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Abstract— We consider the problem of navigating a small
Dubins-type aerial or marine vehicle to a prescribed destination
set in minimum expected time and in the presence of a stochastic
drift field induced by local winds or currents. First, we present
a deterministic control law that is independent of the local
winds/currents and their statistics. Next, by employing numer-
ical techniques from stochastic optimal control, we compute
an optimal feedback control strategy that incorporates the
stochastic variation in the wind when driving the Dubins vehicle
to its destination set in minimum expected time. Our analyses
and simulations offer a side-by-side comparison of the optimal
deterministic and stochastic optimal feedback control laws for
this problem, and they illustrate that the deterministic control
can, in many cases, capture the salient features of structure of
the stochastic optimal feedback control.

I. INTRODUCTION

We consider the problem of guiding a small aerial or

marine vehicle with turning rate constraints to a prescribed

terminal position in the presence of a stochastic drift field,

which is induced by local winds or currents, in minimum

expected time. In particular, it is assumed that the motion of

the vehicle may be adequately approximated by a Dubins-

type kinematic model [1–3], that is, a unicycle that travels

only forward with constant speed and with a prescribed upper

bound to the rate of change of the direction of its forward

velocity vector. In the absence of the drift field, the vehicle

traverses paths of minimal length of bounded curvature,

known in the literature as Dubins paths or optimal paths

of the Markov-Dubins (MD) problem [1, 4]. This kinematic

model is henceforth referred to as the Dubins Vehicle (DV).

Problems characterizing the minimum-time paths of the

DV in the absence of drift or in the presence of a de-

terministic drift field have received considerable attention

in the literature. In particular, the characterization of the

minimum-time synthesis, that is, a mapping that returns the

minimum-time control input given the state vector of the

DV, has appeared in [5–7]. The problem of characterizing

minimum-time paths of the DV in the presence of a constant

drift field was first posed by McGee and Hedrick in [8].

Numerical schemes for the computation of the Dubins-like
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paths proposed in [8] have been presented in [9, 10], and

the solution of the optimal synthesis for this problem is

presented in [10, 11]. A numerical algorithm that computes

the minimum-time paths of the DV in the presence of a

deterministic, time-varying, yet spatially invariant, drift field

appears in [12].

The aforementioned methods address variations and exten-

sions of the MD problem within a completely deterministic

optimal control framework. Some recent attempts to address

the MD problem within a stochastic control framework can

be found in [13, 14]. In particular, Refs. [13, 14] deal with the

problem of a DV tracking a target with unpredictable future

trajectory using numerical techniques from stochastic opti-

mal control of continuous-time processes [15]. In this work,

we develop an optimal feedback control that minimizes the

expected time required to navigate the DV to its prescribed

destination set in the presence of a stochastic drift field.

Our analysis and numerical simulations demonstrate that

in many cases, stochastic control laws outperform their

deterministic counterparts, which are “blind” to the local

winds and their statistics. However, these deterministic con-

trol laws can successfully capture the salient features of the

structure of the stochastic feedback control, and the similarity

between the two control laws suggests that the deterministic

optimal control (which has an analytic form) may suffice as

a substitute over the stochastic control (which requires the

solution of a partial differential equation) in light winds.

This paper is organized as follows. Section II formulates

the optimal control problem. Section III presents a deter-

ministic feedback law that provides us with useful insights

regarding the optimal stochastic control and a basis with

which to compare control laws. Section IV presents the

stochastic optimal control and the method used to compute

it. Simulation results for both the deterministic and the

stochastic controllers are presented in Section V. Finally,

Section VI concludes the paper with a summary of remarks.

II. PROBLEM FORMULATION

Here we formulate the problem of controlling the turning

rate of a fixed-speed Dubins vehicle (DV) in order to reach

a stationary target in the presence of a wind field. The target

is fixed at the origin, while the Cartesian components of DV

position are x(t) and y(t) (see Fig. 1).

