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Airport runways and taxiways have been identified as a key source of system-wide con-

gestion and delay in the over-strained commercial air traffic system. To combat this growing

problem, we present a novel approach for taxiway scheduling and traversal. Aircraft must

traverse a taxiway, represented by a graph, from gates to their respective runways and ar-

rive at their scheduled times while adhering to safety separation constraints. We describe a

combinatorial mixed integer linear program to simultaneously determine the optimal push-

back time windows, aircraft speeds, stopping times, and in particular, traversal paths for a

given graph and an imposed flight schedule. Several scenarios are presented to demonstrate

possible uses for this tool.

Nomenclature

∆ Spatial separation requirement (based on weight class)
∆T Temporal runway separation requirement (based on weight class)
Umax Taxiway maximum speed limit
Umin Taxiway minimum speed limit
K Set of all flights
tk Push-back time of departing aircraft k

t
(sched)
k Scheduled runway arrival/departure time of aircraft k
t′k Perturbed schedule variable of aircraft k
Pk Set of all possible paths of an aircraft
p A particular path ∈ P
dij Length of arc (i, j)
fijk Reciprocal speed of aircraft k along arc (i, j)
τijk Stopping time of aircraft k along arc (i, j)
zijk Binary path decision variable
Bkαkβ i Binary order decision variable, kα, kβ ∈ K
κ Probability of constraint violation
λ Inverse cumulative distribution of 1− κ
σ(·) Shape parameter for distribution of random variable (·)

Subscript

k Aircraft/flight number, k ∈ K
kα, kβ To distinguish between two aircraft

I. Introduction

The consumer demand placed on the commercial air transportation network has increased dramatically
in recent years, without an equivalent improvement in airport and airborne traffic capacities.1 As this trend
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is likely to continue, the potential for delays, financial and environmental inefficiencies, and safety concerns
has led to a considerable amount of research to accommodate this growth in both the en-route and airport
sectors.2

Recent improvements to en-route capabilities have caused a shift in the system bottleneck toward the
airport sector. Many airports are already operating at or close to their maximum capacity,3 causing instances
when aircraft must queue on the taxiway while engines continue to operate. Consequently, not only does
limited airport capacity create delays, but can also cause unnecessary fuel consumption and air pollution.

In this paper we describe a method to increase an airport’s taxiway capacity using an optimal aircraft
taxi scheduling, taking into account the structure of taxiway network. Previous works typically use a graph-
or network-based approach, and authors implementing this method mainly focus on genetic algorithms,4, 5

mixed-integer linear programs (MILPs), or a hybrid of these.6, 7 The MILP method has proven to be
practical for real-time computation and is along the line of the work presented herein. We consider aircraft
taxi speeds, push-back times, stopping times, as well as taxiway routes, but unlike previous methods, these
taxi scheduling characteristics are all coupled as a part of a single optimization problem. Because of this,
we can determine the feasibility of a taxi schedule that includes knowledge of the taxiway topology. This
feasibility indicator can be used either to detect conflicting constraints in the taxi schedule, analyze a taxiway
traversal policy, or to estimate airport capacity under a variety of conditions, including uncertainty.

Various models using MILP have been explored in literature. Roling and Visser8 consider a discrete time
taxi scheduling problem with constant aircraft taxi velocities. Balakrishnan et al.9 extend the formulation
of Bertsimas1 to the airport, but constraints against aircraft overtaking one another on the same path are
only incorporated after the optimal solution is found. Smeltink et al.10 developed a MILP which reduces
taxiway delays, but did not take into account all forms of taxiway separation constraints. This was fixed by
Rathinam et al.,11 who also significantly reduced the state space of the problem, but still only one path per
plane is considered. Maŕın12, 13 frames the taxiway as a linear multi-commodity flow problem with additional
constraints, which again causes all routes between origin and destination nodes to be fixed a priori using a
shortest-path algorithm.

In what follows, we first introduce in Section II the motivation for our approach, and in Section III we
formulate our program. Section IV provides results from several scenarios and describes relative benefits
as compared to a baseline First-Come-First-Served (FCFS) policy. Section V summarizes our contributions
from this paper and provides directions for future research.

