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Some Adversary Arguments 
 

Theorem    At least 
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n
 adjacency questions are necessary (in worst case) to determine whether a 

graph G on n vertices is connected.  (Recall by “adjacency” question we mean a question of the form: 
“is vertex u adjacent to vertex v”.) 
 
Proof:  Consider any algorithm for this problem, and start it on an unspecified input graph G with n 
vertices.  The Daemon’s strategy is to answer no to any edge probe, unless that answer would prove 
that G is disconnected.  More precisely, the Daemon maintains two edge sets X and Y, where initially Y 

is empty and  X contains all  
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n
 edges in nK , the complete graph on n vertices.  The Daemon then 

performs the following algorithm when an edge e is probed: 
 
Probe(e) 
1. if eX −  is connected 
2.           eXX −←  
3.           answer No 
4. else 
5.           eYY +←  
6.           answer Yes 
 
Here we abuse notation slightly and identify the edge set X with the subgraph of nK  consisting of the 

edges in X together with all vertices in nK  (and similarly for Y.)  Observe that at all times XY ⊆  and 

the set YX −  consists of precisely those edges of nK  which have not yet been probed.  Furthermore 

both X and Y are consistent with the Daemon’s entire sequence of answers since whenever the answer 
yes is given, that edge is added to Y and remains in X, while if no is given the corresponding edge is 
removed from X and is not added to Y.  The following invariants are maintained over any sequence of 
edge probes. 
 
(a) The subgraph X is always connected.  This is obvious from the construction. 
(b) If X contains a cycle, then none of it’s edges belong to Y.  Proof:  Deleting an edge from that cycle 

would leave X connected, and so that edge could not have been added to Y. 
(c) It follows from (b) that Y is acyclic. 
(d) If XY ≠  then Y is disconnected.  Proof: Assume, to get a contradiction, that Y is connected.  Then 

being acyclic Y is a tree.  Since XY ≠ , there exists an edge Xe∈  with Ye∉ .  If e were added to 
Y it would form a cycle with some of the other edges in Y.  (This is a well known and obvious 
property of trees: joining vertices by a new edge creates a unique cycle.)  Since XY ⊆ , that cycle 
is also contained in X.  In other words X contains a cycle consisting of e together with some edges 
in Y.  This contradicts remark (b) above.  The only way to avoid this contradiction is to conclude 
that Y is disconnected. 

 
Now suppose the algorithm halts and returns a verdict (connected/disconnected) after probing fewer 

than 
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n
 edges.  Then at least one edge  of nK was not probed, hence ∅≠−YX , and therefore 

XY ≠ .  Now (d) tells us that Y is disconnected, and by (a) X is connected.  Since both graphs are 
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consistent with the Daemon’s answers, the algorithm cannot be considered correct.  If the algorithm 
says G is connected, then the Daemon can claim YG = , while if the algorithm says G is disconnected, 
the Daemon may claim that XG = .  Thus any correct algorithm solving this problem must probe all 
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n
 potential edges.                                                                                                                        ///   

 

Exercise    Show that at least 
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n
 'adjacency' questions are necessary to determine whether a graph G 

on n vertices is acyclic. 
 
Exercise    Let 54321 xxxxxb =  be a bit string of length 5, i.e. }1,0{∈ix  for 51 ≤≤ i .  Consider the 

problem of determining whether b contains three consecutive zeros, i.e. whether or not b contains the 
substring 111.  We restrict our attention to those algorithms whose only allowable operation is to peek 
at a bit.  Obviously 5 peeks are sufficient.  A decision tree argument provides the (useless) fact that at 
least one peek is necessary. 

a. Use an adversary argument to show that 4 peeks are necessary in general. 
b. Design an algorithm which solves the problem using only 4 peeks in worst case.  Express your 

algorithm as a decision tree. 
 

 
 
 