The DV moves in the direction of its heading angle θ at
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Fig. 1. Diagram of a DV in position [x(t), y(t)]T and moving at heading
angle θ in order to converge on a target in minimum time in the presence
of wind. The target set T is shown as a circle of radius δ about the target.

fixed speed v and obeys the equations:

dx(t) = v cos (θ) dt+ dwx(t, x, y) (1)

dy(t) = v sin (θ) dt+ dwy(t, x, y) (2)

dθ(t) =
u

ρmin
dt, |u| ≤ 1, (3)

where ρmin > 0 is the minimum turning radius constraint

(in the absence of wind) and u is the control variable,

u ∈ [−1, 1]. The motion of the DV is affected by the

spatially and/or temporally varying wind field w(t, x, y) =
[wx(t, x, y), wy(t, x, y)]

T
, whose increments have been in-

corporated into the model (1)-(2). In this problem formu-

lation, the model for the wind is unknown. Therefore, we

assume that it is described by a stochastic process, and we

formulate a stochastic control problem for reaching a target

set T , which is a ball of radius δ around the target. If we in-

troduce the DV-target distance as r(t) =
√

(x(t))2 + (y(t))2

then the target set is

T = {r : r ≤ δ} , δ > 0. (4)

We avoid complex terminal constraints at the target so that

we may examine the stochastic and deterministic control

laws side-by-side in a transparent manner.

In order to minimize the time required to reach the target

set, we define a cost function

J(x) = min
|u|≤1

E







g(x(T )) +

T
∫

0

dt







, (5)

and upon reaching the target set T at time T , all motion

ceases. In other words, (5) defines the expected value of the

minimum time to reach the target set, and we wish to find the

turning rate control that solves (5). In (5), g(x) is a terminal

cost, which implies that J(x) = g(x) for any x ∈ T and

any u [15]. This could be used to penalize or reward the DV

state when hitting the target, but we choose g(x) = 0 in the

interest of transparency.

We assume that the wind is a continuous-time stochastic

process with respect to the DV position, i.e. wx(t, x, y) =
wx(t) and wy(t, x, y) = wy(t). In other words, there is

no explicit relation between a realization of the wind and

the DV position, although implicitly this relation may exist.

Moreover, in order to focus on the effect of a stochastic wind,

rather than perturbations to a known deterministic drift, the

Cartesian components of the wind are assumed to evolve

independently. Drawing from the field of estimation, the

simplest model to describe an unknown 2D signal suggests

that the wind should be modeled as Brownian motion [16].

This choice of modeling has the advantage that an optimal

feedback control can be made independent of the exact

form of the underlying wind (which may not be known),

and instead, it is based on the statistics of the wind. The

components wx(t) and wy(t) of the wind field in (1)-(3)

take the form

dwx(t) = σWdWx, dwy(t) = σWdWy, (6)

where dWx and dWy are mutually independent increments

of a unit intensity Wiener process, and where the level of

noise intensity σW quantifies the uncertainty in the evolution

of the wind. In practice, the value of σW could be determined

from the root mean square of measured wind gusts. Note

that although a known deterministic drift could be added to

this model, by assuming that E {wx(t)} = E {wy(t)} = 0,

we omit this possibility for brevity and to keep our results

transparent.

Let us define the DV-target distance r(t) =
√

(x(t))2 + (y(t))2, and let ϕ be the angle between

the vehicle velocity vector and the line-of-sight to the target,

given by ϕ = tan−1 (y/x) − θ + π and mapped to lie in

ϕ ∈ (−π, π] (see Fig. 1). Based on (1)-(3) and (6) it can be

shown using Itô’s lemma that the relative DV-target system

coordinates obey

dr(t) =

(

−v cos(ϕ) +
σ2
W

2r

)

dt+ σWdW0 (7)

dϕ(t) =

(

v

r
sin(ϕ)−

u

ρmin

)

dt+
σW

r
dW⊥, (8)

where |u| ≤ 1, and where dW0 and dW⊥ are mutually

independent increments of Wiener processes aligned with the

direction of DV motion θ. Note the appearance of a positive

bias σ2
W /2r in the relation for r(t), which is a consequence

of the random process included in our analysis.