II. Details
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Figure 1. The Airport Taxiway Problem: Solid lines correspond to taxiway arcs and a runway comprised of
(N10, N8) and (N8, N−6). Nodes (filled circles) are placed at locations of possible path conflicts, and open circles
denote gates. See text for explanation.

Figure 1 illustrates a possible scenario in which three aircraft must traverse a taxiway. Two departing air-
craft, beginning at gates N1 and N3, must reach the node N10 at the times t1(N10) and t2(N10), respectively,
as given by the imposed departure schedule. Simultaneously, the third aircraft is arriving, and once it has
decelerated, it must taxi to gate N2. Based on this information, we would like to compute the optimal taxi
schedule, including routes, speeds, stopping times and gate push-back times, such that each aircraft quickly
reaches its destination.

Clearly, in Figure 1 there are two possible routes of similar length for each aircraft, but there exists
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a potential for two aircraft to come within a close proximity, or even be in conflict, while traversing the
taxiway arcs and nodes shared by their routes. To avoid this, we define both temporal and spatial separation
constraints among aircraft, and these must be included into the taxi schedule. A more realistic scenario may
include a larger number of aircraft and alternative routes, but in essence the problem of computing the taxi
schedule remains the same.

Under such a precise control of aircraft flow, we see the aircraft taxi schedule problem as a continuous-
time optimal control problem14 under geometric constraints of the airport taxiway layout, departure and
arrival times, as well as safety separation constraints among aircraft. To deal with a well-formulated optimal
control problem, one specifies a cost function, e.g. the minimum total taxi time, and computes the optimal
taxi schedule that minimizes this cost function. However, the velocity of each aircraft is a continuous-
time function, and computing its time profile under the separation constraints in a continuous-time optimal
control framework is a challenging problem. Therefore, it is not surprising that previous papers consider
discretization in time, space, or both space and time (see Section I).

Our work is motivated by the fact that the optimal control problem can be significantly simplified under

the assumption that the aircraft taxi speed is constant on a given arc, although this constant is aircraft- and
arc-dependent. Then, spatial safety separation constraints for taxiing aircraft can be written in the form of
temporal constraints. This is important because the required safety separation at runaways is most naturally
described by the separation in time between aircraft departures and arrivals. Consequently, both spatial and
temporal safety separation among aircraft can be formulated as a homogeneous set of temporal separation
constraints. This allows us to compute an optimal taxi schedule as the solution of a MILP.

Inefficiencies in aircraft taxiway traversal can result in queues and therefore periods during which aircraft
engines are unnecessarily running. To avoid this, we consider a taxi scheduling plan that can be performed
with minimal or no stopped aircraft in the interest of fuel consumption. This means that any departure
delay imposed by the Federal Aviation Administration (FAA) should ideally be managed either by delaying
gate push-back, or if necessary, by distributing the delay along the route by appropriately adjusting speed.
However, we do allow for stopping to achieve a degree of freedom requested by human operators.

III. Formulation

Since arrival, departure, and gate docking processes are all interconnected at runways, gates, apron
entries, and taxiways, graphical or network-based approaches provide a natural model to explicitly monitor
or control coordination among aircraft at the intersections of these locations. We model our taxiway as
a directed graph G(N,A) consisting of a set N = {N1, N2, ...Nn} of n nodes and a set A of m ordered
pairs, or arcs, of N , {a1, a2, ...am}, such that each arc is of the form (Ni, Nj), which we notate as arc
(i, j), i, j = 1, 2, . . . , n. Each direction of a taxiway segment of length dij corresponds to a single arc
(dij = dji). Nodes consist of gates, runways, aprons, and other points where taxiway paths intersect. The
optimal taxi schedule problem for a specified horizon of all flights in the set K can then be formulated as
follows:

Variables :
To control speed we introduce a variable fijk that is a function of the inverse of the velocity vk(i, j) of aircraft
k traveling on arc (i, j).

fijk = 1/vk(i, j) (1)

The variable tk is the push-back time of aircraft k ∈ K, and the total time an aircraft k stops along arc (i, j)
is notated as τijk . A binary variable zijk is 1 if aircraft k travels along arc (i, j) and 0 otherwise, and a binary
variable Bkαkβi is 1 if aircraft kα arrives at node i before aircraft kβ and 0 otherwise (kα, kβ ∈ K; kα 6= kβ).

