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Development of stochastic process theory is from the very 
beginning in connection with biology (e.g. Brownian motion). 

In early days, it was assumed that a randomly moving micro-
particle suspended in water moved because it was alive.   

Contradiction was reached when it was observed that some of 
certainly “dead” particles were moving in the same way.  

For many years, random motion was ignored. One reason was 
that it was considered unimportant. The other reason was that 
they needed new tools. 

Stochastic Processes 

Good reading: “Uncertainty: Einstein, Heisenberg, Bohr, and the 
Struggle for the Soul of Science” by David Lindley 
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Stochastic Differential Equations 

For suitable restrictions on    and       , we can find the solution as 

Important special case is the Langevin equation: 

(sometimes ‘Gaussian’) 

is a state and, for                    , the solution is  
is random forcing 

      is increment of the 
Wiener process 



Langevin Equation 

(sometimes ‘Gaussian’) 

      is increment of the 
Wiener process 

Solution: 

is the standard Riemann integral 

is a stochastic integral  

Example: Solution of 

X 

Deterministic  
signal 

Electronic circuit that solves this integral 

Astrom, K., “Introduction to Stochastic Control Theory” 



Wiener Process 

(sometimes ‘Gaussian’) 

      is increment of the 
Wiener process 

we can also write it as 

elementary stochastic integral 

Let us assume that on a scale of dt, the random increments have the 
variance       and the mean value 0 

Jazwinski, A.H.,“Stochastic Processes and Filtering Theory” 



Wiener Process 

The case when               is called the unit intensity Wiener process. 

Finally, note that when            , then the sum is infinite and due to       
the central limit theorem, the distribution of       is Gaussian.   
Summary:    



Wiener Process 

This distribution depends on          , therefore, we can consider it as a conditional    
probability density function (it is common to assume                  ). 

Wiener process sampling: for the initial value           and time  points  

etc…. 
This is a discrete time realization of the following analog circuit  



Stochastic Integrals 

Solution: 

is a stochastic integral  

Electronic circuit that  
solves this integral 

x 

If                ,  then we have the       integral        

The result is a random value (process). 

If we accept to deal with this type of integrals, then there is 
the associated so-called        differentiation rule.  

Øksendal, B., “Stochastic Differential Equations: An Introduction with Applications”  



Substitute                      and ignore all terms that are of order greater than   

Îto Differentiation Rule  

            is a scalar function. What is  

Standard calculus:  



Îto Differentiation Rule  
Multivariate version 

Astrom, K., “Introduction to Stochastic Control Theory” 



  Îto Differentiation Rule Applications 

            

Find  

x In standard calculus, we will have    

In Îto calculus, we have  

Øksendal, B., “Stochastic Differential Equations: An Introduction with Applications”  



  Îto Differentiation Rule Applications  

Find             and                                                           for    



 Îto Differentiation Rule Applications  

When applied to linear systems  

Kalman gain fuses these predictions with the observations 

Initial guess  
Prediction  

observations 

Kalman Filter: Continuous Time Dynamics, Discrete Observation   

Update  

Discrete Dynamic Discrete Observation 
Continuous Dynamics Continuous Observations 

Nonlinear: Extended and 2nd order Kalman Filter 
Kalman Smoother 

Other topics:  

Gelb, A., “Applied Optimal Estimation” 



Digital camera movie of a robot 

Resolution 
Approximate robot  dimensions 

Input Data: Pre-processing: 
Find the heading angle of the 
robot based on three red lights 
 Find the center of the robot 

Problem: 
Use the robot center 
measurements to find velocity  
and robot heading angle  

Verification: 
Compare the KF estimated  
robot heading angle with the  
one based on three red lights 
(image based) 

Kalman Filter Project  I 



If the trajectory is known, what are v(t) and θ(t) ? 

Given control, the trajectory  
              is defined. 

Kalman Filter Project  I 



Unknown control variables are modeled by stochastic processes. 

Robot center observation model 

Kalman Filter Project  I 



Kalman Filter Project  I 

Robot center observation model 

Velocity estimation (mm/s)  

Heading angle estimation (rad) Image based heading angle (rad) 
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Kalman Filter Project  II 

Observation model for markers Robot motion model 

Estimation of the relative position of the triangular configuration of  
markers with respect to the robot center and its heading angle 



Kalman Filter Project  II 
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Euler-Murayama Method 

Simple algorithm that generates a sample of SDE: 

The sample points are equidistant in time (     )     

A critical component of the method is the random generator 

For more sophisticated methods, see:  

Kloeden, P.E., Platen, E., Numerical Solution of Stochastic Differential 
Equations, Springer 1992.  