In the limiting case where σW → 0, the problem is

reduced to one that ignores the presence of stochastic winds.

Section III develops an optimal feedback control that drives

the DV to the target in minimum time when the stochastic

wind vanishes (σW → 0). In this deterministic case, the

cost function is the same as (5), but without the expectation

operator. We shall see later on that this deterministic optimal

control, when applied to the DV in the presence of stochastic

winds, will capture the salient features of the stochastic

optimal feedback control.

III. DETERMINISTIC CASE

Before addressing the problem of characterizing the op-

timal stochastic feedback control laws that drive the DV

to its target in the presence of a stochastic wind field, we

shall briefly discuss a method for designing deterministic

feedback controllers for the same problem. The proposed

control scheme, which is based on analytic arguments, will

give us significant insights for the subsequent analysis and

will illustrate some interesting patterns of the synthesis of the
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stochastic optimal control problem. In particular, we propose

a deterministic control law that is completely independent

of any information about the distribution of the winds. In

other words, we design a feedback control law under the

assumption that the local winds are modeled by (7)-(8)

with σW → 0. Therefore, our deterministic control law

is “blind” to the presence and the statistics of the actual

local winds. This approach will give us two navigation laws

that are similar to the pure pursuit strategy from missile

guidance [17], which is, in turn, a control strategy that forces

the velocity vector of the controlled object (the DV in our

case) to point towards its destination at every instant of time.

Note that when applying a feedback law that imitates the

pure pursuit strategy, the DV will not be able to instanta-

neously change its motion in order to point its velocity vector

toward the target, in the presence of winds. This happens for

two reasons. The first reason is because the rate at which the

DV can rotate its velocity vector is bounded by the turning

rate constraint (3). This is true even in the absence of winds.

The second reason has to do with the fact that, by hypothesis,

the pure pursuit law does not account for the local winds,

and, consequently, even if the DV were able to rotate its

forward velocity vector [v cos θ, v sin θ]T arbitrarily, it would

be this forward velocity vector that points toward the target

rather than the inertial velocity [ẋ, ẏ]T .

The proposed pure pursuit-like navigation law takes the

following state-feedback form

u(ϕ) = =











+1 if ϕ ∈ (0, π],

0 if ϕ = 0,

−1 if ϕ ∈ (−π, 0).

(9)

One important observation is that the control law (9) does

not essentially depend on the distance r(t) of the DV from

the target but only on the angle ϕ. We shall refer to the

state feedback control law given in (9) as the geometric pure

pursuit (GPP for short) law. Note that the GPP law drives

the DV to the line S0 := {(r, ϕ) : ϕ = 0}, which behaves as

a “switching surface.” In the absence of wind, once the DV

reaches S0, it would travel along S0 until it reaches the target

(such that r = 0 at the final time T ) with the application of

the control input u = 0. Therefore, the GPP law is a bang-

off control law with one switching at most, that is, a control

law which is necessarily a control sequence {±1, 0}.

It is important to highlight that the GPP law turns out to

be the time-optimal control law of the MD problem with free

terminal heading for the majority (but not all) of boundary

conditions (see Fig. 2), when there are no winds [18, 19].

However, there are still initial configurations for which the

navigation law (9) does not give us a satisfactory answer

to the steering problem, especially when the DV is close to

the target with a relatively large |ϕ|. In particular, it can be

shown [18, 19] that if the DV starts at time t = 0 in any

point that belongs to one of the two regions C+ and C−,

defined by (see Fig. 2)

C+ = {(r, ϕ) : r ≤ 2ρmin sin(−ϕ), ϕ < 0} (10)

C− = {(r, ϕ) : r ≤ 2ρmin sin(ϕ), ϕ > 0} , (11)

