

Micro-Burst Monitoring

- Micro-Burst Monitoring, on page 1
- Guidelines and Limitations for Micro-Burst Monitoring, on page 1
- Configuring Micro-Burst Detection, on page 3
- Clearing Micro-Burst Detection, on page 5
- Verifying Micro-Burst Detection, on page 5
- Example of Micro-Burst Detection Output, on page 6

Micro-Burst Monitoring

The micro-burst monitoring feature allows you to monitor traffic to detect unexpected data bursts within a very small time window (microseconds). This allows you to detect traffic in the network that are at risk for data loss and for network congestion.

A micro-burst is detected when the buffer utilization in an egress queue rises above the configured rise-threshold (measured in bytes). The burst for the queue ends when the queue buffer utilization falls below the configured fall-threshold (measured in bytes).

The feature provides timestamp and instantaneous buffer utilization information about the various queues where micro-burst monitoring is enabled

Guidelines and Limitations for Micro-Burst Monitoring

The following are the guidelines and limitations for micro-burst monitoring:

- Micro-burst monitoring is not supported on the Cisco Nexus 9508 switch (NX-OS 7.0(3)F3(3).
- Micro-burst monitoring and detection is supported on Cisco Nexus 9300-FX, Cisco Nexus 9300-FX2, and Cisco Nexus N9K-C9364C switches.
- **show** commands with the **internal** keyword are not supported.
- Micro-burst monitoring is available with TOR switches that contain the Network Forwarding Engine (NFE2). The minimum micro-burst that can be detected is 0.64 microseconds for 1 3 queues.

On these switches, micro-burst monitoring is supported on unicast egress queues. It is not supported on multicast, CPU, or span queues.

• Beginning with NX-OS 7.0(3)I5(1), micro-burst monitoring is available on the following TOR switches that contain an Application Spine Engine (ASE2, ASE3) or a Leaf Spine Engine (LSE):

TOR Switch	Measurable Minimum Burst Duration
N9K-C92160YC-X	86 μsec
N9K-C92304QC	96 μsec
N9K-C9272Q	96 μsec
N9K-C9232C	96 μsec
N9K-C9236C	96 μsec
N9K-C93180YC-EX	73 μsec
N9K-C93108TC-EX	78 μsec

On these switches, micro-burst monitoring is supported on both unicast and multicast egress queues.

In addition, early detection of long bursts is supported. For bursts lasting more than 5 seconds, an early burst start record is displayed after 5 seconds from the start of the burst and is updated when the burst actually ends.

Note

On these switches, micro-burst duration is not affected by the number of queues configured.

 On TOR switches that contain a Network Forwarding Engine (NFE2), micro-burst monitoring requires IO FPGA version 0x9 or later.

Beginning with NX-OS 7.0(3)I5(1), micro-burst monitoring on TOR switches that contain an Application Spine Engine (ASE2, ASE3) or a Leaf Spine Engine (LSE) require the following IO FPGA versions:

TOR Switch	IO FPGA Version
N9K-C92160YC-X	0x16 or later
N9K-C92304QC	0x10 or later
N9K-C9272Q	0x15 or later
N9K-C9232C	0x6 or later
N9K-C9236C	0x14 or later
N9K-C93180YC-EX	0x8 or later
N9K-C93108TC-EX	0x9 or later

For more information about EPLD programming to upgrade the FPGA, see the *Cisco Nexus 9000 Series FPGA/EPLD Upgrade Release Notes*.

• The following are guidelines for micro-burst duration on TOR switches that contain a Network Forwarding Engine (NFE2):

Note

Micro-burst duration is the duration of the burst that can be detected. For example, when micro-burst monitoring is configured for 1 - 3 queues, micro-bursts that exceed 0.64 microseconds are detected. Increasing the number of queues that are configured for micro-burst monitoring increases the duration of the burst that can be detected.

1 - 3 queues	0.64 microsecond duration
8 queues with 10 ports each	9.0 microsecond duration
10 queues with 132 ports each	140 microsecond (0.14 millisecond) duration

- By default, the switch stores a maximum of 1000 burst records. The maximum number of records is configurable within a range of 200 2000 records.
 - At least, 20 burst records are stored for each queue even when the maximum number of burst records has been reached.
 - When the maximum number of burst records has been reached, the oldest record is deleted to allow the storage of a new record.
 - You can use the hardware qos burst-detect max-records number-of-records command to configure
 the maximum number of burst records to store.
 - You can use the **show hardware qos burst-detect max-records** command to display the maximum number of burst records that can be stored.
- Too many back to back burst records while traffic is being drained from queues might result in jitter.

To avoid jitter, configure the fall-threshold to be less than the rise-threshold. As a best practice, configure the fall-threshold to be approximately 20% of the rise-threshold value (bytes).

Configuring Micro-Burst Detection

You can enable micro-burst detection for all interfaces on the device.

