Some Adversary Arguments

Theorem At least
[image: image1.wmf]÷

÷

ø

ö

ç

ç

è

æ

2

n

 adjacency questions are necessary (in worst case) to determine whether a graph G on n vertices is connected. (Recall by “adjacency” question we mean a question of the form: “is vertex u adjacent to vertex v”.)

Proof: Consider any algorithm for this problem, and start it on an unspecified input graph G with n vertices. The Daemon’s strategy is to answer no to any edge probe, unless that answer would prove that G is disconnected. More precisely, the Daemon maintains two edge sets X and Y, where initially Y is empty and X contains all
[image: image2.wmf]÷

÷

ø

ö

ç

ç

è

æ

2

n

 edges in
[image: image3.wmf]n

K

, the complete graph on n vertices. The Daemon then performs the following algorithm when an edge e is probed:

Probe(e)
1. if
[image: image4.wmf]e

X

-

 is connected

2.
[image: image5.wmf]e

X

X

-

¬

3. answer No

4. else

5.
[image: image6.wmf]e

Y

Y

+

¬

6. answer Yes

Here we abuse notation slightly and identify the edge set X with the subgraph of
[image: image7.wmf]n

K

 consisting of the edges in X together with all vertices in
[image: image8.wmf]n

K

 (and similarly for Y.) Observe that at all times
[image: image9.wmf]X

Y

Í

 and the set
[image: image10.wmf]Y

X

-

 consists of precisely those edges of
[image: image11.wmf]n

K

 which have not yet been probed. Furthermore both X and Y are consistent with the Daemon’s entire sequence of answers since whenever the answer yes is given, that edge is added to Y and remains in X, while if no is given the corresponding edge is removed from X and is not added to Y. The following invariants are maintained over any sequence of edge probes.

(a) The subgraph X is always connected. This is obvious from the construction.

(b) If X contains a cycle, then none of it’s edges belong to Y. Proof: Deleting an edge from that cycle would leave X connected, and so that edge could not have been added to Y.

(c) It follows from (b) that Y is acyclic.

(d) If
[image: image12.wmf]X

Y

¹

 then Y is disconnected. Proof: Assume, to get a contradiction, that Y is connected. Then being acyclic Y is a tree. Since
[image: image13.wmf]X

Y

¹

, there exists an edge
[image: image14.wmf]X

e

Î

 with
[image: image15.wmf]Y

e

Ï

. If e were added to Y it would form a cycle with some of the other edges in Y. (This is a well known and obvious property of trees: joining vertices by a new edge creates a unique cycle.) Since
[image: image16.wmf]X

Y

Í

, that cycle is also contained in X. In other words X contains a cycle consisting of e together with some edges in Y. This contradicts remark (b) above. The only way to avoid this contradiction is to conclude that Y is disconnected.

Now suppose the algorithm halts and returns a verdict (connected/disconnected) after probing fewer than
[image: image17.wmf]÷

÷

ø

ö

ç

ç

è

æ

2

n

 edges. Then at least one edge of
[image: image18.wmf]n

K

was not probed, hence
[image: image19.wmf]Æ

¹

-

Y

X

, and therefore
[image: image20.wmf]X

Y

¹

. Now (d) tells us that Y is disconnected, and by (a) X is connected. Since both graphs are consistent with the Daemon’s answers, the algorithm cannot be considered correct. If the algorithm says G is connected, then the Daemon can claim
[image: image21.wmf]Y

G

=

, while if the algorithm says G is disconnected, the Daemon may claim that
[image: image22.wmf]X

G

=

. Thus any correct algorithm solving this problem must probe all
[image: image23.wmf]÷

÷

ø

ö

ç

ç

è

æ

2

n

 potential edges. ///

Exercise Show that at least
[image: image24.wmf]÷

÷

ø

ö

ç

ç

è

æ

2

n

 'adjacency' questions are necessary to determine whether a graph G on n vertices is acyclic.

Exercise Let
[image: image25.wmf]5

4

3

2

1

x

x

x

x

x

b

=

 be a bit string of length 5, i.e.
[image: image26.wmf]}

1

,

0

{

Î

i

x

 for
[image: image27.wmf]5

1

£

£

i

. Consider the problem of determining whether b contains three consecutive zeros, i.e. whether or not b contains the substring 111. We restrict our attention to those algorithms whose only allowable operation is to peek at a bit. Obviously 5 peeks are sufficient. A decision tree argument provides the (useless) fact that at least one peek is necessary.
a. Use an adversary argument to show that 4 peeks are necessary in general.

b. Design an algorithm which solves the problem using only 4 peeks in worst case. Express your algorithm as a decision tree.

PAGE
1

_1088422136.unknown

_1088422671.unknown

_1088422894.unknown

_1183285037.unknown

_1183285093.unknown

_1183285101.unknown

_1088504330.unknown

_1088422861.unknown

_1088422246.unknown

_1088422262.unknown

_1088421008.unknown

_1088421626.unknown

_1088421388.unknown

_1088421610.unknown

_1088421350.unknown

_1088420932.unknown

_1088420982.unknown

_1087823937.unknown