Aircraft must arrive at destination node by scheduled time:
We define a path p as a sequence of arcs for an aircraft to follow, and |p| as the number of segments in that
sequence. Then for each aircraft k, and for each path p in the set of all possible paths Pk for aircraft k,

tk +
∑

(i,j)∈p

(fijkdij + τijk)−M



|p| −
∑

(i,j)∈p

zijk



 ≤ t
(sched)
k (2)

This constraint is made inactive with the large constant M if the path p is not chosen by aircraft k.
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Aircraft path must be continuous :
For each aircraft k, and for each node i in arc (i, j),

∑

j

zijk −
∑

j

zjik =















1 if i = (start)

−1 if i = (end)

0 else

(3)

Note that this constraint appears in a simple shortest-path problem. Since for this problem, the objective
function does not explicitly minimize the number of traversed arcs, the following constraints must also be
applied:

Each node may be visited a maximum of once per aircraft :
For each aircraft k, and for each node i in arc (i, j),

∑

j

zijk ≤ 1 if i 6= (end) (4)

∑

j

zjik = 1 if i = (end) (5)

Separation requirements :
Aircraft must be separated by a minimum spatial distance ∆kαkβ

on the taxiway, dependent on the weight
classes of the aircraft kα and kβ , at all times. We can ensure that this is true if three restrictions are imposed.
First, when an aircraft arrives at a node, the actual distance between aircraft ` is at least equal to ∆kαkβ

.
Likewise, when one aircraft has departed a node and another trails it, ` must still be greater than ∆kαkβ

.
If two aircraft travel an arc (i, j) with constant (but possibly different) speeds, the separation constraint
at i and at j will also be satisfied along the entire arc as long as the order in which aircraft arrive at the
preceding node i is the same as the order at the next node j.

We first must restrict the distance ` between two aircraft as they approach a common node in both
aircraft’s paths. If aircraft kα arrives at node v before aircraft kβ , we require that the distance ` be greater
than the minimum separation distance, i.e.,

Bkαkβv

(

`−∆kαkβ

)

≥ 0

where ∆kαkβ
is an element in a matrix of separation requirements indexed by the weight classes of the leading

and following aircraft.
Our program deals mainly with temporal constraints, but here we must consider spatial separation

requirements. This is fully explored in Rathinam et al.,15 but for the situation when the times at each node
tk(·) are known. For our problem, these times are path dependent, and so we extend this analysis to consider
all possible paths and arc speeds on these paths. Since aircraft speed on an arc is constant, distance-time
relations can relate spatial distances to temporal constraints (see Figure 2).

By enumerating the set of possible paths P and summing the total time required for each path, we can
write the constraint as follows. For each aircraft kα 6= kβ , for each node v ∈ Pα ∩Pβ, for each path pα from
the starting node of kα to v and path pβ from the starting node of kβ and ending in (u, v),



tkα
+

∑

(i,j)∈pα

fijkα
dij + τijkα



−



tkβ
+

∑

(i,j)∈pβ

fijkβ
dij + τijkβ



+∆kαkβ
fuvkβ

−M



|pα| −
∑

(i,j)∈pα

zijkα



−M



|pβ | −
∑

(i,j)∈pβ

zijkβ



−M
(

1−Bkαkβv

)

≤ 0 (6)

This constraint is made inactive with the large constant M if the paths pα and pβ are not chosen, or if
aircraft kα does not arrive at node v before kβ .

We are also interested in the case where two aircraft depart a common node. If aircraft kα departs at
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Figure 2. Distance-time relation for two aircraft (kα and kβ) approaching a common node v (adapted from11).