0

π

−π
2 4 6 8 10

r

ϕ

u = 1
u = −1S+

S−

S0

C+

C−

{+1, 0}

{−1, 0}

{+1,−1}

{−1,+1}

Fig. 2. Time-optimal partition of the control input space and state feedback
control law of the MD problem with free terminal heading in the absence
of winds. One can use this control strategy as a feedback law for the case
of a stochastic drift field. Control sequences for an initial state in each
time-optimal partition are indicated in red background.
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Fig. 3. Level sets of the minimum time-to-go function of the MD problem
with free terminal heading.

then the target cannot be reached by means of the GPP

law without the presence of a stochastic drift. Therefore,

in order to complete the design of a feedback control law

for any possible state of the DV, we need to consider the

optimal synthesis of the MD problem [18, 19]. It turns out

that the boundaries of C+ and C−, denoted, respectively, by

S− and S+ (the choice of the subscript notation will become

apparent shortly later), correspond to two new “switching

surfaces” along which the DV travels all the way to the

target. In particular, when the DV starts in the interior of

C+ (respectively, C−), then the minimum-time control action

is u = 1 (respectively, u = −1), which may appear to be

counterintuitive, since its effect is to increase |ϕ| rather to

decrease it. The control input remains constant until the DV

reaches the “switching surface” S− (respectively, S+), where

the control switches to u = −1 (respectively, u = +1), and

subsequently, the DV travels along S− (respectively, S+)

all the way to the target driven by u = −1 (respectively,

u = +1). The net effect is that when the DV starts in regions

C±, the DV must first distance itself from the target so that

its minimum turning radius ρmin is sufficient to drive it to

the target. Note that in this case the control law is bang-

bang with one switching at most, that is, a control sequence

{±1,∓1}. The situation is illustrated in Fig. 2 for ρmin = 1.

The GPP law given in (9), therefore, needs to be updated

appropriately to account for the previous remarks. In partic-
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ular, the new feedback control law is given by

u(r, ϕ) =











+1 if (r, φ) ∈ Σ+,

0 if (r, φ) ∈ Σ0,

−1 if (r, φ) ∈ Σ−,

(12)

where,

Σ+ := {(r, ϕ) : ϕ ∈ (0, π]} ∩ (intC−)
c ∪ intC+

Σ− := {(r, ϕ) : ϕ ∈ (−π, 0)} ∩ (intC+)
c ∪ intC−

Σ0 := {(r, ϕ) : ϕ = 0}.

We henceforth refer to the state feedback law (12) as the

optimal pure pursuit (OPP) law. Note that in the absence

of winds, the OPP law is the optimal control law of the

MD problem with free final heading. Figure 3 illustrates the

level sets of the minimum time-to-go function, which can

be computed analytically by using standard optimal control

techniques (Maximum Principle) and geometric tools, as

shown in [20].

IV. STOCHASTIC CASE

This section describes the value iteration computation for

the optimal feedback control corresponding to the kinematic

model (7)-(8) and cost functional (5) and presents the re-

sulting control policies. When discretizing a state space for

value iteration in stochastic optimal control problems, it is

important that the chosen spatial and temporal step sizes

accurately scale in the same way as the stochastic process.

To take this into account, we employ the Markov chain

approximation method [15], which constructs a discrete-time

and discrete-state approximation to the cost function in the

form of a controlled Markov chain that is “locally-consistent”

with the process under control. Once the control is computed,

it is valid for any initial state, including locations near the

target. We first review the method as tailored for this problem

before presenting the computed optimal control.

A. Markov Chain Approximation Method and Value Iteration

Denote by Lu the differential operator associated with the

controlled stochastic process (7)-(8), which, for the sake of

brevity, we write in terms of the mean drift b(x) ∈ R
2, the

diffusion a(x) ∈ R
2×2, and the state vector x = [r, ϕ]T , as

Lu =
∑2

i=1 bi(x)
∂

∂xi
+ 1

2

∑2
i,j=1 aij(x)

∂2

∂xi∂xj
. The state x

is in a domain X = {x | δ ≤ r < rmax,−π ≤ ϕ ≤ π}, which

is semi-periodic because [r, π]T = [r,−π]T . It follows that

the domain boundary is composed of two disjoint segments,

i.e., ∂X = {x : r = δ or r = rmax}.