Fokker-Planck Equation 
Describes the evolution of the state probability density function 

SDE: 

Switching diffusions : 

Probability density function is: 
a vector of functions 

Yin, G.G., Zhu, C.: “Hybrid Switching Diffusions”, Springer, 2010 



Fokker-Planck Equation  





Following the target at a fixed distance 
The future of the target trajectory is unknown (uncertain) 
We model it as a stochastic process  
This process serves as a prior for the target trajectory future   

Dubins Vehicle Following a Target   

Anderson R. and Milutinović D., “ Dubins Vehicle Tracking of a Target With Unpredictable Trajectory”, 
Proceedings of the 2011 ASME Dynamic Systems and Control Conference (DSCC), Arlington, VA 



Dubins Vehicle Following a Target   

Vehicle model (VM):  

To follow the target at a constant distance (d), we formulate the optimal 
control problem of minimizing the cost function 

Target kinematics is unknown (therefore 
stochastic prior) (TM):  

under constraints of (VM) and (TM) 

Note: We use the type of cost function for which a feedback solution exists. 



Dubins Vehicle Following a Target   

The cost function allows for the feedback solution 

Îto calculus: 

Relative kinematics: 

Cost function: 

There is no prediction, or any sort of estimation  

The control anticipates the uncertainty of target motion  
Now it is all about computing the solution.  

Anderson R. and Milutinović D., “ Dubins Vehicle Tracking of a Target With Unpredictable Trajectory”, 
Proceedings of the 2011 ASME Dynamic Systems and Control Conference (DSCC), Arlington, VA 



Dubins Vehicle Following a Target   

Dynamic programming – Value iterations 

Update can be done  
in any order 

 For transition rates, we use a locally consistent Markov Chain approximation.  



Locally consistent Markov chain approximation 
Locally consistent approximation  
provides the relation between the  
discretization steps in the state  
space               and the time step 

Value iterations 

Dubins Vehicle Following a Target   

z Kushner, H.J., Dupuis, P.: “Numerical Methods for Stochastic Control Problems in  
Continuous Time”, 2001  



Dubins Vehicle Following a Target   

With higher noise intensities, the UAV begins entry into circular pattern earlier 



Dubins Vehicle Following a Target   



Dubins Vehicle and Stochastic Wind  

Minimize:  

is the time until the target is reached  

Anderson, R., Efstathios, B., Milutinović D., Panagiotis, T., Optimal Feedback 
Guidance of a Small Aerial Vehicle in the Presence of Stochastic Wind, AIAA 
Journal of Guidance, Control and Dynamics, Vol. 36, No. 4, pp. 975-985, 2012 



Dubins Vehicle and Stochastic Wind  

Minimize:  

is the time until the target is reached  



































Milutinović, D., Garg, D. P., A Sampling Approach to Modeling and Control of a Large-size 
Robot Population, Proceedings of the 2010 ASME Dynamic Systems and Control Conference 
(DSCC), Boston, MA 

Milutinović, D., Utilizing Stochastic Processes for Computing Distributions of Large-Size 
Robot Population Optimal Centralized Control, Proceeding of the 10th International 
Symposium on Distributed Autonomous Robotic Systems (DARS), Lausanne, Switzerland 



Multi-robot systems 

Each agent adds new degrees of freedom 

More (options) stochastic processes to consider 

Combinatorial expansion of possible ways to control the 
overall system, due to redundant degrees of freedom 



Robot swarms (control in probability density space) 
- Partial differential equations 
- Trajectory samples 

Robot teams (~10 robots) 
- Path Integral approach + Kalman smoother 

Multi-robot systems 

Path Integral Approach: Kappen, H.: Linear Theory for Control of Nonlinear 
Stochastic Systems. Physical Review, Letters 95(20), 1–4 , 2005 



Robot swarms (control in probability density space) 
- Partial differential equations 
- Trajectory samples 

Robot teams (~10 robots) 
- Path Integral approach + Kalman smoother 

Multi-robot systems 

The best student paper award:  
Anderson, R., Milutinović D., A Stochastic Optimal Enhancement of  Feedback Control for Unicycle 
Formations,  Proc. of the 11th International Symposium on Distributed Autonomous Robotic Systems 
(DARS’12), Baltimore, MD  
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The Dubins Traveling Salesperson Problem with Stochastic Dynamics 
(TuAT2.1) 

Call for Papers: Special Issue on Stochastic Models, Control and 
Algorithms in Robotics Submission deadline: November 15, 2013 
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Thank you for your attention ! 
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