From similar triangles, ` =

(

tkβ
(v)−tkα (v)

tkβ
(v)−tkβ

(u)

)

duv

node u before aircraft kβ , we require that the distance ` be greater than the minimum separation distance
for aircraft of weight class ∆kαkβ

:

Bkαkβu

(

`−∆kαkβ

)

≥ 0

or equivalently (see Figure 3), for each aircraft kα 6= kβ , for each node u ∈ Pα ∩ Pβ , for each path pα and
path pβ from the aircraft’s respective starting positions to u where pα continues on (u, v), ?



tkα
+

∑

(i,j)∈pα

fijkα
dij + τijkα



−



tkβ
+

∑

(i,j)∈pβ

fijkβ
dij + τijkβ



+∆kαkβ
fuvkα

−M



|pα| −
∑

(i,j)∈pα

zijkα



−M



|pβ| −
∑

(i,j)∈pβ

zijkβ



−M
(

1−Bkαkβu

)

≤ 0 (7)

This constraint is made inactive with the large constant M if the paths pα and pβ are not chosen, or if
aircraft kα does not arrive at node u before kβ .

Crossing constraints :
We have guaranteed that two aircraft are adequately separated at each node, and keep a constant speed
on every arc (i, j). By requiring that the order in which aircraft arrive at i remains the same as the order
at j, aircraft will not overtake or cross during arc traversal. For all aircraft kα 6= kβ , and all arcs (i, j) or
(j, i) ∈ Pkα

∩ Pkβ
,

Bkαkβi −Bkαkβj −
(

2− zijkα
− zijkβ

− zjikα
− zjikβ

)

≤ 0 (8)

Bkαkβi −Bkαkβj +
(

2− zijkα
− zijkβ

− zjikα
− zjikβ

)

≥ 0 (9)

If arc (i, j) is not chosen in any direction by aircrafts kα and kβ this constraint is inactive; otherwise
Bkαkβ i = Bkαkβj .

One aircraft must arrive at a node before another :

Bkαkβ i +Bkβkαi = 1 (10)

Runway separation:
Due to runway separation requirements, no two aircraft can occupy a runway node for a specified time
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Figure 3. Distance-time relation for two aircraft (kα and kβ) departing a common node u. Similar triangles

show that ` =

(

tkβ
(u)−tkα (u)

tkα (v)−tkα (u)

)

duv.

interval after one aircraft departs on that runway. For each aircraft kα and kβ 6= kα, for each runway node r,
for each path pα from the starting node of kα to its destination node u at the start of the runway containing
r, and for each path pβ ∈ Pkβ

from the starting node of kβ to r,



tkα
+

∑

(i,j)∈pα

fijkα
dij + τijkα



−



tkβ
+

∑

(i,j)∈pβ

fijkβ
dij + τijkβ





−M



|pα| −
∑

(i,j)∈pα

zijkα



−M



|pβ | −
∑

(i,j)∈pβ

zijkβ



−M
(

1−Bkαkβu

)

≤ −∆T
kα

(11)

where ∆T
kα

is the required temporal separation based on the weight class of aircraft kα.
Aircraft should also avoid taxiing along a runway. To this end, for each departing aircraft k, and for each

arc (i, j) along each runway,

zijk = 0

zjik = 0 (12)

Likewise, the constraint in Equation 12 is imposed for each arriving aircraft k and each arc (i, j) on a runway
other than its designated landing runway. Any airport-specific path restrictions can also be implemented
with constraints of this form.

Variable bounds :
Variables are constrained to only take on realistic values

tk ≥ 0

fijk ≥ 1/Umax for departing aircraft & decelerated landing aircraft

fijk ≤ 1/Umin

τijk ≥ 0

zijk = {0, 1}

Bkαkβ i = {0, 1} (13)
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Uncertainty:
Should a pilot or ground traffic controller not adhere to the prescribed scheduling, the optimal taxi solution
determined by our formulation must be robust to any small deviations from the solution x. We therefore
solve for the mean x̄ of random variables x so that the constraints are robust to a known spread about the
mean. Here we assume a Gaussian distribution, and other distributions follow similarly.

Uncertainty is assumed to arise in aircraft speedsa, gate push-back times, and stopping times. We write

fijk ∼ f̄ijk +N
(

0, σ2
f

)

tk ∼ t̄k +N
(

0, σ2
t

)

τijk ∼ τ̄ijk +N
(

0, σ2
τ

)

.

