Some Adversary Arguments

Theorem    At least 
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 adjacency questions are necessary (in worst case) to determine whether a graph G on n vertices is connected.  (Recall by “adjacency” question we mean a question of the form: “is vertex u adjacent to vertex v”.)

Proof:  Consider any algorithm for this problem, and start it on an unspecified input graph G with n vertices.  The Daemon’s strategy is to answer no to any edge probe, unless that answer would prove that G is disconnected.  More precisely, the Daemon maintains two edge sets X and Y, where initially Y is empty and  X contains all  
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 edges in 
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, the complete graph on n vertices.  The Daemon then performs the following algorithm when an edge e is probed:

Probe(e)
1. if 
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 is connected

2.           
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3.           answer No

4. else

5.           
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6.           answer Yes

Here we abuse notation slightly and identify the edge set X with the subgraph of 
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 consisting of the edges in X together with all vertices in 
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 (and similarly for Y.)  Observe that at all times 
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 consists of precisely those edges of 
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 which have not yet been probed.  Furthermore both X and Y are consistent with the Daemon’s entire sequence of answers since whenever the answer yes is given, that edge is added to Y and remains in X, while if no is given the corresponding edge is removed from X and is not added to Y.  The following invariants are maintained over any sequence of edge probes.

(a) The subgraph X is always connected.  This is obvious from the construction.

(b) If X contains a cycle, then none of it’s edges belong to Y.  Proof:  Deleting an edge from that cycle would leave X connected, and so that edge could not have been added to Y.

(c) It follows from (b) that Y is acyclic.

(d) If 
[image: image12.wmf]X

Y

¹

 then Y is disconnected.  Proof: Assume, to get a contradiction, that Y is connected.  Then being acyclic Y is a tree.  Since 
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, there exists an edge 
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.  If e were added to Y it would form a cycle with some of the other edges in Y.  (This is a well known and obvious property of trees: joining vertices by a new edge creates a unique cycle.)  Since 
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, that cycle is also contained in X.  In other words X contains a cycle consisting of e together with some edges in Y.  This contradicts remark (b) above.  The only way to avoid this contradiction is to conclude that Y is disconnected.

Now suppose the algorithm halts and returns a verdict (connected/disconnected) after probing fewer than 
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 edges.  Then at least one edge  of 
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was not probed, hence 
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, and therefore 
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.  Now (d) tells us that Y is disconnected, and by (a) X is connected.  Since both graphs are consistent with the Daemon’s answers, the algorithm cannot be considered correct.  If the algorithm says G is connected, then the Daemon can claim 
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, while if the algorithm says G is disconnected, the Daemon may claim that 
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.  Thus any correct algorithm solving this problem must probe all 
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 potential edges.                                                                                                                        ///  

Exercise    Show that at least 
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 'adjacency' questions are necessary to determine whether a graph G on n vertices is acyclic.

Exercise    Let 
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 be a bit string of length 5, i.e. 
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.  Consider the problem of determining whether b contains three consecutive zeros, i.e. whether or not b contains the substring 111.  We restrict our attention to those algorithms whose only allowable operation is to peek at a bit.  Obviously 5 peeks are sufficient.  A decision tree argument provides the (useless) fact that at least one peek is necessary.
a. Use an adversary argument to show that 4 peeks are necessary in general.

b. Design an algorithm which solves the problem using only 4 peeks in worst case.  Express your algorithm as a decision tree.
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