SUMMARY STEPS

- 1. configure terminal
- 2. policy-map type queuing policy-map-name
- 3. class type queuing class-name
- 4. burst-detect rise-threshold rise-threshold-bytes bytes fall-threshold fall-threshold-bytes bytes
- 5. exi

DETAILED STEPS

	Command or Action	Purpose				
Step 1	<pre>configure terminal Example: switch# configure terminal switch(config)#</pre>	Enters global configuration mode.				
Step 2	<pre>policy-map type queuing policy-map-name Example: switch(config) # policy-map type queuing xyz switch(config-pmap-que) #</pre>	Configures the policy map of type queuing and then enter policy-map mode for the policy-map name you specify.				
Step 3	<pre>class type queuing class-name Example: switch(config-pmap-que) # class type queuing c-out-def switch(config-pmap-c-que) #</pre>		res the class map of type of ap class queuing mode.	queuing and then enters		
Step 4	burst-detect rise-threshold rise-threshold-bytes bytes fall-threshold fall-threshold-bytes bytes Example: switch(config-pmap-c-que) # burst-detect rise-threshold 208 bytes fall-threshold 208 bytes	micro-bu	TOR switches with Network Forwarding Engine (NFE2) TOR switches with Application Spine Engine (ASE2, ASE3) or Leaf Spine Engine (LSE)	Range for rise-threshold bytes: 208 - 4194304. Range for fall-threshold bytes: 208 - 4194304. Range for rise-threshold bytes: 208 - 13319072. Range for fall-threshold bytes: 208 - 13319072.		
Step 5	<pre>exit Example: switch(config-pmap-c-que)# exit switch(config)#</pre>	Exits pol	licy-map queue mode.			

Clearing Micro-Burst Detection

You can clear micro-burst detection for all interfaces or a selected interface.

SUMMARY STEPS

1. clear queuing burst-detect [slot] [interface port [queue queue-id]]

DETAILED STEPS

	Command or Action	Purpose			
Step 1	clear queuing burst-detect [slot] [interface port [queue queue-id]]	Clears micro-burst information from all interfaces or the specified interface.			
	Example:				

Example

• Example for an interface:

clear queuing burst-detect interface Eth1/2

• Example for a queue:

clear queuing burst-detect interface Eth1/2 queue 7

Verifying Micro-Burst Detection

The following displays micro-burst monitoring information:

Command	Purpose
show queuing burst-detect	Displays micro-burst counters information for all interfaces.

• Example for an interface:

show queuing burst-detect interface Eth 1/2

• Example for a queue:

show queuing burst-detect interface Eth 1/2 queue 7

Example of Micro-Burst Detection Output

Example output of TOR switch.

belv6# show queuing burst-detect detail slot 1 $\,$

Microburst Statistics

Flags: E - Early start record, U - Unicast, M - Multicast

Ethernet Intfc	Queue 	Start Depth (bytes)		art Time	Peak Depth (bytes)	i	k Time	End Depth (bytes)	End	l Time	Duration
Eth1/36	I 270 I	310128	2011/01/11	22:31:51:08172		12011/01/11 2	2.31.51.00170		011/01/11 02	2:31:51:081918	1103 14 9
Eth1/36				22:31:51:08172						2:31:51:061916	
Eth1/36				22:31:51:28182						2:31:51:282018	
Eth1/36	U0	283712	2011/01/11	22:31:51:38186	2 283712	2011/01/11 22	2:31:51:38180	2 0 2	011/01/11 22	2:31:51:382056	193.42 u
Eth1/36	U0	312000	2011/01/11	22:31:51:48188	5 312000	2011/01/11 22	2:31:51:48188	5 0 2	011/01/11 22	:31:51:482080	194.42 u
Eth1/36	00	221312	2011/01/11	22:31:51:58197	4 221312	2011/01/11 22	2:31:51:58197	4 0 2	011/01/11 22	:31:51:582168	193.58 u
Eth1/36	00	291616	2011/01/11	22:31:51:68196	4 291616	2011/01/11 22	2:31:51:68196	4 0 2	011/01/11 22	:31:51:682157	193.10 u
Eth1/36	i uo i	190112	2011/01/11	22:31:51:78206	7 190112	2011/01/11 2	2:31:51:78200	7 18512 2	011/01/11 22	2:31:51:782154	86.22 u
Eth1/36	i oo i	70512	2011/01/11	22:31:51:88216	7 70512	2011/01/11 22	2:31:51:88216	7 0 2	011/01/11 22	2:31:51:882253	85.74 u
Eth1/36	i oo i	185328	2011/01/11	22:31:52:08211	1 185328	2011/01/11 22	2:31:52:08211	1 0 2	011/01/11 22	:31:52:082304	193.09 u
Eth1/36	iυοi	245856	2011/01/11	22:31:52:18215	8 245856	2011/01/11 2	2:31:52:18215	8İ 0İ2	011/01/11 22	2:31:52:182352	193.34 u
Eth1/36	UO I	138112	2011/01/11	22:31:52:28229	3 138112	2011/01/11 22	2:31:52:28229	3 0 2	011/01/11 22	2:31:52:282380	86.53 u
Eth1/36	i oo i	242112	2011/01/11	22:31:52:38228	4 242112	2011/01/11 22	2:31:52:38228	4 0 2	011/01/11 22	2:31:52:382478	193.55 u
Eth1/36	i uo i	136448	2011/01/11	22:31:52:48226	4 195312	2011/01/11 2	2:31:52:48234	8 0 0 2	011/01/11 22	2:31:52:482542	278.16 u
Eth1/36	00	299312	2011/01/11	22:31:52:58233	4 299312	2011/01/11 22	2:31:52:58233	4 0 2	011/01/11 22	2:31:52:582612	278.12 u
Eth1/36	iυοi			22:31:52:68243							
Eth1/36				22:31:52:78238						2:31:52:782580	
Eth1/36				22:31:52:88240						2:31:52:882685	