Our program constraints (2-13) can be written as Ax ≤ b, where each constraint ajx ≤ bj forms a row of
coefficients aij = [A]ij . Then all constraints j are made valid by minimizing the probability of constraint
violation κ:

κ ≥ Pr (ajx > bj) ∀j

= Pr

(

aj x̄+N

(

0,
∑

uncertain i

a2ijσ
2
i

)

> bj

)

= 1− Φ





1
√

∑

a2ijσ
2
i

[bj − aj x̄]



 .

where Φ (·) is the chosen cumulative distribution function. To minimize κ, we introduce a variable λ to be
maximized:

max λ (14)

s.t. aj x̄+ λ

√

∑

i

a2iσ
2
i ≤ bj ∀j (15)

aj x̄ ≤ bj ∀j (16)

where

λ = Φ−1 (1− κ; 0, 1) . (17)

Note that the inclusion of λ in the objective function competes with total taxi time minimization (see
Section IV). Furthermore, for λ to represent the same value in all constraints, the chosen distribution must
have nice properties that allow scale and shape parameters of the cumulative density function of the sum
of non-identical r.v.’s to be made independent of the non-zero coefficients in the constraints, e.g., Gaussian
and Cauchy distributions. Alternatively, for distributions where this is not possible or difficult (e.g., sum
of non-identical uniform distributions), a user-chosen value κ may be included in each constraint from the
original formulation that guarantees that feasible solutions are robust with probability 1− κ, i.e.,

aj x̄+Φ−1

(

1− κ; µ = 0, σ2 =
∑

i

a2ijσ
2
i

)

≤ bj ∀j.

For separation constraints, these robustness requirements essentially restrict the probability of the inter-
sections of the possible positions of the aircraft.

Minimum perturbed schedule:
In certain circumstances, computing the optimal schedule would be an infeasible problem. This would be a
clear indication that the requested plan of departures and arrivals could not be achieved, or that the airport is
operating beyond its maximum taxiway capacity. Should any of the preceding constraints cause the program
to become infeasible, an operator might wish to re-solve the problem to find a minimally perturbed flight

aNote that if reciprocal speed is Gaussian, velocity arises from a distribution with a heavier tail that favors faster speeds
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schedule that adheres to all constraints. To this end, we introduce the perturbed schedule variable t′k for a
flight k, and a variable δk that represents the absolute difference between the perturbed schedule and original
schedule |tk − t′k|.

−δk − t′k ≤ −t
(sched)
k

−δk + t′k ≤ t
(sched)
k (18)

Then Equation (2) becomes

tk +
∑

(i,j)∈p

(fijkdij + τijk)−M



|p| −
∑

(i,j)∈p

zijk



 ≤ t′k (19)

and the objective function minimizes
∑

k δk. Similar formulations can be used to find a minimally perturbed
probability of constraint violation κ.

IV. Results

In this section, we provide results of the implementation of our formulation. As a first scenario, three
aircraft traverse a taxiway in the shape of a kite in a minimal amount of time. Aircraft 1 and 2 must switch
places atN2 andN4, while aircraft 3 must travel fromN1 to N5 (see Figure 4). This simple arrangement leads
to 729 possible path combinations, 3461 constraints, 115 solution points, and 60077 non-zero coefficients.
Constraints are automatically generated in Matlab, and the dynamic search feature of CPLEX is used to
determine the solution with the minimal total taxi time or minimal probability of constraint violation; this
example requires approximately 7 seconds on an Intel i7 with 4GB RAM.

N1

N2 N3 N4

N5

Figure 4. Example taxiway

Figure 5 compares the optimal solutions from our program to those determined by a First-Come-First-
Served (FCFS) policy in which priority is given according to the original schedule. In all implementations
of our formulation on this problem, the total taxi time required and the probability of constraint violation
are less. As the intervals between scheduled flights decrease, i.e., as congestion increases, the benefits as
compared to a FCFS policy become more noticeable.

