges. Then at least one edge of nK was not probed, hence ∅≠−YX , and therefore

XY ≠ . Now (d) tells us that Y is disconnected, and by (a) X is connected. Since both graphs are

 2

consistent with the Daemon’s answers, the algorithm cannot be considered correct. If the algorithm
says G is connected, then the Daemon can claim YG = , while if the algorithm says G is disconnected,
the Daemon may claim that XG = . Thus any correct algorithm solving this problem must probe all

2

n
 potential edges. ///

Exercise Show that at least

2

n
 'adjacency' questions are necessary to determine whether a graph G

on n vertices is acyclic.

Exercise Let 54321 xxxxxb = be a bit string of length 5, i.e. }1,0{∈ix for 51 ≤≤ i . Consider the

problem of determining whether b contains three consecutive zeros, i.e. whether or not b contains the
substring 111. We restrict our attention to those algorithms whose only allowable operation is to peek
at a bit. Obviously 5 peeks are sufficient. A decision tree argument provides the (useless) fact that at
least one peek is necessary.

a. Use an adversary argument to show that 4 peeks are necessary in general.
b. Design an algorithm which solves the problem using only 4 peeks in worst case. Express your

algorithm as a decision tree.

