CMPS 12M
Introduction to Data StructuresLab
Winter 2011

Lab Assignment 8
Due Wednesday March 9

The goal of this assignment is to learn how to impldméirs in C. We will discuss thiypedef andstruct
commands, header files, information hiding, constructads destructors, and memory management. You
will write a program in C which recreates the Diction&T in java which was assigned as programming
assignment 2 from the Winter 2009 offering of CMPS 12B. Bdxy reading the specifications for that
assignment at http://www.soe.ucsc.edu/classes/cmps012v0%ia2. pdf.

Creating New Data Typesin C

Thestruct keyword is used to create a new aggregate data type cattedtare, which is the closest thing

C has to java's class construct. Structures contaan fagtls, but no methods, unlike java classes. A
structure can also be thought of as a generalization afray. An array is a contiguous set of memory areas
all storing the same type of data, whereas a struchane be composed of different types of data. The
general form of a structure declaration is

struct structure_tag{
/* data field declarations */
}s

Observe the semicolon after the closing brace. Fanpbea

struct person{
i nt age;
i nt hei ght;
char first[20];
char last[20];

}s

This does not however create a complete type nanezlpalison. The ternperson is only a tag which can
be used with the keyword r uct to declare variables of the new type.

struct person fred;

In this examplé red is a local variable of typsetruct person, i.e. a symbolic name for an area of stack
memory storing ger son structure. By comparison, a java variable of somesdigse is necessarily a
reference (i.e. pointer) to heap memory. As we e it is possible (and desirable) to declare C stestur
from heap memory as well. The variableed contains four components, which can be accessed via the
component selection (dot ") operator:

fred.age = 27,

fred. height = 70;
strcpy(fred.first, "Fredrick");
strcpy(fred.last, "Flintstone");

See the man pages if you are not familiar with thetfanat r cpy in the librarystring. h. Thestruct
keyword is most often used in conjunction witipedef , which establishes an alias for an existing data type.
The general form of a typedef statement is:

typedef existing_type new type;

For instance

typedef int feet;

definesf eet to be an alias farnt . We can then declare variables of typet by doing

feet x = 32;

Usingt ypedef together withst ruct allows us to declare variables of the structure typbount having to
include the keywordt ruct in the declaration. The general form of this combinggbdef statement is:

typedef struct tag{
/* data field declarations */
} new_type;

Thet ag is only necessary when one of the data fields is itdetie new type, and can otherwise be omitted.
Often the tag is included as a matter of convention.o Alg conventiont ag andnew_t ype are the same
identifier, since there is no reason for them to difféoing back to thger son example above we have

typedef struct person{
i nt age;
i nt hei ght;
char first[20];
char last[20];

} person;

We can now allocateer son structure from stack memory by declaring

person fred;

and assign values to the data fieldsfoéd as before. It is important to remember that theedef
statement itself does not allocate any memory, ordydiclaration does. To allocateper son structure
from heap memory, we do

person* pFred = mall oc(sizeof (person));

The variablepFr ed points to ger son structure on the heap. Note thé&t ed itself is a symbolic name for
an area of stack memory which stores #aeress of a block of heap memory which storege son
structure.

Stack Memory Heap Memory:
pFred person struct
> age
hei ght
first
| ast

This is essentially the situation one has in java wdtetlaring a reference variable of some class type. To
access the components of g son structure pointed to byrFred, we must first dereference (i.e. follow)
the pointer using the indirection (value-at) operatorUnfortunately the expressiompFred. first is not
valid since the component selection (dot) operator has higher precedence than value-at. We cmdd i
parentheses as {rpFred). first, but this leads to some unwieldy expressions. Fortyn@tgrovides a
single operator combining the value-at and dot operatdesdiddle indirect component selection (arrovy
operator. (Note this operator is represented by two cteasa) To assign values to the components of the
per son pointed to byFred, do

pFred- >age = 27;

pFr ed- >hei ght = 70;
strcpy(pFred->first, "Fredrick");
strcpy(pFred->last, "Flintstone");

Thus the C operator which is equivalent to the famd@ir operator in java is not component selection (dot
". "), but indirect component selection (arrows").

The following example defines a new data type calede which has a pointer tolode as one of its
members.

typedef struct Node{

int item
struct Node* next;
} Node;

In this case th&lode tag is nhecessary since the definition itself refensode. Observe however that within
the body of the structure definitiolgde is referred to ast ruct Node since the typedef statement is not yet
complete. Outside the structure definition we can BimpeNode as a new type name. Another typedef
statement defines the typedeRef as being a pointer tade.

typedef Node* NodeRef;

To declare and initialize a reference tiode we do

NodeRef N = mal | oc(si zeof (Node));
N->item = 5;
N->next = NULL,;

Two rules to remember when using structures to define AlPTsalways useypedef andstruct together

as in the last example to define new structure typepaimiers to those types, and (2) always declare your
structure variables as pointers to heap memory and atesssomponents via the arrow operator. Do not
declare structure variables from stack memory.