It can be shown [15] that a sufficiently smooth J(x) given

by (5) satisfies

LuJ(x) + 1 = 0, (13)

so that the stochastic Hamilton-Jacobi-Bellman equation

for the minimum cost V (x) over all control sequences is

infu [L
uV (x) + 1] = 0. This PDE has mixed boundary

conditions on ∂X. At r = rmax, we can use reflecting

boundary conditions (∇V (x))
T
n̂ = 0 with the boundary

normals n̂. For the part of boundary r = δ that belongs

to the target set T , we have to use an absorbing boundary

condition with V (x) = g(x) = 0.

The state transition probabilities p(y | x, u) from the state

x to the state y ∈ X under the control u appear as coefficients

in the finite-difference approximations of the operator Lu

in (13). Using the so-called up-wind approximations for

derivatives, the finite-difference discretization for J(·) with

step sizes hr and hϕ is

Jh(r, ϕ) = ∆tu + p (r + hr, ϕ | r, ϕ, u) Jh(r + hr, ϕ)

+ p (r − hr, ϕ | r, ϕ, u) Jh(r − hr, ϕ, γ)

+ p (r, ϕ+ hϕ, | r, ϕ, u) J
h(r, ϕ+ hϕ)

+ p (r, ϕ− hϕ | r, ϕ, u) Jh(r, ϕ− hϕ),

where the transition probabilities multiplying Jh(·) are

p (r ± hr, ϕ | r, ϕ, u)

= ∆tu

(

max
[

0, (∓v cos(ϕ))± σ2
W /2r

]

hr

+ σ2
W /2h2

r

)

p (r, ϕ± hϕ | r, ϕ, u)

= ∆tu

(

max [0, (±v sin(ϕ)/r ∓ u/ρmin)]

hϕ

+ σ2
W /2r2h2

ϕ

)

,

and where “max” is a result of the up-wind approximation,

and ∆tu is a state- and control-dependent interpolation

interval of the piecewise constant chain [15], given by

∆tu(x, u) =
(∣

∣−v cos(ϕ) + σ2
W /2r

∣

∣ /hr

+ |v sin (ϕ) /r − u/ρmin| /hϕ +
σ2
W

h2
r

+
σ2
W

r2h2
ϕ

)−1

.

The dynamic programming equation for the Markov chain

used for value iteration is as follows [15]:

V h(x) = min
|u|≤1

{

∆tu(x, u) +
∑

y

p(y | x, u)V h(y)

}

(14)

for all x ∈ X \ ∂X. For the reflective part of the

boundary, r = rmax, we use, instead of (14), V h(x) =
∑

y
p(y | x)V h(y) [15, pp. 143], where p(y | x) = 1 for

y = [rmax − hr, ϕ]
T and x = [rmax, ϕ]

T ; otherwise,

p(y | x) = 0. Finally, for those states x ∈ T in the target set

(4), we impose the terminal condition V h(x) = g(x) = 0.

Equation (14) along with the reflective transition equation

and terminal boundary condition equation are used in the

method of value iteration until the cost converges (the

interested reader may find a proof of convergence in [15]).

B. Optimal Control in a Stochastically-varying Wind

Here we describe the stationary optimal control computed

for the stochastic wind. We chose parameters as ρmin = 1,

rmax = 10, v = 1, hr = 0.02, and hϕ = 0.025, with all

units in meters and seconds.

The structure of the optimal control law for the discrete-

time Markov chain that approximates the continuous-time

control problem is seen in Fig. 4(a) for σW = 0.1 and

Fig. 4(b) for σW = 0.5. As in the deterministic case (Fig. 2),

the control is composed of bang-bang regions instructing
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(a) Control optimal for approximating Markov chain for σW = 0.1

 

 

0

π

−π
2 4 6 8 10r

ϕ

u = 1

u = −1

(b) With more variation in the wind (σW = 0.5), the optimal control
yields the GPP model (9).