With the choice of many possible paths for each aircraft, minimization of total taxi time is often in direct
conflict with minimization of the probability of constraint violation. Therefore we consider the following
objective function

max ηλ + θ
∑

k

tk

with weight η on λ and weight θ on the total taxi time. For the example in Figure 4, we can enumerate the
Pareto outcomes for which any decrease in total taxi requires an increase in the probability of constraint
violation. With larger κ, the spacing between flights’ trajectories may approach the ∆kαkβ

limit, and more
flights can be squeezed in an efficient path, causing the total taxi time to decrease. When flights must be
further separated as a precaution based on κ, one or more flights might be required to take a significantly
longer path, lengthening the total taxi time.
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Figure 5. Benefits of formulation compared to FCFS policy. As congestion increases, advantages in total taxi
time and probability of constraint violation are more noticeable.
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Figure 6. Objective function values for which any decrease in total taxi time results in an increase in the
probability of constraint violation κ. If flights are required to be spaced cautiously, taxi time may increase as
a result, sometimes significantly due to the varying lengths of possible paths.

As in this example, the choice of paths can make the total taxi time extremely sensitive to the imposed
κ. Operators might use this Pareto front as a guide for determining a realistic expectation for taxi times
based on a required κ, or vice versa. Here, a realistically-achievable value of κ might be approximately 33%.

Policy analysis example

In many circumstances the optimal solution for a given taxiway consists of patterns of paths that are common
across varying schedules. Should our program often choose a particular set of trajectories, this might indicate
the need for a taxi policy in which particular arcs are dedicated as one-way or exclusively for arrivals or
departures. In the following example, a simple grid-based taxiway demonstrates the respective common
paths chosen by departures and arrivals across many different schedules and starting/destination nodes.
The only commonality of the trials is the taxiway layout and a general North-South direction for arrivals
and departures.

We consider a taxiway composed of 9 nodes arranged in a 3× 3 symmetrical grid that is complicated by
an initial random perturbation of node positions to form an uneven grid (Figure 7a). Then for each of 1000
repetitions, we create a random number ndep ∈ {1, 2, 3} of departures that must traverse from randomly
assigned top nodes to randomly assigned open bottom nodes of the grid. Meanwhile narr = 3− ndep arrivals
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must traverse from bottom to top. Requirements for scheduling (Equation 2) in each run are sampled from a
uniform distribution. Figure 7b shows the common patterns across all schedules. For example, the optimal
choice of paths results in a pattern where arrivals are more likely to travel north via arc #8 than departures,
and departures are more likely to travel south via arc #4 than arriving flights.

1 2
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6 7

8 9 10

11 12

Departures

Arrivals

(a)
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Figure 7. Frequency of arc traversal for departing and arriving flights on the taxiway in (a). For comparison,
circles denote the frequency of each arc in the set P of departures and arrivals. Solutions for departing flights
often consist of paths that are infrequently chosen by arriving flights, suggesting a policy in which these paths
are designated solely for departing aircraft.

As the program is highly configurable, testing of current taxiway policies in large-scale scenarios is possible
by fixing specific zijk and Bkαkβi variables.

V. Discussion

This paper presents a novel method to couple an aircraft scheduling problem to a trajectory planning
problem constrained to a graph topology. The formulation is constructed in the time domain in order to
consider flows of aircraft over the taxiway instead of node occupation. Unlike previous works that only con-
sider shortest paths, the entire taxiway is included in the set of admissible solutions. Aircraft are prohibited
from coming within specific spatial and temporal distances of one another, greatly increasing computational
complexity. However if speeds across each arc are assumed to be constant, a mixed integer linear program
developed herein is capable of tackling the problem within a reasonable time frame. By minimizing total
taxi time and decreasing the probability of conflict among aircraft, the capacity of an airport taxiway is
increased. These benefits are more noticeable with increased congestion.

Although focus is usually placed on runway positioning and orientation during airport design, a taxiway
design that increases airport capacity is desirable, and use of this formulation as a discovery or analysis tool
of taxiway layouts or traversal policies may aide this type of effort. Implementation in an airport setting
either as a policy analysis tool or a real-time scheduling tool will alleviate some of the environmental and
financial issues associated with taxiway queues and idling engines.

This approach may also be applicable to other control problems in multi-agent path planning, e.g., robotic
swarms with uncertain dynamics, although a decrease in computational complexity may be necessary before
this formulation is viable in real-time. Along these lines, possible modifications to the formulation include
a constraint generation-based solution method (e.g., Benders’ decomposition) or a quadratic program that
avoids enumeration of paths.
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