Information Hiding

The C language does not include access modifiers syateespubl i ¢ andpri vat e keywords. To enforce
the principle of information hiding in C then, we sphietdefinition of an ADT into two files called the
header file (with suffix . h), and theimplementation file (with suffix . c). The header file constitutes the
ADT interface, and is roughly equivalent to a java irtegffile. It contains the prototypes of all public ADT
operations together with typedef statements defining ¢éxpaypes. One of the exported types in the header
file is a pointer (also calledlandle or reference) to a structure that encapsulates the data fields cAbiTe

The structure definition however, is placed in the enmntation file, along with the definitions of any

3

private types, and function definitions, both public andgid. The implementation file willi ncl ude it's
own header file, and the ADT operations are definedssto dake and return handles to the ADT structure

type.

A client module can thesi ncl ude the header file giving it the ability to declare vaies of the handle
type, as well as functions which either take or rehandle type parameters. However, the client cannot
dereference this pointer since the structure it points mot defined in the header file. The ADT operations
take handle arguments, so the client does not neeahtbig in fact unable to) directly access the structure
which these handles point to. Therefore the clientic@mact with the ADT only through the public ADT
operations and is prevented from accessing the interitrecgo called 'black box'. This is how information
hiding is accomplished in C. One establishes a functiqggubbc by including its prototype in the header
file, and private by leaving it out of the header file, #kewise for the defined data types belonging to an
ADT.

Example

We llustrate the construction of an IntegerStack AIDTC. The header fila nteger Stack. h and
implementation filg nt eger St ack. ¢ can be found on the CMPS 12B webpage from Winter 2009 tbeate
http://www.soe.ucsc.edu/classes/cmps012b/Winter09/Labs/lab5/.

First observe that the header filet eger St ack. h contains some preprocessor commands for conditional
compilation, namely:i f, #endif, and the preprocessor operatief i ned. If the C compiler encounters
multiple definitions of the same type or function, wwltiple prototypes for the same function, it is
considered a syntax error. Therefore when a prograusists of several files each of which maycl ude

the same header file, it is necessary to place theswoat the header file within a conditionally compiled
block, so that the prototypes etc. are seen only once.gdimeral form of such a block is

#if ldefined (_macro_nane_)
#define _macro_nane_

st at enent sequence

#endi f

If _macro_name_ is undefined, the lines betweenf and#endi f are compiled, otherwise they are skipped.
The first operation within the block is #alefi ne _macro_nane_. Notice that the macro is not definedot®
anything, it just needs to be defined. It is customary twosh_nacro_name_ in such a way that it is
unlikely to conflict with any "legitimate" macros. Tledéore the name usually begins and ends with the
underscore character.

The next item in nt eger St ack. h is thetypedef statement which defines ackRef to be an alias for a
pointer to the typetruct Stack. The definition oktruct Stack , which contains the data fields for the
IntegerStack ADT, will be placed in the implementatida. Next are prototypes for the constructor
newSt ack and destructof r eeSt ack, followed by prototypes for ADT operations, then finallp@totype
for a function callegbr i nt St ack, which corresponds roughly to thest ri ng() method in java.

The implementation file nt eger St ack. ¢ defines several private types, namidye, NodeRef , andst ack.
Type NodeRef is a pointer tiNode, which is the basic building block for the linked list urigiag the stack
ADT. Type stack encapsulates the data fields for a stack. Recaliyfheest ackRef was defined in the
header filel nt eger St ack. h to be a pointer to the typg ruct Stack. TypesStackRef is the so-called
handle through which the client interacts with thelstaDT.

Memory Management

Each of the structure types defined in the above exahgde their own constructor, which allocates heap
memory and initializes data fields, as well as tlo®un destructor which balances the callstl oc and

cal I oc in the constructor with corresponding callsf tee. Observe that the arguments to the destructors
freeNode andfreeStack are not the handlesodeRef and St ackRef respectively, but pointers to these
handle types. The reason for this is that the destromiist alter not just the structure the handle pdots
but the handle itself by setting it KoLL.

As in java, all ADT operations should check their owagoanditions and exit with a useful error massage
when one of them is violated. This message should #tatenodule and function in which the error
occurred, and exactly which precondition was violatede firpose of this message is to provide diagnostic
assistance to the designer of the client program. however there is one more item to check. Each ADT
operation should check that the handle which is itsiraegument is not NULL. This check should come
before the checks of preconditions since any attempdeteference a NULL handle will result in a
segmentation fault. The reason this was not negessggava was because calling an instance method on a
null reference variable causes a NullPointerExceptiobe thrown, which provides some error tracking to
the programmer.

