Some Adversary Arguments

Theorem At least $\binom{n}{2}$ adjacency questions are necessary (in worst case) to determine whether a graph *G* on *n* vertices is connected. (Recall by "adjacency" question we mean a question of the form: "is vertex *u* adjacent to vertex *v*".)

Proof: Consider any algorithm for this problem, and start it on an unspecified input graph G with n vertices. The Daemon's strategy is to answer no to any edge probe, unless that answer would prove that G is disconnected. More precisely, the Daemon maintains two edge sets X and Y, where initially Y

is empty and X contains all $\binom{n}{2}$ edges in K_n , the complete graph on *n* vertices. The Daemon then

performs the following algorithm when an edge e is probed:

Probe(e)1. if X - e is connected2. $X \leftarrow X - e$ 3. answer No4. else5. $Y \leftarrow Y + e$ 6. answer Yes

Here we abuse notation slightly and identify the edge set X with the subgraph of K_n consisting of the edges in X together with all vertices in K_n (and similarly for Y.) Observe that at all times $Y \subseteq X$ and the set X - Y consists of precisely those edges of K_n which have not yet been probed. Furthermore both X and Y are consistent with the Daemon's entire sequence of answers since whenever the answer yes is given, that edge is added to Y and remains in X, while if no is given the corresponding edge is removed from X and is not added to Y. The following invariants are maintained over any sequence of edge probes.

- (a) The subgraph X is always connected. This is obvious from the construction.
- (b) If *X* contains a cycle, then none of it's edges belong to *Y*. **Proof:** Deleting an edge from that cycle would leave *X* connected, and so that edge could not have been added to *Y*.
- (c) It follows from (b) that *Y* is acyclic.
- (d) If $Y \neq X$ then Y is disconnected. **Proof:** Assume, to get a contradiction, that Y is connected. Then being acyclic Y is a tree. Since $Y \neq X$, there exists an edge $e \in X$ with $e \notin Y$. If e were added to Y it would form a cycle with some of the other edges in Y. (This is a well known and obvious property of trees: joining vertices by a new edge creates a unique cycle.) Since $Y \subseteq X$, that cycle is also contained in X. In other words X contains a cycle consisting of e together with some edges in Y. This contradicts remark (b) above. The only way to avoid this contradiction is to conclude that Y is disconnected.

Now suppose the algorithm halts and returns a verdict (connected/disconnected) after probing fewer than $\binom{n}{2}$ edges. Then at least one edge of K_n was not probed, hence $X - Y \neq \emptyset$, and therefore $Y \neq X$. Now (d) tells us that Y is disconnected, and by (a) X is connected. Since both graphs are

consistent with the Daemon's answers, the algorithm cannot be considered correct. If the algorithm says *G* is connected, then the Daemon can claim G = Y, while if the algorithm says *G* is disconnected, the Daemon may claim that G = X. Thus any correct algorithm solving this problem must probe all

$$\binom{n}{2}$$
 potential edges. ///

Exercise Show that at least $\binom{n}{2}$ 'adjacency' questions are necessary to determine whether a graph G

on *n* vertices is acyclic.

Exercise Let $b = x_1x_2x_3x_4x_5$ be a bit string of length 5, i.e. $x_i \in \{0,1\}$ for $1 \le i \le 5$. Consider the problem of determining whether *b* contains three consecutive zeros, i.e. whether or not *b* contains the substring 111. We restrict our attention to those algorithms whose only allowable operation is to peek at a bit. Obviously 5 peeks are sufficient. A decision tree argument provides the (useless) fact that at least one peek is necessary.

- a. Use an adversary argument to show that 4 peeks are necessary in general.
- b. Design an algorithm which solves the problem using only 4 peeks in worst case. Express your algorithm as a decision tree.