Fig. 4. Dubins vehicle optimal turning rate control policy u(r, ϕ).

the DV to turn left or right, which aides in our comparison

of the stochastic feedback control to the deterministic OPP

control. With σW = 0.1, the optimal control is comprised of

four regions, two directing the target to turn left, and others

instructing a turn to the right. The reader should note the

similarity between Fig. 4(a) and the OPP control illustrated

in Fig. 2. In particular, the structure of the regions C− and C+
have changed somewhat as a consequence of the stochastic

variation of the wind. In Fig. 4(b), a higher noise intensity

of σW = 0.5 causes the control to return to GPP (9), and

this control strategy remains optimal for even larger σW .

V. PERFORMANCE COMPARISON

This section provides a comparison of performance of

the proposed feedback control laws. As an example, Fig. 5

shows two DV’s approaching a target in the presence of the

stochastic wind. When entering the region near the target

where the two control laws differ (cf. Figs. 2 and 4(a)), the

DV applying the OPP control law (12) is instructed to loop

around twice before reaching the target.

We next examine the mean hitting time, i.e., the average

time required for the DV to hit the target set as a function

of its initial state. Figure 6 compares the mean hitting time

under (7)-(8), using both the OPP control law (12) and

the optimal control shown in Fig. 4(a). It is seen that the

mean times under OPP are greater in regions near the target,

although in a small subset of these regions, the stochastic

optimal control law has higher standard deviation.

−0.4

−0.4

0.4

0.4−5−4
−3

−3

−2

−2

−1

−1

0

0

0

0 3

2

2

1

1
x [m]x [m]

y
[m

]

Fig. 5. Two DVs, initially located at (x, y, θ) = (−5, 0, π/6) attempt
reach the target set T centered about (0, 0) in minimum time in a stochastic
wind (σW = 0.1). The blue DV applies the stochastic optimal control
for σW = 0.1, while the red DV applies the optimal pure pursuit (OPP)
strategy. The right panel shows a closeup of the target.
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(a) Mean time E(T ) to hit the target based on the starting location in state
space (r, ϕ) with OPP control (top) and the stochastic optimal control u(r, ϕ)
(bottom).
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2

2

1
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6

33
−1

rr
δδ

ϕ

(b) Left: difference in mean hitting time E(TOPP) − E(Tstoch) Red
implies OPP has higher E(T ). Right: difference in standard deviation
std(TOPP) − std(Tstoch). Orange and red regions correspond to higher
OPP standard deviation; dark blue regions indicate higher standard deviation
under stochastic control.

Fig. 6. Comparison of distributions of time required to hit the target under
both OPP control (12) and the stochastic optimal control.

Since the stochastic control is specific to the intensity σW

of the wind, we also show how the expected minimum hitting

time changes when a control computed for one value of

σW = σ
(control)
W performs against a wind of intensity σ

(actual)
W

in Fig. 7. Although a larger σ
(actual)
W leads to longer DV paths,

a suitable σ
(control)
W mitigates this effect.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the problem of driving a

small vehicle with Dubins-type kinematics to a prescribed

destination with free final heading in the presence of a
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Fig. 7. Time to reach the target, initially at a distance of 5 [m], in a

stochastic wind with simulated intensity σ
(actual)
W

using a control computed

for σ
(control)
W

. Each difference in noise intensity is an average of the E(T )

from all combinations of σ
(control)
W

and σ
(actual)
W

, further averaged over 1000
simulations for each pair of noise intensities.

stochastic drift field in minimum expected time. We have

proposed two approaches to this problem. The first one,

which was based on analytic techniques, was to employ a

deterministic feedback control law that is similar to the pure

pursuit law from the field of missile guidance. The second

approach was to tackle the problem computationally by

employing numerical tools from stochastic optimal control

theory. Our side-by-side comparison and simulations have

revealed that although, in general, stochastic control laws

that explicitly account for the drift field outperform the

analytic deterministic laws that are suboptimal in stochastic

winds, the latter ones in many cases capture the structure

of the stochastic feedback control. Future work includes the

extension of the techniques presented herein to problems

with a more realistic model of the drift field, including

spatially-correlated winds.
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