Naming Conventions

Suppose you are designing an ADT in C caBedh. In some other programming classes you may use
names likesl ahPt r or Bl ahHndl instead ofBl ahRef . Of course no name is inherently better, but for the
sake of consistency, you are required to adhere toahmng conventions outlined here. In particular the
header file should be call&tiah. h and should containtaypedef defining the reference (or handle) type for
the ADT

typedef struct Bl ah* Bl ahRef;

along with prototypes for thet an ADT operations. The implementation file should b#edssl ah. ¢ and
should contain the statement

typedef struct Bl ah{
/* data fields for the Bl ah ADT */
} Bl ah;

together with constructors and destructors foraihen structure, and functions which implement the ADT
operations. The general forms for the constructordastructor are

Bl ahRef newBl ah(arg_list){
Bl ahRef B = mal | oc(si zeof (Bl ah));
assert(Bl'= NULL);
/* initialize the fields of the Blah structure */
return B;

}

and

voi d freeBl ah(Bl ahRef* pB){
i f(pB!'=NULL && *pB! =NULL) {
/* free all heap nmenory associated with *pB */
free(*pB);
*pB = NULL;
}
}

Note that the destructor passessitahRef argument by reference, so it can set the handle toLNWGiven
aBl ahRef variable B, a call tof r eeBl ah would look like

freeBl ah(&B);
The general form for an ADT operation is

return_type sonme_op(Bl ahRef B, other_paraneters){
i f(B==NULL){
fprintf(stderr, "Blah Error: calling some_op on NULL Bl ahRef\n");
exi t (EXI T_FAI LURE) ;

}

/* check preconditions */
/* do whatever some_op is supposed to do */

}

Most ADTs should also containpai nt Bl ah function which prints a text representation @l ah to a file
stream.

voi d printBlah(Bl ahRef B, FILE* out){
i f(B==NULL){
fprintf(stderr, "Blah Error: calling printBlah on NULL Bl ahRef\n");
exi t (EXI T_FAI LURE) ;

}

/* calls to fprintf(out, text_which_represents B) */

}

What toTurn In

Use the Stack ADT example above as the starting fariyour Dictionary ADT in C. The Dictionary ADT
in this assignment is largely the same as the one infrpa2 Winter 2009, with a few minor differences
(other than the fact that this one is in C and pa2 wgsva.) Again the Dictionary ADT will be based on an
underlying linked list data structure. The elements of tlatiddiary will be key, value) pairs as before, but
now key andvalue will be ints, not Strings. As in pa2 there are babidato design options to deal with
these pairs. Either design your innede structure to have twiont fields calleckey andval ue (along with

its next field), or design another private inner structure catked , which encapsulateéey andval ue, then

let Node have an t emfield of typepPai r Ref . The ADT operations are identical to those in Wir2@@9 pa2
except of course that certain return types and formahpaters are nownt rather tharst ri ng. One other
difference is that you must write a destructor, whawae was necessary in java. You will also write a
function calledori nt Di cti onary which replaces the javasSt ri ng method. Its output should be identical
to System out. printl n(nyDi ctionary) in the java version.

The interface for the Dictionary ADT is embodiede file Di cti onary. h which is posted on the webpage
from Winter 2009, also located at http://www.soe.ucsc.emsgelk/cmps012b/Winter09/Labs/lab5/. Also
included is a test client callami cti onaryC i ent.c. Turn in both these files with your project but do not
alter them in any way. The webpage also containskef i | e for the Stack ADT. Alter this makefile so as
to make an executable calledct i onaryd i ent from the source fil®i cti onarydient.c. Compare the
output ofDi cti onaryd i ent with the file rodel _out to check that your Dictionary is working properly.
Include utilities calle@! ean andcheck in your makefile. Theheck utility should simply call

val grind Dictionarydient

to check for memory leaks. In order to receive fuddit, your Dictionary operations must produce no
memory leaks. In addition to the implementation Beti onary. c, you will write the usual ADT test
platformDi cti onaryTest. c. This file should be used by you to test the Dictiorsy in isolation before

6

you link it with Di ctionarydient.c. Its contents are not specified, other than toteay you should
include enough calls to ADT operations to convince the gthdéerou actually used it to test your work.

Submit the following files to lab8:

README: Table of contents for this project.

makef il e: Described above.

Di ctionary. c: Implementation file constituting your main task in thgsignment.

Di cti onaryTest. c: Described above

Di ctionary. h: Given at http://www.soe.ucsc.edu/classes/cmps012b/Wintexd€ilab5/

Di ctionarydient.c: Given at http://www.soe.ucsc.edu/classes/cmps012b/Wiiteabs/lab5/

